
GigaScience, 7, 2018, 1–5

doi: 10.1093/gigascience/giy092
Advance Access Publication Date: 31 July 2018
Technical Note

TE CHNICAL NO TE

Hot-starting software containers for STAR aligner
Pai Zhang, Ling-Hong Hung, Wes Lloyd and Ka Yee Yeung *

School of Engineering and Technology, Campus Box 358426, 1900 Commerce Street, University of
Washington, Tacoma, Washington 98402-3100, USA
∗Correspondence address. Ka Yee Yeung, Campus Box 358426, 1900 Commerce Street, University of Washington, Tacoma, Washington 98402-3100, USA,
E-mail: kayee@uw.edu http://orcid.org/0000-0002-1754-7577

Abstract

Background: Using software containers has become standard practice to reproducibly deploy and execute biomedical
workflows on the cloud. However, some applications that contain time-consuming initialization steps will produce
unnecessary costs for repeated executions. Findings: We demonstrate that hot-starting from containers that have been
frozen after the application has already begun execution can speed up bioinformatics workflows by avoiding repetitive
initialization steps. We use an open-source tool called Checkpoint and Restore in Userspace (CRIU) to save the state of the
containers as a collection of checkpoint files on disk after it has read in the indices. The resulting checkpoint files are
migrated to the host, and CRIU is used to regenerate the containers in that ready-to-run hot-start state. As a
proof-of-concept example, we create a hot-start container for the spliced transcripts alignment to a reference (STAR) aligner
and deploy this container to align RNA sequencing data. We compare the performance of the alignment step with and
without checkpoints on cloud platforms using local and network disks. Conclusions: We demonstrate that hot-starting
Docker containers from snapshots taken after repetitive initialization steps are completed significantly speeds up the
execution of the STAR aligner on all experimental platforms, including Amazon Web Services, Microsoft Azure, and local
virtual machines. Our method can be potentially employed in other bioinformatics applications in which a checkpoint can
be inserted after a repetitive initialization phase.

Keywords: software container; reproducibility of research; cloud computing

Findings
Background

With the availability of high-throughput next-generation se-
quencing technologies and the subsequent explosion of big
biomedical data, the processing of big biomedical data has be-
come a major challenge. Cloud computing plays an important
role in addressing this challenge by offering massive scalable
computing and storage, data sharing, and on-demand access
to resources and applications [1, 2]. The National Institutes of
Health is launching a Data Commons Pilot Phase to provide ac-
cess and storage of biomedical data and bioinformatics tools on
the cloud [3]. Additionally, software containers have become in-
creasingly popular for deploying bioinformatics workflows on
the cloud. Docker [4], an open-source project, has become the
de facto standard for container software. Docker packages exe-

cutables with all the necessary software dependencies, ensuring
that the same software environment is replicated regardless of
the host hardware and operating system. Other container tech-
nologies such as Singularity containers have also been proposed
to enhance mobility and reproducibility of computational sci-
ence [5, 6]. Thus, containerization enhances the reproducibil-
ity of bioinformatics workflows [7–9]. In the context of cloud
computing, the utility of containers comes from the ease with
which a virtual cloud cluster can be rapidly provisioned with all
of the necessary dependencies for a complicated workflow by
simply downloading a set of containers, each of which takes a
few seconds to spin up. Recently, Vivian et al. processed more
than 20,000 RNA sequencing (RNA-seq) samples from the Cancer
Genome Atlas using Docker containers on the cloud [10]. Tatlow
et al. used software containers to study the performance and

Received: 30 November 2017; Revised: 7 April 2018; Accepted: 17 July 2018

C© The Author(s) 2018. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

http://www.oxfordjournals.org
http://orcid.org/0000-0002-1754-7577
mailto:kayee@uw.edu
http://orcid.org/0000-0002-1754-7577
http://orcid.org/0000-0002-1754-7577
http://creativecommons.org/licenses/by/4.0/


2 Hot-starting software containers

cost profiles of different cloud-based configurations in process-
ing RNA-seq data from public cancer compendia [11].

When containers are deployed, applications are launched de
novo each time the container is spun up. This means that any
initial preparatory steps are repeated each time the container
is used. For tasks such as the alignment of reads, these initial
steps can be quite substantive as large sets of indices need to be
read before alignments can begin. In an automated large-scale
deployment, these steps are replicated many times. It would be
far more efficient if one could “checkpoint” and save containers in
states where the application has already completed the initial-
ization steps so as to avoid unnecessary repetitions. One could
then “hot-start” workflows from these checkpoints. This is anal-
ogous to hot-start polymerase chain reaction (PCR) where all the
necessary reagents are premixed awaiting only the addition of
the template.

Our approach

Our key idea is to save and restore memory states in software
containers using the Checkpoint Restore in Userspace (CRIU)
tool. CRIU freezes a running container and saves the checkpoint
as a collection of files on disk [12]. These files can subsequently
be used to restore and resume the application from that check-
point. CRIU was originally developed for Linux but has recently
become available for Docker [13]. While it is possible to stop
Docker containers with native Docker commands, this process
does not preserve the memory state. Although restarting from
a ready-to-go state is an intuitive application of checkpointing,
we have been unable to find any previous description of using
checkpointing as a general method for improving the efficiency
of container deployments.

We demonstrate that hot-starting from a saved container
checkpoint can significantly reduce the execution time using the
spliced transcripts alignment to a reference (STAR) aligner [14,
15] for RNA-seq data analyses. We chose STAR as a proof-of-
concept example because it has such a slow initialization step
that it includes an option to retain indices in memory for use
when aligning many different files. However, our idea of using
checkpoints has broad applications in optimizing performance
using software containers on the cloud when performing any
bioinformatics task where a pause could be inserted to capture
a re-usable state.

The STAR aligner consists of several steps. Indices are gener-
ated from the reference genome. This is typically done just once
using the latest version of the reference. The indices are read
in; then, read sequences from a specific experiment sample are
mapped to the reference genome. For STAR, reading in the in-
dices is a slow process, and STAR has an option of keeping the
indices in memory after they have been generated so that sub-
sequent sequence alignments do not have to repeat the step of
reading the indices. We used the CRIU tool to create checkpoints
after the indices have been read. Instead of launching a new con-
tainer and starting STAR from scratch, we restore the container
state using CRIU and resume running STAR after it has loaded
the indices. Figure 1 shows an overview of our approach with
and without using checkpoints.

Testing

To test the checkpointing methodology, we used RNA-seq data
generated by Himes et al. These data measure the gene expres-
sion changes in human airway smooth muscle cells in response
to asthma medications [16]. We compared the time required to

align the sequences with a normal container where STAR starts
from scratch and the time required when hot-starting from a
container checkpoint where STAR has already generated indices.
We performed empirical studies on multiple cloud platforms in-
cluding Amazon Web Services (AWS) and Microsoft Azure, us-
ing both local and networked disks. On AWS, we compared per-
formance with data stored on the local host vs Amazon Elastic
Block Store (EBS). On Microsoft Azure, we compared the perfor-
mance with data stored on the local host vs Azure File Storage.
Please refer to the Online Methods for details of our experimen-
tal setup. Our empirical results are shown in Fig. 2.

Figure 2 shows that the STAR aligner with checkpointing re-
duces the execution time compared to STAR without check-
pointing. The average running times over five separate runs are
shown. The raw data, average running time, and standard devi-
ation across the five runs are available as Additional File 2. On
AWS, we observed a 1.89x speedup with data stored on the lo-
cal disk and 1.42x speedup with data on a network disk (Amazon
EBS). On Microsoft Azure, we achieved a 1.34x speedup with data
stored on the local disk and 3.57x speedup with data on Azure
File Storage. With respect to execution time, we show that hot-
starting from checkpoint containers saves 2 minutes on fast lo-
cal disks and Amazon EBS disks. The savings is almost 20 min-
utes when using Azure network storage where the disk caching
scheme appears to be much less favorable to STAR’s indexing
process.

Here, we have presented a novel idea for optimizing cloud
deployments using checkpointing to save containers where the
applications are already started. Using CRIU for Docker, we can
save the container with a preloaded genome for STAR alignment
and restore the container from these checkpoint files to any
host. We have achieved successful migration of checkpointed
containers to different virtual machine instances running on
the Amazon and Azure cloud platforms while realizing up to a
3.57x speedup using our approach, saving up to 20 minutes for
a single STAR alignment workflow on Azure with network disks.
For STAR alignment, it is possible to use a checkpointed con-
tainer to align multiple sequences at once by retaining the ge-
nomic indices in memory. Our approach yields a significant ben-
efit with hot-starting when as few as one or two files are aligned.
Additionally, multiple STAR alignment tasks can be computed
in parallel using the same genome indices hosted by different
processes. For automated schedulers such as Docker Compose
[17], “hot-starting” reduces execution time every single time the
STAR container is launched. While it is possible to design a work-
flow to perform all the alignments in a single container first,
load-balancing would be made easier by allowing the scheduler
to distribute the computation over the cluster as shorter jobs.

There are a few caveats to the hot-start strategy. First, the
CRIU tool produces checkpoint files that are Linux kernel version
dependent [18]. Restoring a checkpoint on a Docker host in a lo-
cal cluster or an instance in the cloud backed by a different ker-
nel version would require a kernel-specific checkpoint file that
can be created by running the CRIU tool on the node or instance.
Second is the requirement for a convenient place in the work-
flow to insert a pause, checkpoint, and re-start. In the case of
STAR, this is provided by a flag that allows the container to keep
genomic indices in shell memory between invocations of STAR.
For other workflows, one could add a flag to pause the computa-
tion where the checkpoint is to be created and a flag to resume
the computation afterward. With these straightforward modifi-
cations, any workflow could take advantage of checkpointing to
avoid repetitive initialization steps. A major advantage of hot-
starting is that it does not require extensive knowledge of the



Zhang et al. 3

Read genome 
indices

Map reads to 
genome

Output files

Map reads to 
genome

Output files

Reference 
genome

Checkpoint 
and save

Traditional 
STAR alignment

Hot-start STAR alignment

Input reads 
from sample

Input reads 
from sample f

Generate indices

Figure 1: An overview of our approach with and without checkpoints. The left panel shows the two steps of the STAR aligner [14, 15] after the generation of indices.
The right panel shows our approach using the CRIU tool that freezes a running container and saves the checkpoint as a collection of files on disk after the genome
indices are generated using the reference genome. Our “hot-start” containers use these saved files to restore the application and map the reads from the experimental

sample data to the reference.

0 200 400 600 800 1000 1200 1400

Time without checkpoint

Time to restore from checkpoint

Time for alignment a er restoring
1.42x

1.34x

3.57x

STAR running time comparison

Azure file storage

Azure local disk

AWS EBS

AWS local disk

Running time (seconds)

1.89x

Figure 2: STAR alignment running time comparison with and without checkpoint. The running time is averaged over five runs. We performed our empirical experiments
on two cloud platforms: AWS and Microsoft Azure. Both the Azure File Storage and the Amazon EBS represent network disks. We observe that our “hot-start” containers
(orange and gray bars) provide a major reduction in execution time, especially on local disks.

underlying code to optimize performance. While it may be more
efficient to simply rewrite the code to eliminate repetitive steps,
this is not always feasible, especially for academic or poorly doc-
umented legacy software. Hot-starting from pre-initialized con-
tainers represents a novel and unexplored approach to speed-
ing up bioinformatics workflows deployed on the cloud or local
servers.

Methods

CRIU is a Linux software tool that freezes a running application
and saves it as a collection of files to disk [12]. The application
can later be restored on the same host or on a different host.
Docker currently integrates CRIU as an experimental checkpoint
subcommand that saves the state of processes to a collection
of files on disk. The checkpointing command has been used to
migrate containers from the source host to a target host when
the resources of the source are limited [19], for fault tolerance



4 Hot-starting software containers

purposes [20], and to provide highly available and scalable mi-
croservices [21].

Cloud configurations tested

In our experiments, we deployed our containers on instances
from two cloud platforms: Microsoft Azure and AWS. Ubuntu
16.04 was the host operating system in all of our tests. Specif-
ically, we used Ubuntu server 16.04 LTS with Ubuntu Kernel
version 4.4.0–28-generic and CRIU version 3.1 “Graphene Swift”
in our empirical studies on Microsoft Azure. We used Ubuntu
16.04.03 LTS with Kernel version 4.4.0–1022-aws and CRIU ver-
sion 3.1 “Graphene Swift” in our empirical studies on AWS. Test-
ing was conducted using a standard DS13 v2 instance with eight
virtual central processing units (CPUs) and 56 Gb memory on
Azure and a m4.4xlarge instance with 16 virtual CPUs and 64
Gb memory on AWS. As disk input/output (I/O) is an important
factor in the efficiency of CRIU restoration and the generation of
indices without CRIU, instances were tested using both network-
based disks (EBS for AWS and Microsoft Azure File Storage for
Azure) and locally attached disks.

Creating hot-start containers

We installed CRIU on the host Ubuntu system. Docker Com-
munity Edition, which includes the experimental checkpointing
tool, was then installed. The STAR binary was compiled from
source [22] using Ubuntu 16.04 and g++ and then copied into a
clean Ubuntu 16.04 container with no intermediate build files.
The build code and Docker files are available from [23]. To create
the checkpoint, STAR was launched with the genomeLoad flag set
to LoadAndKeep. This keeps the indices in shared memory after
STAR exits. To trap the container in this state, we launched STAR
using a parent shell script that did not exit and checkpointed
the container after STAR exited. This results in the generation
of checkpoint files that store the state of the hot-start container.
Because different Linux kernel versions are used on AWS and
Azure, we created separate hot-start containers for each cloud.

Comparing hot-start containers and standard
cold-start containers

The paired-end fastq files were 9 Gb in size comprising
22,935,521 reads. Times were recorded for the generation of bam
files (binary version of sequence alignment data) generated by
STAR in the standard container and using STAR with the hot-
start container. Times include the time required to restore the
hot-start container from the checkpointed files.

Availability and requirements

Project name: Hot-starting software container for STAR Align-
ment
Project homepage: https://github.com/biodepot/Hotstarting-Fo
r-STAR-Alignment
DockerHub URL: https://hub.docker.com/r/biodepot/star-for-cri
u/
Operating system: Ubuntu 16.04
Programming language: Shell
Other requirements: Docker API version 1.25 or higher, CRIU 2.0
or later, Linux kernel v3.11 or higher are required.
License: MIT License.
RRID on SciCrunch.org: RRID:SCR 016294

Availability of supporting data

The fastq files used in our tests were generated by Himes et
al. and are publicly available from GEO with accession num-
ber GSE52778 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
?acc=GSE52778). Snapshots of the code and base containers are
hosted in the GigaScience GigaDB repository [24].

Additional files

Additional File 1: User manual for “Hot-starting software con-
tainer for STAR Alignment”
Additional File 2: Raw data, average running time, standard error
and standard deviation across five runs of STAR alignment with
checkpoint and without checkpoint. Our empirical experiments
were performed on local and network disks using Amazon Web
Services (AWS) and Microsoft Azure.

Abbreviations

AWS: Amazon Web Services; CPU: central processing unit; CRIU:
Checkpoint/Restore In Userspace; EBS: Elastic Block Store; RNA-
seq: RNA sequencing; STAR: spliced transcripts alignment to a
reference.

Competing interests

The authors declare that they have no competing interests.

Author contributions

P.Z. and L.H.H. implemented the Docker containers. P.Z. con-
ducted the empirical experiments. P.Z., L.H.H., and K.Y.Y. drafted
the manuscript. K.Y.Y. and L.H.H. designed the case study. W.L.
provided cloud computing expertise. K.Y.Y. coordinated the em-
pirical study. All authors edited the manuscript.

Acknowledgements

L.H.H., W.L. and K.Y.Y. are supported by the National Institutes
of Health (NIH) grant R01GM126019. L.H.H. and K.Y.Y. are also
supported by NIH grant U54HL127624 and the US Army Medical
Department (AMEDD). Advanced Medical Technology Initiative.
We acknowledge support from the AWS Cloud Credits for Re-
search (to W.L. and K.Y.Y.) and the Microsoft Azure for Research
programs (to L.H.H. and W.L.) for providing cloud computing re-
sources. We acknowledge the Student High Performance Com-
puting Club and the eScience Institute at the University of Wash-
ington for both technical assistance and computing resources to
P.Z.

References

1. Calabrese B, Cannataro M. Cloud computing in bioinfor-
matics: current solutions and challenges. Peer J Preprints
2016;4:e2261v1.

2. Shanahan HP, Owen AM, Harrison AP. Bioinformat-
ics on the cloud computing platform Azure. PLoS One
2014;9(7):e102642.

3. National Institutes of Health (NIH) Data Commons Pilot. http
s://commonfund.nih.gov/commons. Accessed 6 April 2018.

4. Docker. https://http://www.docker.com/. Accessed 6 April
2018.

5. Kurtzer GM, Sochat V, Bauer MW. Singularity: sci-

https://github.com/biodepot/Hotstarting-For-STAR-Alignment
https://hub.docker.com/r/biodepot/star-for-criu/
https://scicrunch.org/resolver/RRID:SCR_016294
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52778
https://commonfund.nih.gov/commons
https://http://www.docker.com/


Zhang et al. 5

entific containers for mobility of compute. PLoS One
2017;12(5):e0177459.

6. Sochat VV, Prybol CJ, Kurtzer GM. Enhancing reproducibility
in scientific computing: metrics and registry for Singularity
containers. PLoS One 2017;12(11):e0188511.

7. Schulz WL, Durant TJ, Siddon AJ, et al. Use of application con-
tainers and workflows for genomic data analysis. J Pathol In-
form 2016;7:53.

8. Silver A. Software simplified: containerization technology
takes the hassle out of setting up software and can
boost the reproducibility of data-driven research. Nature
2017;546:173–4.

9. Piccolo SR, Frampton MB. Tools and techniques for compu-
tational reproducibility. GigaScience 2016;5(1):30.

10. Vivian J, Rao A, Nothaft FA, et al., Toil enables reproducible,
open source, big biomedical data analyses. Nature Biotech-
nology. . 2017, 35, 4, 314–316.

11. Tatlow PJ, Piccolo SR. A cloud-based workflow to quantify
transcript-expression levels in public cancer compendia. Sci
Rep 2016;6:39259.

12. Checkpoint Restore in Userspace (CRIU). https://criu.org/Mai
n Page. Accessed 6 April 2018.

13. CRIU Integration with Docker. https://criu.org/Docker. Ac-
cessed 6 April 2018.

14. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast uni-
versal RNA-seq aligner. Bioinformatics 2013;29(1):15–21.

15. Dobin A, Gingeras TR. Mapping RNA-seq reads with STAR.
Current Protocols in Bioinformatics 2015;51:11 4 1–9.

16. Himes BE, Jiang X, Wagner P, et al. RNA-Seq transcriptome
profiling identifies CRISPLD2 as a glucocorticoid responsive
gene that modulates cytokine function in airway smooth
muscle cells. PLoS One 2014;9(6):e99625.

17. Docker Compose. https://http://www.docker.com/products/
docker-compose. Accessed 6 April 2018.

18. CRIU: Linux kernel. https://criu.org/Linux kernel. Accessed 6
April 2018.

19. Al-Dhuraibi Y, Paraiso F, Djarallah N, et al. Autonomic Ver-
tical Elasticity of Docker Containers with ELASTICDOCKER.
In: IEEE 10th International Conference on Cloud Computing.
Honolulu, HI, USA: IEEE; 2017, 25–30 June 2017.

20. Ismail BI, Goortani EM, Karim MBA, et al. Evaluation of
Docker as Edge Computing Platform. In: IEEE Conference on
Open Systems (ICOS). Bandar Melaka, Malaysia: IEEE; 2015,
24–26 Aug. 2015.

21. Chen Y. Checkpoint and Restoration of Micro-service in
Docker Containers. In: Third International Conference on
Mechatronics and Industrial Informatics 2015, Zhuhai,
China.

22. STAR GitHub repository https://github.com/alexdobin/STAR
23. Ubunto Star GitHub repository https://github.com/BioDepo

t/ubuntu-star
24. Zhang P, Hung LH, Lloyd W, et al. Supporting data for “Hot-

starting software containers for STAR aligner.” GigaScience
Database 2018 http://dx.doi.org/10.5524/100468.

https://criu.org/Main_Page
https://criu.org/Docker
https://http://www.docker.com/products/docker-compose
https://criu.org/Linux_kernel
https://github.com/alexdobin/STAR
https://github.com/BioDepot/ubuntu-star
http://dx.doi.org/10.5524/100468

