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Single-cell RNA sequencing (scRNA-Seq) is transforming our ability to characterize cells, 
particularly rare cells that are often overlooked in bulk population analytical approaches. 
This has lead to the discovery of new cell types and cellular states that echo the under-
lying heterogeneity and plasticity in the immune system. Technologies for the capture, 
sequencing, and bioinformatic analysis of single cells are rapidly improving, and scRNA-
Seq is now becoming much more accessible to non-specialized laboratories. Here, we 
describe our experiences in adopting scRNA-Seq to the study of rare immune cells in 
their microanatomical niches.
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iNTRODUCTiON

A major challenge in biology has been to identify and understand how the molecular changes that 
occur in a specific cellular population manifest as healthy, normal responses, or as disease. This has 
been particularly difficult in instances where the key cellular mediators are exceedingly rare, such 
as antigen-specific memory B cells in the lymph node, and dormant cancer cells in metastatic bone 
niches. Analysis of gene expression by bulk cell populations dilutes the contribution of these rare cells 
to the overall gene expression pattern. As a result, the complexity and diversity of the cells that are 
located in these niches and their unique molecular signatures are often lost. In addition, transcripts 
from relatively frequent contaminating cells can not only obscure the overall signature but can also 
be mistaken as the signature of the rare cells of interest. Single-cell analyses, on the other hand, have 
the potential to resolve these heterogeneous cell populations at an unprecedented scale (1, 2) and 
reveal unexpected hidden cell subpopulations (3, 4). This has been made possible by the advent of 
transformative single-cell technologies, such as fluorescence-activated cell sorting (FACS), micro-
fluidic devices, and mass cytometry, which have enabled researchers to overcome the challenges 
posed by tissue heterogeneity (5). Recently, the development of photolabeling technologies such as 
two-photon photoactivation (6, 7) and photoconversion (8–10) have enabled researchers to precisely 
and optically mark rare cells in their microanatomical niches and isolate them for ex vivo analysis. 
Other technologies for linking single cell transcriptomes with spatial positioning include spatial 
transcriptomics, which is performed on tissue sections (11), Seurat which links the in situ hybridiza-
tion patterns of a series of landmark genes to the single cell gene expression profiles to generate a 
probability map of the location of cells in the tissue (12), and transcriptome in vivo analysis, which 
uses photoactivation to capture RNA from cells in live tissue (13).

Advances in single-cell RNA sequencing (scRNA-Seq) have now made it possible to sequence the 
transcriptome of rare cells with small amounts of starting material. This has yielded large amounts 
of transcriptional information for the accurate, unbiased molecular characterization of these rare 
cells. Single cell transcriptomics provide crucial information that would otherwise be lost by bulk 
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FigURe 1 | Key considerations in a general single-cell RNA sequencing workflow.
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approaches; this is particularly important where well-established 
cell surface markers are neither known nor available for charac-
terization by multiparameter FACS analysis or mass cytometry, 
or there is a large degree of heterogeneity within an apparently 
homogeneous cell population, such as rare antigen-specific B 
and T  cells with clonal antigen receptors during the evolution 
of an immune response. This is a rapidly changing field in which 
new protocols and techniques are continuously being developed 
and improved. This review describes the experiences of a group 
of immunologists and bone biologists, with no prior knowledge 
or expertise in scRNA-Seq, in adopting the technology for our 
investigation of rare cells and the niches in which they occupy. 
Here, we outline the major considerations when embarking on an 
scRNA-Seq study: the design and experimental set up to acquire 

single cells, the preparation of single cells for sequencing, and 
analysis of the sequencing results. It is not a step-by-step protocol 
nor an exhaustive review of the tools and technologies currently 
available, but rather a practical guide to the technology that 
may help the beginner design, perform, and analyze scRNA-Seq 
experiments of rare immune cells [more detailed expert reviews 
are available, for example, in Ref. (14, 15)].

DeSigN OF scRNA-Seq eXPeRiMeNTS 
OF RARe CeLLS

A general workflow for scRNA-Seq experiment is shown in 
Figure  1. Before beginning a scRNA-Seq experiment, it is 
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important to plan out how many cells need to be sequenced, and 
the sequencing depth and coverage required to accurately detect 
and quantify lowly expressed genes (16). The amount of sequenc-
ing capacity used for a single sample, measured as the number 
of raw reads per cell, must be traded off against the sequencing 
cost. This will depend on the expected complexity, that is, the 
heterogeneity of the cells being sequenced and the degree of vari-
ability in their gene expression levels. Statistical packages, such 
as powsimR, are available to perform power calculations, which 
can be used to estimate the total number of cells that need to 
be sequenced (17). Sequencing depth also requires knowledge of 
the transcriptional activity of the cell and total mRNA content, 
which can vary significantly between, for example, resting and 
activated B cells, and dormant and proliferating myeloma cells. 
As a rough guide, half a million reads per cell was found to be 
sufficient for detection of most genes (18), although greater depth 
may be required for genes with low expression.

Another important consideration is the need to avoid techni-
cal bias through randomization of samples and minimizing batch 
effects if multiple experiments are performed at different time 
points, as it is difficult to completely computationally eliminate 
batch effects post  hoc. Thus, preparing different experimental 
groups on library preparation plates and sequencing lanes and, 
if possible, minimizing batching of experiments is important in 
decreasing technical bias (19). Increasing the number of cells 
sequenced and the sequencing depth may also offset technical 
variability (20). Spike-ins, RNA molecules introduced into 
samples to calibrate measurements and account for technical 
variability are also essential, and typically utilize either External 
RNA Controls Consortium (ERCC) standards (21), or more 
recently Sequin standards, which align to artificial gene loci 
encoded within an accompanying in silico chromosome and bet-
ter represent the complexity of eukaryotic gene expression and 
splicing (22).

iDeNTiFiCATiON AND PRePARATiON OF 
RARe SiNgLe CeLLS

A key consideration when designing a scRNA-Seq experiment 
is whether to isolate a pure population of the cells of interest or 
a mixed population of cells containing the specific cells of inter-
est. The strict a priori approach, where only the specific cells of 
interest are isolated, may be beneficial for well-characterized 
populations as this results in decreased heterogeneity of the 
sorted cells and thus may require less cells to be sorted and less 
sequencing depth. However, this strict approach may not reflect 
the underlying cellular or transcriptional diversity present in a 
population and may possibly introduce bias and exclude cells 
of potential interest. The latter, more agnostic, approach has 
additional benefits particularly in de novo discovery of new cell 
subtypes. For example, scRNA-Seq has identified new subpopula-
tions of immune cells including innate lymphoid cell subsets (3) 
and dendritic cell and monocyte subsets (4) through sequencing 
a large number of cells that were enriched, but not specific to, 
these cell types. Thus, allowing some level of heterogeneity may 
be beneficial when designing a scRNA-Seq experiment, although 

this will impact on the number of cells that need to be sequenced, 
the depth of sequencing required, and the experimental cost. The 
more agnostic approach is also useful when isolating cells based 
on microanatomical location, as relaxing the sorting criteria has 
allowed identification of a more diverse range of cell types than 
may have been hypothesized (7, 23).

Methods to prepare single-cell populations of interest will 
be largely dictated in practice by one’s established experimental 
models and tissues of interest. Practical considerations include 
the type of tissue being analyzed, whether cells will be isolated 
immediately, or cryopreserved or fixed for later isolation. Many 
immunological organs of interest such as peripheral blood, 
spleen, or lymph nodes, are easily dissociated into a single cell 
suspension. However, complex solid tissues, such as tumors, 
often require mechanical or enzymatic dissociation. During 
preparation of single cell suspensions, cellular stress and death 
should be minimized to ensure that tissue preparation does not 
bias toward recovery of specific cell types. For example, some 
cell populations are more sensitive to heat stress than others. 
Furthermore, enzymatic digestion at 37°C and cell dissociation 
from solid tissues can introduce transcriptional changes in the 
cell, and this may be minimized by the use of cold active proteases 
from Bacillus licheniformis (24). Recent advances have found 
scRNA-Seq can also be performed on cryopreserved (25, 26) or 
fixed cells (27, 28) and cryopreserved cells were found to have a 
similar scRNA-Seq transcriptional profile to freshly isolated cells 
(25). These advances may also help minimize batch effects as they 
allow simultaneous processing of samples acquired at different 
times. Single nucleus RNA sequencing has also been developed to 
enable analysis of frozen or fixed tissues, and tissues that cannot 
be dissociated (29, 30).

Immunology research has typically relied on cell surface 
markers to identify cell populations of interest. This requires a 
well-characterized panel of markers that identifies the cell popu-
lation of interest, while excluding unwanted cells that may com-
plicate analysis. Cells can be excluded through use of singlet gates 
to remove doublets, dump gates with markers for unwanted cell 
subsets as well as dead cell exclusion markers. Another approach 
is to use fluorescent reporter mice, which enables identification 
of a specific cell population without the need for expression of 
defined cell surface markers. The fluorescent reporters can either 
be driven by specific promoters to mark a specific lineage or engi-
neered to be co-expressed with any protein of interest. However, 
this approach precludes biological systems such as primary 
human tissue that cannot be genetically manipulated. If using 
mice, it is important to have a well-characterized mouse model.

In contrast to identifying cells based on expression markers, 
recent research has identified single cells based on microanatomi-
cal location. Fluorescent reporters that are either photoactivat-
able, such as photoactivatable-GFP (31) or photoconvertible, 
such as Kikume (32) and Kaede (33), allow precise optical mark-
ing of cells of interest by two-photon microscopy. By linking the 
photoactivatable or photoconvertable reporter to lineage-specific 
or antigen-specific fluorescent protein markers, cells can be pre-
cisely identified based not only on expression markers but also 
the localization to specific microanatomical locations in immune 
tissues. More recently, this approach was utilized to perform 
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NICHE-seq and systematically characterize the cellular composi-
tion of the spleen, among other immune niches (7).

MeTHODS FOR iSOLATiON AND 
COLLeCTiON OF RARe SiNgLe CeLLS

The ability to isolate adequate numbers of viable single cells is 
one of the key determinants of a successful scRNA-Seq experi-
ment. There are a number of methods available to isolate single 
cells for RNA sequencing.

FACS Sorting
Isolation of single cells can be achieved through FACS sorting of 
single cells into 96- or 384-well plates. Often, intact single cells 
are deposited into a cell lysis buffer solution where the contents 
of the cell are released, and RNA preserved by RNase inhibitors 
within the solution. FACS sorting enables one to selectively 
sort cells of interest within a heterogeneous population based 
on expression of cell surface markers. However, FACS may not 
be ideal for extremely low volume samples such as fine needle 
aspirates, as there may be insufficient sample for cell staining, 
or for very rare cell populations, as isolation can be confounded 
by noise during FACS acquisition. If the population of interest 
is very rare, the cell sorting time may also be a limiting factor 
in the experimental design. In this case, it is often possible to 
pre-enrich by negative selection or depletion of the unwanted cell 
populations using magnetic-activated cell sorting (MACS), and 
then performing FACS sorting. This may increase the viability 
of the rare cell population as well as increase the feasibility of 
the experiment. An added benefit of FACS sorting is the ability 
to “index-sort,” that is, record surface marker protein expression 
levels for each cell and link this information to gene expression 
levels (34, 35). Index sorting enables one to retrospectively verify 
any correlations between scRNA-Seq data and expression of cell 
surface markers; this is particularly useful when cells have been 
stained and analyzed for a panel of markers but isolated agnosti-
cally, with minimal or no gating.

Microfluidic-Based Approaches
Recent advances in microfluidics have enabled high-throughput 
droplet encapsulation-based methods to capture and barcode 
thousands of individual cells (36, 37). Cell suspensions are 
diluted to appropriate concentrations, calculated using Poisson 
distribution statistics, and single cells are captured in microwell 
or encased in water-in-oil droplets in a probabilistic manner. 
Within each microwell or aqueous droplet, cDNA generation 
is conducted at nanoliter reaction volumes, greatly reducing 
the volume of reagents required. This allows for low cost, high-
throughput processing of hundreds to several thousands of cells. 
Common microwell encapsulation solutions commercially avail-
able are Fluidigm C1, Biorad/Illumina ddSeq, Clontech ICell8, 
and BD Rhapsody while droplet encapsulation methods include 
inDrop (36), DropSeq (37), and 10× Chromium from 10× 
Genomics. Microfluidics approaches are preferable when analyz-
ing large numbers of cells. However, this may affect sequencing 
depth and hence power, so careful consideration must be given 

to the number of cells sequenced. Furthermore, the Fluidigm 
C1 system is currently restricted to relatively homogenous cell 
sizes and circular cell shapes, limiting its broader applications. 
Microfluidics approaches generally lack the ability to differentiate 
cells based on fluorescent reporters or cell surface markers, so 
to isolate a rare cell population, it may be necessary to enrich 
the population of interest, through MACS or FACS, prior to 
microfluidics approaches. This is optimal only if there are suf-
ficient cells (typically at least thousands) recovered for input 
into the encapsulation systems, something that may not always 
be possible. Low capture efficiency remains a limitation of 
encapsulation-based systems, as this restricts the ability to isolate 
rare populations from samples with low cell numbers; most of 
these cells will not be captured, leading to selection bias in the 
data. Capture efficiency is influenced by the concentration of 
the cell suspension and the flow rate and is modeled by Poisson 
distribution probabilities (38). High cell concentrations maxi-
mize the throughput of encapsulation of cells in droplets (i.e., 
the probability that all droplets contain cells), but only 37% of 
these droplets will contain single cells, while 42% are estimated 
to contain more than one cell. Conversely, low cell concentrations 
reduce the encapsulation such that only 5% of all droplets contain 
cells, but 98% of these will contain only single cells. Thus, deter-
ministic encapsulation strategies that identify and isolate droplets 
containing single cells have been in development to overcome 
the limitations of Poisson distributions (38). Different strategies 
and engineering approaches have been taken across various com-
mercial encapsulation systems to optimize the capture efficiency 
of single cells. For example, the inDrop system has a reported 
7% singlet capture efficiency (36). Other commercial microwell 
encapsulation systems such as Fluidigm C1, Biorad’s ddSeq, and 
Clontech’s ICell8 have an estimated singlet capture efficiency 
ranging from 2.6 to 39%, while 50% singlet capture was reported 
using droplet-based Chromium (26). Regardless of the approach 
adopted to isolate single cells, care must be taken to avoid the 
capture of doublets, whereby two or more cells are captured in 
a well or droplet, as this will confound the scRNA-Seq results. 
FACS exhibits relatively low doublet rates of 2.3% (39) while up 
to 30% has been reported using microwell encapsulation systems 
(37). It is claimed that the ability to image and visually inspect 
cells post-capture to control for empty wells or doublets on the 
Clontech ICell8 and recently improved Fluidigm C1 platforms 
have reduced the doublet rate to 3%.

Other Methods
An alternative method of cell isolation is laser capture microdis-
section, for tissues that are less amenable to single-cell suspension 
(40). This is particularly useful for archived pathology samples, 
such as formalin-fixed paraffin-embedded tissues. While it 
has the benefit of not needing to dissociate cells, this approach 
generates a low yield, particularly for low abundance RNA 
species, and is low throughput. When cell numbers are very 
limited or when cells are too fragile to undergo other methods 
of isolation, micro-manipulation is another low throughput 
way of manually collecting individual cells while minimizing 
cellular stress. In this way, for example, viable circulating tumor 
cells can be isolated from the blood of a melanoma patient by 
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combining micro-manipulation with fluorescence microscopy 
(41). Although micro-manipulation is labor-intensive and slow, 
throughput can be improved using robotic automation solutions 
such as the CelllenONE system (Cellenion).

ScRNA-Seq LiBRARY PRePARATiON

Following single-cell isolation and collection, samples are pro-
cessed to generate cDNA prior to single-cell sequencing library 
preparation. The exception to this is samples from microfluidics 
platforms, where cDNA generation is integrated at the sample 
collection stage. Another consideration to keep in mind when 
designing a scRNA-Seq workflow is the type of sequencing to 
carry out, which is intimately linked to the research question at 
hand. The cell isolation method adopted may limit the sequencing 

platform and the type of sequencing library that can be prepared, 
and hence also the scRNA-Seq application (Figure 2).

Single-cell RNA sequencing can be used to measure gene 
expression, detect spliced transcript variants, or to determine the 
unique immunoglobulin and T-cell receptor (TCR) profiles of 
individual cells. In general, most common scRNA-Seq protocols 
adopt either full-length or 3′ end sequencing (Figure  3). All 
the applications mentioned above can be performed using full-
length sequencing where the complete cDNA is generated and 
sequenced. Full-length sequencing also enables greater detection 
of low abundance transcripts (42). However, due to the higher 
depth of sequencing coverage required, the cost of full-length 
sequencing is much higher. In contrast, for 3′ end sequencing, 
approximately 70–100 bases from the 3′ end of the transcript are 
sequenced instead of the complete transcript. This allows greater 
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sample pooling of thousands of cells within sequencing runs, 
greatly reducing the costs per cell. However, despite the lower 
costs involved, 3′ end sequencing approaches are only useful for 
quantification of gene expression.

The cDNA generation stage begins with the capture of poly-
A mRNA molecules using poly-T primers to avoid capture of 
genomic DNA and rRNA. In 3′ sequencing workflows, the poly-T 
primers consist of unique molecular identifiers, a series of 4–12 
random nucleotide sequences that uniquely tag an individual 
mRNA copy of each transcript (43). This improves quantifica-
tion of each transcript based on the number of UMIs, allowing 
for adjustment of biases that arise during product amplification 
(44). Full-length sequencing approaches such as SmartSeq2 (45) 
and SMARTer (Clontech) adopt template-switching strategies 
to generate full length cDNA. Upon reaching the 5′ end of the 
RNA template, MMLV reverse-transcriptase incorporates a 
few bases to the 3′ end of the newly synthesized cDNA strand 
and switches to the nascent strand to complete replication 
upon base-pairing with the complementary template-switching 
oligo. Using template-switching strategies, poly-T primer and 
template-switching oligos flanking nascent cDNA are amplified, 
leaving genomic DNA and truncated mRNA unprocessed. Some 
scRNA-Seq protocols such as MARS-Seq and NuGen Solo also 
incorporate a DNase treatment step to remove contaminating 
genomic DNA present within the sample.

The quantity of cDNA obtained from individual cells is 
dependent on the transcriptional activity of the cell and its mRNA 
content, which is approximated to be 10  pg per cell (41). The 
cDNA is amplified using PCR or in vitro transcription to gener-
ate sufficient material for sequencing. PCR is a commonly used 
approach to exponentially generate copies of cDNA; however, 
there is the potential to selectively overamplify high-abundance 
transcripts and introduce bias in the data. In vitro transcription 
overcomes this limitation as nascent cDNA containing T7 pro-
moter sequence is linearly amplified by T7 RNA polymerases.

The transcriptome of a cell has a high dynamic range, where 
a minority of highly expressed genes such as ribosomal genes 
constitute the majority of RNA molecules (21). These highly 
expressed genes will occupy most of the sequencing reads, while 
the sequencing coverage of lowly expressing transcripts will 
be sparse, affecting accurate quantification. Protocols by BD 
Rhapsody and NuGen Solo promote targeted sequencing, either 
through enrichment of genes of interest or removal of highly 
expressing ribosomal genes before sequencing, thereby providing 
an enrichment of sequencing read coverage (46).

Fragmentation and adapter incorporation of the single cell 
libraries is required for sequencing on the Illumina short read 
sequencing platforms. Most protocols adopt transposons to 
fragment the sequencing libraries while others adopt mechani-
cal (NuGEN Solo), enzymatic (10× Chromium), or chemical 
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(MARS-Seq and InDrop) approaches. This is followed by a 
limited PCR amplification step to incorporate Illumina adapter 
sequences to generate sequence ready libraries.

ANALYSiS: eXTRACTiNg BiOLOgiCAL 
SigNiFiCANCe FROM RAw  
scRNA-Seq DATA

Single-cell RNA sequencing generates tens to hundreds of giga-
bytes of data, in fastq format. The single-cell sequencing libraries 
will have been indexed or barcoded and pooled for sequencing, 
so, the raw data will need to be demultiplexed so that there is 
one fastq file per single-cell sample for single-end sequencing, or 
two fastq files per single-cell sample for paired-end sequencing. 
Ultimately, a typical scRNA-Seq experiment generates hundreds 
to thousands of fastq files, and a high-performance computing 
cluster is recommended to handle such a volume of data. There 
are many command-line tools and R/Bioconductor packages 
available, with more in development, to analyze scRNA-Seq 
data. Here, we outline the steps and suggest some packages to 
provide a framework for analysis or a foundation on which to 
base  discussions with bioinformaticians surrounding analysis.

Sequence Read Quality Control
Before delving into the data to uncover the underlying biology, 
one must reduce technical noise by processing raw reads through 
several quality control steps. Sequence read quality, adapter and GC 
content, length, and over-represented sequences can all be assessed 
and summarized using FastQC (47). Any adapter sequences 
should be trimmed off, using Cutadapt (48) or Trimmomatic 
(49) so that they do not adversely affect mapping to the reference 
genome or transcriptome. Quality trimming is generally not rec-
ommended for RNA-Seq, unless the sequence quality score is very 
poor (below Q10). Short reads, less than 100 bp, should also be 
discarded (50) as they can be difficult to map or can map to more 
than one locus, leading to false positive mapping and inaccurate 
read quantification. Shorter reads can be accommodated for more 
targeted sequencing applications such as TCR gene sequencing; a 
recent systematic study of the impact of sequencing depth and read 
length on data quality found that short reads up to 50 bp could be 
used to successfully reconstruct the TCRαβ receptor, but efforts to 
do so using 30 bp reads were unsuccessful (51).

Alignment and Quantitation
To quantify gene expression, the reads need to be mapped to a 
reference database, and this can be achieved using tools originally 
designed for bulk RNA-Seq applications. A key consideration is 
whether to map to the genome or transcriptome. For organisms 
such as mouse or human, where transcriptome annotation is 
comprehensive, mapping to the transcriptome may increase 
unique, unambiguous mappings and be faster. However, this 
approach precludes novel gene discovery. For such purposes 
and for organisms with new or uncharacterized transcriptomes, 
it may be better to map to the genome. Direct alignment and 
splice-aware tools such as Tophat (52), STAR (53), or HISAT (54)  
create SAM output files that can be converted to BAM for 

visualization on Genome Browser or Integrative Genome Viewer 
(IGV). Alternatively, one can try pseudoalignment tools such as 
Kallisto (55), Salmon (56), and Sailfish (57). These tools rely on 
mapping k-mers (e.g., 7-mers) derived from the sequence reads 
to the reference index, avoiding alignment of individual bases and 
are hence computationally less demanding.

As mentioned earlier, inclusion of spike-ins such as ERCC or 
Sequins just prior to cDNA preparation enables measurement 
of technical variation and facilitates correction of batch effects. 
To quantitate spike-in abundance in each single-cell sample, it is 
necessary to generate a co-index, by concatenating the reference 
genome or transcriptome and spike-in sequences. Alignment or 
pseudoalignment is carried out to this co-index to determine 
read abundance.

Preprocessing
Once a matrix of raw count data has been obtained, single-cell 
specific analysis tools are required to identify differentially 
expressed genes. Single cell data is sparse, with many genes 
exhibiting zero expression values, either due to the dynamic 
nature of transcription and resultant temporal fluctuations in 
gene expression, or due to “dropout” events, where inefficient 
reverse transcription during library preparation results in unde-
tectable gene expression for low abundance genes. Consequently, 
the number of observed expressed genes in single cell data is 
lower compared to the average of a bulk population and there 
is more intra-population heterogeneity (58). Statistical assump-
tions about distributions that apply to bulk RNA-Seq data do not 
apply to single-cell data. Several R/Bioconductor packages and 
statistical methods have been developed, modeling distributions 
more relevant to single cell data, which is important for accurate 
normalization and identification of differentially expressed genes.

The scater package is a single-cell analysis toolkit that enables 
one to perform preprocessing, QC, simple normalization, and 
data visualization (59). To prepare the dataset for downstream 
analysis, identify and discard cells with high proportion of 
spike-in content, as this is symptomatic of endogenous RNA 
degradation or high-proportion of dropout events, filter out 
low abundance genes, and normalize for library size. Within 
scater, one can reduce the dimensions and visualize the data 
using principal components analysis (PCA) (60) or t-distributed 
stochastic neighbor embedding (t-SNE) (61) and perform more 
exploratory analyses to identify any confounding factors such as 
batch effects or cell cycle effects and correct for them. A more 
comprehensive normalization protocol more suited to single-cell 
data can be accessed through scran, which integrates seamlessly 
with scater, and has been shown to outperform existing methods 
such as trimmed mean of M-values normalization (TMM) (62). 
Scran pools cells of similar library sizes sums expression values 
across these cells to effectively reduce 0s, and determines pooled 
“size factors,” which are then deconvolved to infer individual cell 
size factors for more accurate normalization.

Differential expression and Clustering 
Analysis
Preprocessing ensures that downstream analyses are valid, and 
that any differential expression is not an artifact of gross technical 
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variations such as sequencing depth or batch effects. However, 
there are more subtle sources of variation such as transcriptional 
bursting (63) and amplification bias. The purpose of any differential 
expression analysis is to robustly uncover molecular elements and 
pathways that underpin different biological processes and cellular 
states. Where populations or cellular states are known a priori, or 
defined in the experimental design, differentially expressed genes 
can be identified using supervised statistical methods such as Single 
Cell Differential Expression (SCDE) (64), or Bayesian Analysis of 
Single-Cell Sequencing Data (BASiCS) (65). SCDE operates on 
a mixture of Poisson distributions to estimate error, dropouts, 
amplification biases, and negative binomial distributions to model 
detected transcripts. Similarly, BASiCS is an integrated Bayesian 
method based on a two Poisson-gamma model to decompose 
variation into technical and biological components.

One of the key strengths of scRNA-Seq is the capacity for de 
novo discovery of new cell types or states. This is essentially a 
problem of unsupervised cell clustering, where rank k number of 
populations exists in the data. The rank k is resolved by machine 
learning and dimension reduction methods applied to the expres-
sion matrix of the most variable genes. Rather than using any one 
analysis, we strongly recommend trying a variety of analyses and 
seeing if results concur.

Highly variable genes to be fed into unsupervised clustering 
pipelines can be identified using M3Drop (66), which is based 
on the idea that dropout events are a consequence of inefficient 
reverse transcription, i.e., an enzymatic process, and hence can 
be modeled by Michaelis–Menten enzyme kinetics. Furthermore, 
there is a strong non-linear relationship between the dropout 
rate and the mean expression. Significantly variable genes are 
identified as being outliers to the right of the Michaelis–Menten 
curve. A matrix of m highly variable genes across n single cell 
samples can then be analyzed further to identify subpopulations 
and associated gene signatures or “metagenes” using dimension 
reduction methods such as PCA or non-negative matrix factori-
zation (NMF) (67).

Principal Components Analysis
In PCA, all the data are projected in hyperdimensional space and 
a linear transformation is applied such that the greatest variance 
is captured in the first few new axes or “principle components” 
(PC). The contribution of each gene to each PC can be extracted 
from the loadings, although this is not always obvious because 
PCA operates in negative and positive space. Furthermore, PCA 
assumes linear and normally distributed data, which may not 
necessarily be applicable to the matrix of highly variable genes 
from the scRNA-Seq data (68).

Non-Negative Matrix Factorization
Non-negative matrix factorization is another linear decomposi-
tion method, but unlike PCA, it has non-negative constraints, 
allowing only additive combinations, which lends itself to 
parts-based representations (67, 69). As it interprets a dataset as 
a superposition of distinct parts, one can intuitively determine 
which genes define any particular subpopulation. When applied 
to scRNA-Seq data, it has been shown to outperform PCA (70). 
NMF was recently applied to a scRNA-Seq dataset of 5,902 cells 

from 18 head and neck squamous cell carcinoma patients, includ-
ing five matched pairs of primary tumor and lymph node metasta-
ses, to characterize intratumoural heterogeneity and identify gene 
expression programs associated with metastatic disease (71). This 
identified an NMF metagene that lacked classical epithelial-to-
mesenchymal transition (EMT) transcription factors, deeming it 
a “partial-EMT” program, which was expressed in a subpopula-
tion of malignant cells. They performed immunohistochemistry 
using these newly identified markers and found that cells express-
ing a partial-EMT program were localized to the leading edge of 
invasive tumors. Additionally, they found that expression of this 
partial-EMT signature was predictive for nodal metastasis.

t-SNE
t-SNE is a non-linear method, which is gaining popularity and 
requires the user to set a rather arbitrary “perplexity” parameter, 
which defines the number of neighbors to use to build a nearest-
neighbor network and determines the balance between preserva-
tion of local versus global structure. Samples are then clustered 
by random walks on the nearest-neighbor network such that local 
distances between cells are minimized. The stochastic nature 
of this method means that results will vary from run to run. 
Furthermore, distances are not linear and therefore relatedness 
cannot be inferred directly. It is recommended that the t-SNE 
algorithm be run multiple times at different perplexities to check 
the stability of the results, and that it be used for data visualization 
purposes rather than dimension reduction (61).

SC3
Specifically designed for scRNA-Seq data, Single-Cell Consensus 
Clustering (SC3) (72) is a user-friendly and interactive package 
for unsupervised clustering. It relies on the k-means clustering 
algorithm, iteratively assigning cells to k number of cluster cent-
ers or “centroids” based on minimal distances of mean values. 
Centroids are then recomputed to maximize local density of 
single-cell samples. With the capacity to test a range of k values 
in parallel, it is computationally intensive but has been shown 
to outperform t-SNE and PCA (72). For example, to define the 
molecular basis of susceptibility to fatal avian H7N9 influenza 
virus, investigators analyzed the TCRαβ repertoire and transcrip-
tomes of circulating CD38+, HLA-DA+, PD-1+, CD8+ T cells from 
infected patients (73). Samples were collected at early and late 
timepoints from patients who had succumbed to the disease 
and compared to that of patients who had survived. By PCA, the 
samples segregated across the two patient groups, particularly 
at the early timepoint. Detailed analysis using SC3 enabled the 
authors to identify 279 differentially expressed genes, including 
PDCD5, PSMA5, and the Heat Shock Protein DNAJB1, across 
four clusters. The SC3 analysis highlighted the increased tran-
scriptional heterogeneity among T cell clonotypes over time from 
fatal patients and suggests that CD8+ T cells in fatal patients are 
programmed to engage rapidly in antiviral responses rather than 
antigen-specific TCRαβ-mediated responses.

Monocle
Another single-cell focused application is Monocle, which enables 
clustering by pseudotime (74), that is, according to progression 
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through a cellular process such as differentiation or oncogenic 
transformation. This can be done even in the absence of time 
series data. Consider a population of cells captured at the same 
time. Each cell represents a distinct stage and time-point along 
a continuum. Monocle learns the sequence of gene expression 
changes each cell must go through as part of a dynamic biological 
process and projects the cells along that trajectory. It can then 
identify genes that are regulated over the course of the trajectory. 
For example, the mechanism of chromosome 7 loss in myeloid 
malignancies was recently mapped using Monocle to show that 
hematopoietic stem and progenitor cells from patients with 
monosomy 7 had distinctly different differentiation trajectories, 
as well as gene signatures that were indicative of dysregulated 
immune response, DNA damage checkpoint, and apoptosis 
pathways compared to healthy controls (75).

Once gene signatures have been identified for the cell popula-
tions of interest, functional annotation analyses to gain insight 
to the biological significance of the gene sets can be performed 
using any of the well-established gene ontology tools utilized in 
microarray or RNA-Seq gene expression studies.

CONCLUSiON

A well-designed scRNA-Seq experiment can empower studies 
of rare cell populations, particularly in efforts to understand 
physiological or disease processes. Here, we have outlined the key 
considerations in designing a scRNA-Seq workflow, from sample 
acquisition through to data analysis. Given the rarity of some 
immune populations and the limitations on sample size this may 

impose, careful deliberation and extra attention should be given 
at every step of the way to ensure that the study is sufficiently 
powered to detect even subtle molecular changes that may take 
place. Furthermore, the process of scientific discovery clearly 
does not stop at a list of candidate genes, but the scarcity of cel-
lular material from rare single-cell samples makes experimental 
validation somewhat difficult.
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