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Abstract

Many cellular genes and networks induced in human lung epithelial cells infected with the

influenza virus remain uncharacterized. Here, we find that p21 levels are elevated in

response to influenza A virus (IAV) infection, which is independent of p53. Silencing, phar-

macological inhibition or deletion of p21 promotes virus replication in vitro and in vivo, indi-

cating that p21 is an influenza restriction factor. Mechanistically, p21 binds to the C-

terminus of IAV polymerase subunit PA and competes with PB1 to limit IAV polymerase

activity. Besides, p21 promotes IRF3 activation by blocking K48-linked ubiquitination degra-

dation of HO-1 to enhance type I interferons expression. Furthermore, a synthetic p21 pep-

tide (amino acids 36 to 43) significantly inhibits IAV replication in vitro and in vivo.

Collectively, our findings reveal that p21 restricts IAV by perturbing the viral polymerase

complex and activating the host innate immune response, which may aid the design of des-

perately needed new antiviral therapeutics.

Author summary

Influenza A virus (IAV) poses a continuous threat to public health and economic stability.

The ribonucleoprotein (RNP) of IAV is responsible for the transcription and replication

of the viral RNA. These processes require interplay between host factors and RNP compo-

nents. Here, we report that p21 can be activated by IAV infection and is controlled by a

p53-independent pathway. We demonstrate that p21 directly binds to the viral polymerase

acidic protein and limits IAV polymerase activity through disrupting the formation of the

ribonucleoprotein complex. Additionally, p21 activation promotes IRF3 activation by

blocking K48-linked polyubiquitination degradation of HO-1, thereby activating the type

I interferon pathway. We further identify an 8-amino-acid peptide of p21 as the minimum
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motif that effectively inhibits IAV replication and presents therapeutic efficacy both in
vitro and in vivo. Thus, our studies not only identify p21 as an antiviral protein, but also

provide mechanistic insight to facilitate drug development.

Introduction

Influenza A virus (IAV) is one of the most common respiratory tract pathogens, causing at

least 500,000 deaths each year worldwide [1–4]. The influenza pandemic of 1918 killed more

than 50 million people worldwide [5]. H1N1 and H3N2 are the dominant seasonal IAVs

responsible for yearly epidemics that affect 5%–15% of the population, in which they cause

upper respiratory tract infections [6]. H5NX and H7N9 avian influenza viruses are transmitted

to humans and cause higher mortality rates of up to 40%–50% [7]. Over the past few decades,

vaccines and antiviral drugs have achieved great success in the control and treatment of IAV

infections; however, seasonal IAV still persists [8–10]. Therefore, new antiviral strategies,

including different viral targets, cellular targets or immune-modulating drugs, are urgently

needed.

The genome of IAV consists of eight single-stranded RNAs of negative polarity, present in

the virions as ribonucleoproteins (RNPs); which encode at least 13 proteins [11–14]. Each viral

RNA (vRNA) is encapsidated by multiple nucleoproteins (NPs) and is associated with a copy

of the viral RNA-dependent polymerase (RdRp). The RdRp is a heterotrimeric complex of the

polymerase basic 2 (PB2), polymerase basic 1 (PB1) and polymerase acidic (PA) proteins

[15,16]. The efficiency of viral RNA synthesis, which is critical for virus propagation and path-

ogenicity, is dependent on RdRp activity [17]. Since the structure and activity of the viral

RdRp is distinct from enzymes found in host cells, it is a promising drug target for the selective

inhibition of viral replication.

In response to IAV infection, the host immune system is often activated to prevent viral

replication [18]. Type I interferons (IFNs) are the main orchestrators of the antiviral innate

immune response. This response establishes an antiviral state in both infected and neighboring

cells by stimulating the expression of antiviral genes known as interferon-stimulated genes,

including 20,50-oligoadenylate synthetase (OAS), myxovirus resistance protein 1 (Mx1) and

interferon-stimulated gene 15 (ISG15) [19]. Heme oxygenase-1 (HO-1) is a critical early medi-

ator of the innate immune response [20]. It is required for the activation of IFN regulatory fac-

tor 3 (IRF3) after viral infection. HO-1 specifically interacts with IRF3 and affects its

phosphorylation and subsequent nuclear translocation, thereby reducing IFN production and

the expression of primary IRF3 target genes, such as induced protein 10 (IP-10), regulated

upon activation normal T cell expressed and secreted (RANTES) and monocyte chemoattrac-

tant protein 1 (MCP-1) [20].

Here, using RNAi library screening based on cellular transcription profiling, we found that

the cyclin-dependent kinase inhibitor p21 (also known as p21Waf1/Cip1) was upregulated in

human respiratory epithelial cells after IAV infection. p21 was demonstrated to act as a nega-

tive regulator of IAV replication. p21 plays critical roles in ensuring the expansion of cells in

the innate immune system and maintaining balanced innate immune activities [21–26]. In

animal models, p21 deficiency increases the lipopolysaccharide-induced activation of the

nuclear factor kappa light chain enhancer of activated B cells (NF-κB) pathway and the pro-

duction of proinflammatory cytokines during septic shock [27–29]. In addition, p21 appears

to be a key regulator of HIV-1 infection in myeloid cells [30]. It has been reported that p21 can

limit the replication of HIV-1 in vitro by blocking the biosynthesis of dNTPs and inhibiting
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the activity of CDK9, which are required in the process of viral reverse transcription and

mRNA transcription [30–32]. Thus far, the role of p21 in IAV replication remains unclear.

In the present study, we showed that IAV infection induces p21 expression both in cell cul-

ture and in mice. We further demonstrated that p21 interacts with the C-terminus of IAV

RdRp subunit PA to perturb the IAV polymerase complex, thereby limiting RdRp activity and

subsequent viral replication. Additionally, PA-mediated upregulation of p21 promotes IRF3

activation by recruiting HO-1 through inhibiting K48-linked ubiquitination degradation,

resulting in the increased expression of type I IFNs, which are the main orchestrators of the

antiviral innate immune response. Furthermore, we showed that a synthetic peptide mimetic

based on the 36 to 43 amino acid sequence of p21 protein significantly inhibited IAV

replication.

Results

Cellular transcription profiling-based RNAi library screening for host

factors regulating IAV infection

We combined cellular transcriptional profiling with a small interfering RNA (siRNA) screen

to identify host factors involved in IAV replication. Human lung epithelial cells (A549) were

infected with H5N1 IAV A/Anhui/1/2005 (AH1) for 18 h, then cells were harvested, total RNA

was isolated and RNA-Seq was performed. The results showed that 314 genes were signifi-

cantly differentially expressed in IAV-infected A549 cells, of which 252 genes were upregulated

and 62 genes were downregulated (S1A, S1B and S9 Figs). On the basis of a threshold fold

change of Z> 2.0 and a P-value < 1 × 10−90, we further conducted an siRNA screen in A549

cells using a library against the top 60 upregulated genes that had not been previously defined;

viral RNA copies were quantified by qRT-PCR as the endpoint. Our screen revealed six host

factors (ARRDC4, CDKN1A [p21Waf1/Cip1], TYMP, PNPT1, TAP2 and CHD2) as potential

positive regulators and one host factor (FST) as a negative regulator of IAV replication (based

on a> 2-fold change threshold). Notably, we observed that p21 knockdown significantly upre-

gulated the expression of NP mRNA in AH1 virus-infected A549 cells (Fig 1A). To confirm

the induction of p21 in response to IAV infection, A549 cells were infected with AH1 virus,

then, the expression of p21 mRNA was determined at different time points post-infection. The

results showed that the mRNA levels of p21 increased ~3–6-fold at 6 and 12 hours post-infec-

tion (hpi) (Fig 1B). Western blotting demonstrated that AH1 virus infection upregulated the

expression of p21 protein at 6, 12 and 24 hpi in both A549 and HeLa cells, whereas IAV inacti-

vated with ultraviolet light was unable to upregulate p21 (Figs 1C and S1C). In addition, p21

protein levels were elevated in a dose-dependent manner relative to the viral infection load

(Fig 1D). Immunofluorescence assays also confirmed that p21 protein was significantly

induced after AH1 infection (Fig 1E). To determine the expression profiles of p21 in response

to influenza infection in vivo, C57BL/6J mice were infected intranasally with AH1 virus. West-

ern blotting results showed that AH1 virus infection upregulated p21 protein levels in the lung

tissue of mice at 2, 3 and 5 days post-infection (dpi) (Fig 1F). Similarly, ELISA and immuno-

histochemistry results demonstrated that AH1 virus infection upregulated the expression of

p21 protein in the lung tissues of mice at 3 and 5 dpi (Fig 1G and 1H). Immunohistochemistry

showed that the upregulation of p21 protein mainly occurred in bronchial and alveolar wall

cells, which are the initial infective target cells of IAV. Taken together, these data showed that

AH1 virus infection significantly upregulated the expression of p21 protein in multiple cell

lines and in a murine animal model.
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Fig 1. Identification of host factors that regulate IAV infection by cellular transcriptional profiling-based siRNA screening. (A)

A549 cells were transfected with scrambled siRNA or the targeted siRNA library. The cells were infected with a 0.1 MOI of AH1 virus

and cell lysates were analyzed by qRT-PCR. CDKN1A is also referred to as p21. (B) A549 cells were infected with AH1 viruses at a 0.1

MOI for different times. Total RNA was extracted and examined by RT-PCR. All data are expressed as the mean ± SEM and are

representative of three independent experiments unless specified. (C) and (D) IAV infection upregulates the expression of p21 protein

in vitro. A549 cells (C) or HeLa cells (D) were infected with AH1 virus and whole cell lysates were collected at the indicated time points

to examine protein expression. (E) A549 cells were infected with AH1 virus, followed by staining with anti-p21 (green), NP (red) and

DAPI nuclear stain (blue). Scale bar = 20 μm. (F to H) IAV upregulates p21 protein expression in mice. Mice were inoculated with AH1

viruses at 100 TCID50. p21 protein expression in the lung tissues was determined by western blotting (F), ELISA (G) and

immunohistochemistry (H) at the indicated time points (n = 6 mice in each group). Scale bar = 100 μm. All data are representative or

presented as the mean ± SEM of three independent experiments unless specified. �P< 0.05, ��P< 0.05, ���P< 0.001.

https://doi.org/10.1371/journal.ppat.1010295.g001
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p21 suppresses IAV replication in vitro and in vivo
These initial observations led to our working hypothesis that p21 may affect influenza viral

replication. To this end, we demonstrated that transfection of cells with p21-targeting siRNA

(#1, #2, #3) and p21-targeting shRNA (#1, #2) significantly decreased p21 protein levels and

promoted the expression of viral NP protein (S2A and S2B Fig). There was no significant

effect on cell viability or cell growth rate with the knockdown of p21 post IAV infection (S2C

and S2D Fig). Furthermore, treatment of the AH1 virus-infected A549 cells with p21 siRNA#1

significantly increased viral NP levels and virus titers at 12 and 24 hpi (Fig 2A). We also gener-

ated a p21-stable knockdown (shRNA#1) in HeLa cells and found that NP levels and the titers

of AH1 virus were dramatically increased compared with native HeLa cells (Fig 2B). Similarly,

silencing p21 protein also increased the expression of NP and the virus titer in NHBE cells

after AH1 infection (S2E Fig). We then employed a pharmacological approach using a specific

p21 protein inhibitor, UC2288, to confirm the inhibitory effect of p21 against IAV. UC2288

(5 μM) treatment significantly increased NP levels and the virus titer in A549 cells after AH1

virus infection (S2F Fig). To further confirm the inhibitory role of p21 against virus replica-

tion, Flag-p21 plasmid was transfected into A549 cells and then the cells were infected with

AH1 virus. There was no significant effect on cell viability or cell growth rate with the overex-

pression of p21 upon IAV infection (S2G Fig). p21 overexpression resulted in almost complete

viral inhibition, as noted by significantly decreased NP levels and virus titers at 24 hpi (S2H

Fig). Similarly, HeLa cells transfected with Flag-p21 plasmid displayed decreased levels of viral

protein production (S2I Fig). We also evaluated the role of p21 protein in the replication of

other subtypes of IAV, including H7N9, H3N2 and H1N1. The results showed that transfec-

tion with p21-targeting siRNA significantly increased the NP level at 12 and 24 hpi (S2J Fig).

To pin-point the effect of p21 on the transcription and replication of IAV, A549 cells with

p21-knockdown were infected with AH1 virus, then vRNA and mRNA derived from NP were

measured by qRT-PCR. At both time points, the levels of all viral RNAs were found to be sig-

nificantly increased in the p21-knockdown cells compared with those in the control cells (S2K

Fig). These findings indicate that p21 could inhibit the replication of IAVs of different sub-

types (including H5N1, H7N9, H3N2 and H1N1) in vitro.

In the following studies, we evaluated the impact of p21 on the pathogenesis of IAV infec-

tion in wild-type (WT) and p21-/- mice. Mice were intranasally infected with AH1 virus and

the body weights and survival rates were recorded across the experimental time course. The

p21−/− mice suffered significant loss in body weight and an increased mortality rate compared

with WT mice (Fig 2C and 2D). The viral titers in the lung tissues of p21−/− mice were signifi-

cantly higher than those of WT mice at 3 and 5 dpi (Fig 2E), and caused more severe lung tis-

sue damage and inflammation (Fig 2F). WT mice were orally administered (15 mg/kg) the

p21 inhibitor UC2288 and then infected with AH1 virus. The UC2288-treated mice displayed

markedly decreased p21 protein expression levels in their lung tissues (S3A Fig), decreased

body weight and increased viral titers compared with the vehicle-treated mice (Fig 2G–2I).

Histopathological analysis showed that p21 pharmacology inhibition promoted lung tissue

damage and inflammation (Fig 2J). Consistent with this, after AH1 infection, the levels of

interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) signifi-

cantly increased in the lung tissues of p21−/− mice compared with WT mice (S3B Fig). Immu-

nohistochemical staining showed that NP levels were increased in p21−/− and UC2288-treated

mice compared with WT mice (S3C Fig). Similar findings were observed in mice infected with

H7N9 or H1N1 virus (Fig 2K and 2l). Taken together, these results suggested that the host fac-

tor p21 can inhibit IAV replication both in vitro and in vivo.
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Fig 2. p21 is required for suppressing IAV replication in vitro and in vivo. (A) and (B) p21 knockdown increased IAV replication in A549

cells. (A) A549 cells treated with sicontrol or siRNA#1 were infected with AH1 virus at a 0.1 MOI. (B) p21-stable knockdown HeLa cells

(shRNA#1) or control cells (scrambled) were infected with AH1 virus. Cell lysates were collected and analyzed by western blotting, and the

virus yields of progeny were determined by a TCID50 assay. (C to E) p21-knockout (KO) mice were more susceptible to influenza virus

pathology. Groups of wild-type (WT) or p21−/− mice were infected with AH1 virus, and their body weights (C) and survival (D) were

recorded for 14 days. Viral titers (E) were quantified in lung homogenates by a TCID50 assay at 3 and 5 dpi (n = 6 mice in each group). (F)

H&E staining of the lungs of WT and p21−/− mice. (G to I) C57BL/6J mice were orally gavaged with UC2288 or corn oil every other day.

Then, mice were infected with influenza AH1 virus, and their body weights and survival were recorded for 14 days. Viral titers were
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p21 was upregulated following interaction with the PA protein of IAV

To study the mechanisms by which p21 inhibits IAV replication, firstly we identified the inter-

actions between p21 and viral proteins that are effective for virus replication in infected cells.

HEK293T cells were transfected with Flag-tagged p21 and HA-tagged viral proteins (i.e., PB2,

PB1, PA, NP, M1 and NS1) individually or in combination. The results showed that p21 specif-

ically interacts with influenza PA but not with other viral proteins (PB1, PB2, NP, M1 and

NS1) in HEK293T cells (Figs 3A and S4A). In a reciprocal immunoprecipitation assay, Flag-

p21 was present in the HA immune precipitates (Fig 3B), indicating the presence of both p21

and PA in the same complex in the cell lysate. We demonstrated that p21 protein could bind

to PA in vitro using a pull-down assay with GST-tagged p21 and HA-tagged PA proteins (Fig

3C). The interaction between p21 and PA in the nucleus of A549 cells infected by AH1 virus

was also confirmed through immunoprecipitation immunocolocalization imaging studies (Fig

3D and 3E). Together, these results indicated that PA is the major binding partner of p21 dur-

ing IAV infection. We further determined the domain/motif that is responsible for the PA–

p21 interaction by generating two truncated PA constructs, which were fused to the C-termi-

nus of the HA tag, and then examined for their interaction with p21 in HEK293T cells. Co-

immunoprecipitation showed that PA-CBD exhibited strong binding to p21, while the N-ter-

minal mutants of PA interacted poorly with p21 (Fig 3F). These results indicated that the C-

terminal region of PA is critical for its interaction with p21. Furthermore, HA-tagged PA,

expressed in A549 cells, significantly upregulated p21 mRNA and protein levels in a dose-

dependent manner (Fig 3G and 3H). Additionally, we demonstrated that IAV infection still

significantly upregulated p21 protein expression in p53-deleted or IFNR-knockout cells (S4B

and S4C Fig), indicating that IAV infection-induced p21 activation is independent of p53 acti-

vation or type I IFN induction. Overexpression of HA-tagged PB2 protein did not upregulate

the level of p21 protein in A549 cells (S4D Fig). Taken together, these data demonstrated that

IAV-induced upregulation of p21 protein expression is induced by PA protein.

p21 inhibits IAV polymerase activity by competing with PB1 for PA

binding

The RdRp activity of IAV is one of the key factors that determines the efficiency of viral repli-

cation. IAV RdRp consists of three individual polypeptides (i.e., PB1, PB2 and PA), which are

tightly intertwined [33]. During the process of influenza virus replication, the PA and PB1 sub-

units form a dimer in the cytoplasm before being efficiently imported into the nucleus by

RanBP5 [34]. This dimer requires interactions between the C-terminus of PA and the N-termi-

nus of PB1 [35]. In the present study, we found that p21 interacts with the C-terminal domain

of PA (Fig 3F). Therefore, we hypothesized that p21 may compete with PB1 for PA binding to

limit the RdRp activity of IAV. A luciferase reporter experiment was performed using the

influenza virus minigenome assay to monitor viral polymerase activity. In brief, HEK293T

cells were transfected with the indicated p21 or sip21 duplex, then cotransfected with PA, PB1,

PB2, NP, pPolI-NS-firefly and pCMV-RL. At 48 h post-transfection, a dual-luciferase assay

was performed in which the relative firefly luciferase activity was normalized to the internal

control. The results showed that p21 knockdown significantly increased RNP activity to ~

2.5-fold (Fig 4A), whereas p21 overexpression significantly decreased RNP activity to ~ 3-fold

quantified by a TCID50 assay at 3 and 5 dpi (n = 6 mice in each group). Scale bar = 100 μm. (J) H&E staining of the lungs of WT or

UC2288-treated mice. (K and L) p21+/+ (i.e., WT) or p21−/− mice were infected with H7N9 or H1N1 virus and their body weights were

recorded for 14 days. Viral titers were quantified in lung homogenates as the TCID50 value at 5 dpi (n = 6 mice in each group). Scale

bar = 100 μm. For A and B, data are representative or presented as the mean ± SEM of three independent experiments. �P< 0.05, ��P< 0.05.

https://doi.org/10.1371/journal.ppat.1010295.g002
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Fig 3. p21 was upregulated by interaction with the PA protein of IAV. (A) and (B) HEK293T cells were transfected

individually or in combination with plasmids expressing Flag-p21 and HA-PA. Cell lysates were immunoprecipitated

with an anti-HA (A) or anti-Flag mAb (B) and then analyzed by western blotting. (C) Lysates of E. coli transfected with

the GST or GST-p21 construct were incubated with Glutathione Sepharose 4 Fast Flow and then mixed with lysates

from cells transfected with HA-PA. Lysates were examined by western blotting and Coomassie blue staining. (D)

Confluent A549 cells were infected with AH1 virus at a MOI of 1. Cell lysates were immunoprecipitated with anti-p21

polyclonal antibody and analyzed by western blotting. (E) A549 cells were transfected with Flag-p21 and then infected

with AH1 virus, cells were determined by double-label indirect immunofluorescence with anti-Flag and anti-PA

antibodies. Scale bar = 8 μm. (F) Flag-tagged p21 plasmids were individually transfected into HEK293T cells together

with HA-PA-mutant plasmids. Cell lysates were subjected to immunoprecipitation and further analyzed by western

blotting. (G) and (H) A549 cells were transfected with different amounts of PA expression vectors and the protein or

mRNA expression of p21 was detected. For A–G, data are representative of three independent experiments. For H,

data are presented as the mean ± SEM from three independent experiments. �P< 0.05, ��P< 0.05, ���P< 0.001.

https://doi.org/10.1371/journal.ppat.1010295.g003
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Fig 4. p21 inhibits IAV polymerase activity. (A) HEK293T cells treated with siRNA#1 or p21 expression plasmid

were transfected with the four RNP protein expression constructs (PB2, PB1, PA and NP) derived from AH1 virus,

together with pHH21-SC09NS F-Luc, which encodes NS vRNA possessing a reporter firefly luciferase gene. At 48 h

post-transfection, a dual-luciferase assay was performed in which the relative firefly luciferase activity was normalized

to the internal control, Renilla luciferase activity. (B) WT or p21-KO HEK293T cells were transfected with the four

RNP protein expression constructs (PB2, PB1, PA and NP) derived from AH1 virus, together with pHH21-SC09NS

F-Luc, which encodes NS vRNA possessing a reporter firefly luciferase gene. A dual-luciferase assay was performed. (C
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(Fig 4A). We constructed a p21-knockout (p21-KO) HEK293T cell line using the CRISPR/

Cas9 system. The coding sequence of p21 was not detected, and the expression of p21 protein

was not identified by western blotting in the knockout cell line (S5A–S5D Fig). At the same

time, RdRp activity increased to ~ 4-fold in the p21-KO 293T cells (Fig 4B). Furthermore, we

transfected the Flag-tagged p21, PA, PB1 and PB2 plasmids into p21-KO HEK293T cells. We

found that p21 competed with PB1 for PA binding and reduced PB1 protein in the polymerase

complex in a dose-dependent manner (Fig 4C and 4D), whereas the PB1–PB2 interaction

remained intact (S5E Fig). This finding indicated that p21 reduces the incorporation of PB1

into the RdRp complex by competing for the PB1 binding motif at the C-terminus of PA,

thereby disrupting the formation of the functional IAV polymerase complex.

p21 positively regulates type I IFN expression upon IAV infection

IAV infection can induce the expression of cytokines to initiate innate host defenses [36,37].

To identify the role of p21 protein in host defense during IAV infection, A549 cells were trans-

fected with specific siRNA targeting p21 or with scrambled siRNA, and RNA-Seq was per-

formed. KEGG pathway analysis (cut off P-value < 0.01 and |log2(fold change)|� 1) found

that silencing of p21 significantly changed various pathways, with the influenza A pathway

being the most affected (Fig 5A). We further clustered the differentially expressed genes in the

influenza A pathway and found that type I IFN-related genes were significantly reduced after

p21 silencing during IAV infection (S6 Fig). Thus, we next compared IFN-β luciferase activity

in WT and p21-KO HEK293T cells. The results showed that IFN-β luciferase activity induced

by IAV and Sendai virus was remarkably inhibited in p21-KO HEK293T cells (Fig 5B). The

qRT-PCR results showed that the abundance of IFN-β mRNA significantly decreased at 6 and

12 hpi in the p21-KO cells (Fig 5C). Consistent with this, the expression levels of IFN-β were

significantly reduced in the p21-KO cells after AH1 virus infection (Fig 5D). IRF3 plays a criti-

cal role in the IFN-β response to viral infection [38]. We therefore evaluated p-IRF3 levels in

WT and p21-KO HEK293T cells after AH1 virus infection. The results showed that the AH1

virus-induced increase in p-IRF3 expression was completely inhibited in p21-KO HEK293T

cells compared with p21-WT HEK293T cells (Fig 5E). In addition, ISG-15, OAS1 and Mx1

expression was significantly decreased in p21-KO A549 cells after AH1 virus infection (Fig

5F). Consistent with this, the nuclear localization of IRF3 and serum IFN-β levels were signifi-

cantly reduced in AH1-infected mice compared with p21-WT mice (Fig 5G and 5H). These

results indicated that p21 deletion inhibits IRF3 nuclear activation and subsequently inhibits

the production of IFN in mice. Taken together, our results suggested that p21 inhibition of

IAV viral replication is partly dependent on the activation of IRF3 and type I IFN production.

p21 promotes the activation of IRF3 by interacting with HO-1

To identify how p21 regulates the phosphorylation of IRF3, p21 protein complexes were first

detected post IAV infection by affinity purification coupled with mass spectrometry analysis.

Among all of the interacting proteins identified, we found that HO-1 was ranked in the top

three in the screening list (Fig 6A and S2 Table). We then identified the interaction of p21

and HO-1 in A549 cells by co-immunoprecipitation. (Fig 6B). This interaction was further

confirmed in a GST pull-down assay (Fig 6C). To investigate the functional significance of this

interaction, we transfected the p21 expression plasmid into p21-KO HEK293T cells and

and D) p21 inhibits the interaction of PA and PB1. PB1, HA-PA and Flag-p21 were co-transfected into p21-KO

HEK293T cells. After 48 h, cell lysates were harvested for immunoprecipitation. Data are representative or presented as

the mean ± SEM of three independent experiments. �P< 0.05, ��P< 0.05, ���P< 0.001.

https://doi.org/10.1371/journal.ppat.1010295.g004
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Fig 5. p21 positively regulates type I IFN expression upon IAV infection. (A) A549 cells treated with siControl or siRNA#1 were

infected with AH1 virus at a 0.1 MOI. Cell lysates were collected and analyzed by transcriptome sequencing. (B) WT and p21-KO

HEK293T cells were transfected with expression vectors for IFN firefly luciferase and TK-renilla luciferase. The transfected cells were

treated with SeV or IAV for 16 h prior to the measurement of luciferase activity. (C) A549 cells treated with siControl or siRNA#1 were

infected with AH1 or Sendai virus. Total RNA was harvested and analyzed by RT-qPCR. (D) A549 cells treated with siControl or siRNA#1

were infected with AH1 virus and the IFN-β levels were determined by ELISA. (E) WT and p21-KO HEK293T cells were infected with

AH1 virus at a MOI of 1 and the levels of phosphorylated IRF3 were measured by western blotting. (F) A549 cells treated with siControl or

siRNA#1 were infected with AH1 virus. Total RNA was harvested and analyzed by RT-qPCR. (G and H) WT and p21−/− mice were
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detected the protein levels of HO-1. The data showed that the expression of p21 enhanced the

levels of HO-1 protein in a dose-dependent manner (Fig 6D). Furthermore, p21 knockdown

reduced the HO-1 protein levels in A549 cells after AH1 virus infection (Fig 6E). To examine

whether p21 influences the stability of HO-1 protein after IAV infection, the half-life of p21

was evaluated using cycloheximide (CHX) and immunoblot analysis. We found that HO-1

had a shorter half-life in p21-KO HEK293T cells (S7A Fig). Similarly, overexpression of p21

significantly increased the half-life of HO-1 protein (S7B Fig). Furthermore, we showed that

the ubiquitination of endogenous HO-1 with K48-linked chains, but not K63-linked chains,

was significantly increased in p21-KO HEK293T cells post AH1 infection (S7C Fig). Collec-

tively, our data shows that p21 binding to HO-1 reduces its K48-linked ubiquitination and

inhibits its degradation post AH1 virus infection.

It has been previously reported that HO-1 is required for the activation of IRF3 after viral

infection [20,39]. To determine whether HO-1 is involved in the regulation of IRF3 activation

by p21 after IAV infection, we transfected the HO-1 expression plasmid into p21-KO

HEK293T cells and assessed the activation level of IRF3 at different time points after virus

infection. The results showed that p21 deletion inhibited the induction of IRF3 phosphoryla-

tion by AH1 virus, but this inhibitory effect was rescued in the presence HO-1 protein (Figs

5E and 6F). Consistent with this observation, we also found that overexpression of HO-1 sig-

nificantly increased the levels of IFN-β and antiviral genes (including OAS1 and ISG15),

whereas silencing of HO-1 decreased the levels of IFN-β and antiviral genes after virus infec-

tion (Figs 6G and S7D). Moreover, silencing of HO-1 significantly increased the levels of NP

and the virus titer after AH1 virus infection (Fig 6H). To determine whether the regulation of

IFN-β by p21 protein depends on HO-1 post IAV infection, we knocked down HO-1 in A549

cells overexpressing p21 protein and found that the expression of IFN-β was significantly

reduced and the level of NP protein was increased (Fig 6I). Similarly, we transfected the HO-1

expression plasmid into stable p21-KO HeLa cells and found that overexpression of HO-1 sig-

nificantly increased the levels of IFN-β and reduced NP protein expression (Fig 6J). To iden-

tify whether HO-1 activation can rescue the increased viral replication caused by p21

deficiency, p21−/− mice were orally treated with the HO-1 inducer hemin (5 mg/kg), and the

pulmonary virus titer was determined. Hemin treatment upregulated the expression of HO-1

protein and significantly reduced the expression of NP protein and the virus titer in the lung

tissue compared with the vehicle-treated p21−/− mice (Figs 6K, S7E and S7F). These results

were confirmed by histopathological examination (Fig 6l). Collectively, these results provide

solid evidence that p21−/− mice are more susceptible to IAV infection, whereas HO-1 activa-

tion can rescue the increased viral replication caused by p21 deficiency.

p21 peptide mimics inhibit IAV replication

To identify the functional region of p21 protein that is crucial for the anti-IAV effects, we gen-

erated a series of truncated p21 constructs that were fused to the N-terminus of the GFP-tag,

and then inoculated them into A549 cells infected with AH1 virus. The results showed that the

amino acid sequence from position 36 to 43 of p21 protein conferred anti-IAV activity (Fig 7A

and 7B). To further confirm the function of this amino acid sequence, p21 peptide mimics

(36–43) were synthesized and their effects on the replication of IAV were tested in A549 cells.

The results showed that the peptides inhibited NP expression in a dose-dependent manner,

challenged with AH1 virus at 100 TCID50, serum IFN-β levels were determined by ELISA (G), and the nuclear entry level of IRF3 in the

lungs was analyzed by immunohistochemistry (H) (n = 6 mice in each group). All data are representative or presented as the mean ± SEM

of three independent experiments unless specified. �P< 0.05, ��P< 0.05, ���P< 0.001.

https://doi.org/10.1371/journal.ppat.1010295.g005
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Fig 6. p21 interacts with HO-1 and inhibits its ubiquitination-mediated degradation. (A) A549 cells were infected with AH1 virus

and immunoprecipitated with anti-p21 antibody or IgG. Protein analysis and identification were performed by mass spectrometry. (B)

A549 cells were infected with AH1 virus at a MOI of 5. Cell lysates were immunoprecipitated and analyzed by western blotting. (C)

Lysates of E. coli transfected with the GST or GST-p21 construct were incubated with Glutathione Sepharose 4 Fast Flow and then

mixed with the p21 cell lysates. Lysates were examined by western blotting and Coomassie blue staining. (D) p21-KO HEK293T cells
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and the virus titers were significantly reduced in the peptide mimic-treated A549 cells (Fig

7C). Immunofluorescence assays also confirmed that NP protein expression was significantly

inhibited in A549 cells treated with peptide mimics at 15 μM (Fig 7D). It is worth noting that,

the peptide mimics did not affect the cell cycle or cell viability, indicating that there were no

such side effects (S8A and S8B Fig). To determine the mechanism by which peptide mimics

inhibit IAV replication, whether by affecting the activity of the viral polymerase or promoting

the response of IFN-β to IAV infection, we tested the effect of peptide mimics on IAV poly-

merase and IFN pathways and found that they could inhibit the activity of the IAV polymerase

(Fig 7E). Treatment with p21 peptide mimics also significantly increased the expression of

HO-1 protein, then promoted the transcriptional activity of IFN-β after virus infection (Fig 7F

and 7G).

To further evaluate whether the p21 peptide mimics could protect against IAV in vivo, mice

were administered peptide mimics (15 mg/kg) intraperitoneally every 48 h. The scramble-

treated mice suffered significant weight loss compared with the peptide mimic-treated mice

(Fig 7H), and the viral titers in the lung tissues of scramble-treated mice were significantly

higher than those in the peptide mimic-treated mice at 3 and 5 dpi (Fig 7I). Histopathological

analysis showed that scramble-treated mice possessed more severe lung tissue damage and

inflammation compared with peptide mimic-treated mice (Fig 7J). Furthermore, the peptide

mimic-treated mice displayed markedly decreased NP protein expression levels in their lung

tissue (S8C Fig). Collectively, these results showed that the amino acid sequence from position

36 to 43 of p21 plays an important role in inhibiting IAV replication, and the related peptide

mimics exert therapeutic effects during influenza infection.

Discussion

The interplay between IAV infection and the host is a dynamic process, which determines the

pathogenicity and host range of the virus [40]. Some human genes associated with IAV infec-

tion have been identified on the basis of genome-wide RNAi library screens [41–46]. Zhou

et al. found that FMRP is associated with A/Puerto Rico/8/34 (H1N1) virus NP/RNP nuclear

export [45]. Karlas et al. showed that SON is important for the stable trafficking of A/WSN/33

(H1N1) virions to late endosomes early in infection and that CLK1 reduces IAV replication by

impairing the splicing of viral M2 messenger RNA [46]. In the present study, we performed a

siRNA screen using the H5N1 subtype. Our key findings revealed seven novel IAV-inducible

genes that have not been reported previously. Among them, the ARRDC4, CDKN1A, TYMP,

PNPT1, TAP2 and CHD2 genes restricted IAV infection, whereas FST promoted IAV infec-

tion. Further research on these genes may provide insight into new host antiviral mechanisms,

or into how viruses hijack host proteins to escape the immune system. p21, encoded by the

CDKN1A gene, is a member of the cyclin-dependent kinase inhibitor (CKI) family. It has been

shown to regulate various cellular processes, including the cell cycle, DNA replication and

were transfected with different amounts of p21 expression vectors and the protein levels were detected by western blotting. (E) A549

cells treated with siControl or siRNA#1 were infected with AH1 virus at a MOI of 0.1. Cell lysates were collected and analyzed by

western blotting. (F) p21-KO HEK293T cells were treated with p21 plasma or HMOX1 siRNA and infected with AH1 virus. Cell lysates

were analyzed by western blotting or qPCR. (G) and (H) A549 cells were treated with HO-1 plasma or siRNA oligonucleotides and

infected with AH1 virus. Cell lysates were collected and determined using qRT-PCR (G) or western blotting (H). Virus yields of the

progeny were determined by the TCID50 assay. (I) A549 cells were treated with HO-1 plasma or the control and infected with AH1

virus. Cell lysates were analyzed by western blotting or RT-qPCR. (J) shRNA#1-HeLa cells were transfected with HO-1 plasma or the

control and infected with AH1 virus. Cell lysates were analyzed by western blotting or RT-qPCR. (K and L) p21−/− mice were orally

gavaged with hemin or corn oil every other day and challenged with AH1 virus (n = 6 mice in each group). Viral titers and lung

damage were quantified according to the TCID50 value and H&E staining. Scale bar = 100 μm. All data are representative or presented

as the mean ± SEM of three independent experiments unless specified. �P< 0.05, ��P< 0.05, ���P< 0.001.

https://doi.org/10.1371/journal.ppat.1010295.g006

PLOS PATHOGENS p21 restricts influenza A virus

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010295 February 18, 2022 14 / 26

https://doi.org/10.1371/journal.ppat.1010295.g006
https://doi.org/10.1371/journal.ppat.1010295


Fig 7. p21 peptide mimics inhibit IAV replication. (A) and (B) Identification of the amino acid sequence that inhibits IAV replication.

A549 cells were transfected with GFP-p21 mutant plasmid and infected with a 0.1 MOI of AH1 virus. Cell lysates were collected and

analyzed by western blotting. (C) p21 peptides mapping to residues x–y of the p21 protein inhibit IAV replication in cells. A549 cells

were infected with a 0.1 MOI of AH1 virus and were treated with different concentrations of peptide mimics. Then, cell lysates were

collected and analyzed by western blotting. (D) A549 cells were treated with different concentrations of peptide mimics and infected
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repair, cell differentiation, apoptosis, and innate and adaptive immunity [26,47]. For the first

time, we identified p21 as a negative regulator of IAV replication by combining cellular tran-

scriptional profiling with siRNA screening. We found that p21 not only inhibited the replica-

tion of IAV in a variety of cell lines, but importantly, the titer of IAV increased significantly in

p21−/− mice and in animals orally treated with a specific p21 inhibitor. In addition, the antivi-

ral protective effect of p21 was effective against different IAV strains and various subtypes

including H1N1, H3N2, H5N1 and H7N9. Further analyses revealed that the 36 to 43 amino

acid motif of p21 plays a critical role in limiting the replication of IAV. We synthesized pep-

tides containing these amino acid sequences and found that the peptides possessed a signifi-

cant inhibitory effect on IAV replication. In summary, our novel findings substantiate the

inhibitory role of p21 against IAV infection and provide a theoretical basis for the develop-

ment of anti-influenza drugs.

The replication and transcription of the IAV genome is catalyzed by the viral RNA poly-

merase [15]. This enzyme participates in the entire life cycle of the virus and is highly conser-

vative in structure, having no host analogues, making it an attractive drug target. Fu et al.
showed that TRIM32 could inhibit IAV polymerase activity by targeting PB1 for proteasome

degradation, and thereby provides protection against IAV infection [48]. TRIM35 has also

been found to defend the host against IAV infection by catalyzing K63-linked polyubiquitina-

tion of TRAF3 and activating RIG-I antiviral signaling [49]. Wang et al. demonstrated that pla-

kophilin 2 binds to the C-terminal domain of PB1, thus blocking the interaction of PB2 with

PB1 [50]. Our findings eluded to a novel host-directed mechanism whereby p21 directly binds

to the PA subunit of the viral polymerase, disrupting the formation of IAV RdRp polymerase

complexes and thereby inhibiting IAV replication. Specifically, we determined that p21 inhib-

its viral polymerase activity by interacting with the C-terminus of the PA subunit, thereby

competing with the PB1 subunit for binding to this motif.

Humans have evolved a broad spectrum of innate immune defenses to limit IAV infection.

These innate antiviral defenses indirectly inhibit infection by triggering signaling cascades that

lead to the production of IFNs and other antiviral effector molecules [51]. We analyzed the dif-

ferential gene expression in normal and p21-KO cells after influenza virus infection, and

found that type I IFN signaling genes were significantly reduced after p21 knockdown. We

identified a new role of p21 in innate immunity, whereby it acts as a positive regulator of type I

IFN during IAV infection. HO-1 promotes the production of type I IFN and the expression of

multiple IFN-stimulated genes by promoting IRF3 phosphorylation and increasing IRF3 sig-

naling activation. Our results reveal that following IAV infection, p21 directly interacts with

HO-1 to inhibit K-48 ubiquitination-mediated degradation.

In the current study, our results suggested that p21 is an intrinsic IAV restriction factor,

which exerts antiviral function through several complementary mechanisms. For the first

time, our findings revealed that p21 interacts with the C-terminus of the IAV polymerase sub-

unit PA and competes for PB1 binding, which perturbs the formation of a functional polymer-

ase complex and thereby inhibits viral replication (Fig 8). Additionally, the interaction

with AH1 virus, followed by staining with anti-NP (green) and DAPI nuclear stain (blue). Scale bar = 10 μm. (E) HEK293T cells were

treated with the scramble or p21 peptide mimic and then transfected with the four RNP protein expression constructs and

pHH21-SC09NS F-Luc. A dual-luciferase assay was performed in which the relative firefly luciferase activity was normalized to the

internal control. (F and G) A549 cells were treated with different concentrations of peptide mimics and infected with AH1 virus. Cell

lysates were collected and analyzed by western blotting or qRT-PCR. (H to J) C57/BL6J mice received an intraperitoneal injection of the

scrambled peptides or p21 peptide mimics every other day and were then challenged with AH1 virus at 50 TCID50 (n = 6 mice in each

group). Body weights (H) were recorded for 14 days. Viral titers (I) and lung damage (J) were quantified by the TCID50 value and H&E

staining. Scale bar = 100 μm. All data are representative or presented as the mean ± SEM of three independent experiments unless

specified. �P< 0.05, ��P< 0.05, ���P< 0.001.

https://doi.org/10.1371/journal.ppat.1010295.g007
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between the p21 and PA proteins enhances p21 expression. Moreover, we demonstrated that

the antiviral activity of p21 is also mediated via its ability to promote IRF3 activation via the

recruitment of HO-1 through the inhibition of K48-linked ubiquitination degradation, result-

ing in increased expression of type I IFNs (Fig 8). A synthetic peptide based on the 36 to 43

amino acid sequence of p21 markedly inhibited viral replication both in vitro and in vivo.

Overall, our novel findings highlight the physiological role and crosstalk of p21 in antiviral

innate immunity and provide a theoretical basis for future drug design.

Materials and methods

Ethics statement

All animal studies were performed in accordance with institutional guidelines of China Agri-

cultural University (CAU) (approval SKLAB-B-2018-021) and approved by the Beijing Associ-

ation for Science and Technology of China (approval SYXK, Beijing, 2007–0023).

Viruses and cells

Influenza viruses A/California/04/2009 (H1N1), A/Anhui/1/2005 (AH1, H5N1), A/CK/BJ/

FH620-L1/17 (H7N9) and A/Jiangxi/262/05 (H3N2) were maintained in our laboratory.

Fig 8. A proposed model. During IAV infection, p21 directly interacts with the C-terminus of the IAV polymerase

subunit PA and competes for PB1 binding, which perturbs the formation of a functional polymerase complex and

thereby inhibits viral replication. The interaction between p21 and PA proteins also enhances p21 expression, and then

promotes IRF3 activation via the recruitment of HO-1, finally activating the expression of type I IFNs and exerting

antiviral activity. p21-recruited HO-1 expression occurs through the inhibition of K48-linked ubiquitination

degradation.

https://doi.org/10.1371/journal.ppat.1010295.g008
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Viruses were propagated in 10-day-old specific-pathogen-free embryonated eggs (Merial, Bei-

jing, China). HEK293T cells (human embryonic kidney cell line), A549 cells (human lung ade-

nocarcinoma epithelial cell line) and HeLa cells were obtained from the National

Infrastructure of Cell Line Resource (Shanghai, China). All cells were maintained in Dulbec-

co’s modified Eagle’s medium (Life Technologies, Rockville, MD, USA) supplemented with

10% fetal bovine serum (Life Technologies), 100 U/mL penicillin and 100 μg/mL streptomycin

at 37˚C under a humidified atmosphere containing 5% CO2. NHBE cells (Lonza, Allendale,

NJ, USA) were cultured in bronchial epithelial cell growth medium (Lonza) at the air–liquid

interface, as previously described [49]. p53−/− HCT116 cells were kindly provided by Dr Jun

Tang (CAU, Beijing, China). All experiments with live viruses were performed in a biosafety

level 3 laboratory.

Antibodies

Primary antibodies were purchased from the following commercial suppliers: anti-p21

(#2947), anti-p-IRF3 (#37829), anti-K63-linkage specific polyubiquitin (#5621), anti-K48-link-

age specific polyubiquitin (#8081) and anti-ubiquitin (#3936) antibodies were from Cell Sig-

naling Technology (Beverly, MA, USA); anti-p21 (ab188224), Anti-p21 antibody [EPR3993]

(ab109199) and anti-IRF3 (ab68481) were purchased from Abcam (Cambridge, UK); anti-HA

(26183) and anti-Flag (MA1-91878) antibodies were purchased from Sigma-Aldrich (St Louis,

MO, USA); anti-HO-1 (10701-1-AP) antibody was purchased from Proteintech (Wuhan,

China); anti-NP monoclonal antibody (mAb) was purchased from GenScript (Nanjing,

China); and anti-PA (GTX118991), anti-PB1 (GTX125923) and anti-PB2 (GTX125926) anti-

bodies were purchased from GeneTex (Irvine, CA, USA). The secondary antibodies used in

western blotting were goat anti-mouse IgG (072-07-18-06) and goat anti-rabbit IgG (072-07-

15-06) purchased from KPL (Gaithersburg, MD, USA). The secondary antibodies used in con-

focal microscopy were Alexa Fluor 488 donkey anti-rabbit IgG (A21206) and Alexa Fluor 594

goat anti-mouse IgG (A11005) obtained from Life Technologies.

Viral titration and growth kinetics in cells

The TCID50 was determined in MDCK cells by inoculation with 10-fold serially diluted viruses

and incubation at 37˚C for 72 h. The TCID50 value was calculated by the Reed–Muench

method [50]. Multistep replication kinetics were determined using A549 and HeLa cells. A549

and HeLa cells were infected with virus, overlaid with serum-free DMEM containing 1 μg/mL

tosylsulfonyl phenylalanyl chloromethyl ketone (TPCK)-trypsin (Sigma-Aldrich), and incu-

bated at 37˚C. NHBE cells were infected with virus and cultured in B-ALI growth medium

(Lonza) at 37˚C. The supernatants were sampled at 12 and 24 hpi and titrated by inoculating

MDCK cells into a 96-well plate. Three independent experiments were performed.

RNA interference

siRNA or shRNA targeting p21 or scrambled RNA at a concentration of 100 nM was trans-

fected into A549 cells seeded in six-well plates using the Lipofectamine RNAiMAX transfec-

tion reagent (Waltham, MA, USA).

Lentivirus expressing p21-specific short-hairpin RNA was generated by GenePharma Com-

pany (Suzhou, China). Briefly, two complementary oligonucleotides were synthesized,

annealed and cloned into a HIV-based lentiviral expression vector to express a p21-specific

short-hairpin. The lentiviral particles were then produced by cotransfecting short-hairpin

RNA expression plasmids with packaging plasmids into 293 packaging cells. After 72 h, viruses

were collected and the titer was determined. To generate p21-stable knockdown or control cell
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lines, HeLa cells were infected with the lentiviral particles and selected with puromycin for 3

weeks.

Generation of p21-KO HEK293T cells

p21-KO HEK293T cells were established using the CRISPR/Cas9 system. The p21 gene target

sequences, #1 50-caccgAGATCAGCCGGCGTTTGGAG-30 and #2 50-caccgCCGCGACTGT

GATGCGCTAA-30, were inserted into the guide RNA (gRNA) expression cassette of the

pX458-EGFP vector, which also contains an expression cassette of Cas9. The pX458-EGFP

plasmid containing the p21 target sequence was then transfected into HEK293T cells. The

transfected cells were trypsinized 24 h later into single cells, which were diluted and inoculated

into a 96-well plate by flow cytometry. Each colony was individually propagated in a 96-well

plate, and the knockout of p21 expression was confirmed by western blotting and PCR.

Real-time quantitative PCR analysis

The RNA samples from cells were extracted using Trizol reagent (Invitrogen) in accordance

with the manufacturer’s instructions. The quality of RNA was verified by evaluating the OD at

260/280 nm. The cDNA was then generated with 1 μg of total RNA using the Superscript III

first-strand synthesis SuperMix (Invitrogen) according to the manufacturer’s protocol. For

one real-time reaction, 20 mL of SYBR Green PCR reaction mix (Applied Biosystems), includ-

ing a 1/10 volume of the synthesized cDNA plus an appropriate oligonucleotide primer pair,

were analyzed on a LightCycler 480 (Roche). The comparative Ct method was used to deter-

mine the relative mRNA expression of genes normalized by the housekeeping gene GAPDH.

The specific primers used are shown in S1 Table.

Polymerase activity assay

A dual-luciferase reporter assay system (Promega) was used to compare the polymerase activi-

ties of viral RNP complexes. The PB2, PB1, NP and PA genes from AH1 virus were cloned into

the pcDNA3.1 expression plasmid. HEK 293T cells were transfected with PB2, PB1, PA and

NP expression plasmids (125 ng of each plasmid), together with the construct pHH21-SC09NS

F-Luc (5 ng), and an internal control pRL-TK (10 ng). At 48 h post-transfection, cell lysates

were prepared using the dual luciferase reporter assay system (Promega), and the luciferase

activities were measured on a GloMax 96 microplate luminometer (Promega). Three indepen-

dent experiments were performed.

Confocal microscopy

A549 cells were transfected with expression plasmids for Flag-tagged p21. After 24 h, cells

were infected with AH1 virus at a MOI of 1 for 18 h, along with uninfected controls. Cells

were fixed in 4% paraformaldehyde (PFA) and permeabilized with 0.2% Triton X-100, then

blocked for 60 min at room temperature with 2% bovine serum albumin and 7% fetal bovine

serum in PBS. Cells were incubated overnight at 4˚C with primary antibodies, followed by

Alexa Fluor 594 goat anti-mouse IgG or Alexa Fluor 488 goat anti-rabbit IgG for 1 h. Finally,

cover slips were mounted onto microscope slides along with 10–20 μL of DAPI for 3 min and

slides were examined by confocal microscopy. Images were processed using a FluoView

FV3000 confocal laser scanning microscope (Olympus) and analyzed using the Imaris 9.2

platform.
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Western blot analysis

Cells were lysed in RIPA lysis buffer containing 1 mM phenylmethylsulfonyl fluoride (PMSF),

and the total protein was quantitated with a bicinchoninic acid (BCA) protein assay kit (Beyo-

time, Haimen, China). Proteins from cell extracts (20 to 50 μg) were denatured at 100˚C for 10

min, fractionated on a 12% sodium dodecyl sulfate (SDS)-polyacrylamide gel, and subse-

quently electroblotted onto a polyvinylidene difluoride (PVDF) membrane (GE Healthcare,

Pittsburgh, PA, USA). After blocking in 5% non-fat dry milk in Tris-buffered saline with

Tween 20 (10 mM Tris-HCl, pH 8.0; 150 mM NaCl; 0.5% Tween 20), membranes were incu-

bated with primary antibodies overnight at 4˚C. After washing, the secondary antibody (horse-

radish peroxidase-conjugated species-specific antisera; 1:10000 dilution) was added and

incubated for 1 h, and bound antibody was visualized using an enhanced chemiluminescence

system (Thermo Fisher Scientific, Waltham, MA, USA). When indicated, cytosolic proteins

were normalized to β-actin.

Co-immunoprecipitation assay

To examine the interaction of proteins in transfected cells, HEK293T cells were transfected

with the indicated plasmids using a jetPRIME kit (Polyplus Transfection, Illkirch, France).

After 24 h of transfection, cells were washed with PBS and lysed in 250 μL of RIPA lysis buffer

containing freshly added protease and phosphatase inhibitors (Roche Molecular Biochemicals,

Rotkreuz, Switzerland). Protein lysates (500 μg) were used for immunoprecipitation and were

incubated overnight with anti-Flag or anti-HA magnetic beads (Bimake, Houston, TX, USA).

After washing with lysis buffer, proteins were analyzed by western blotting.

GST pull-down assay

The GST, GST-p21 and GST-HO-1 proteins were obtained using an E. coli prokaryotic expres-

sion system. HEK293T cells grown in 10-cm dishes were individually transfected with 10 μg of

each plasmid (pCMV-HA-PA or pCMV-HA-HO-1) using the jetPRIME reagents (Polyplus

Transfection, Illkirch, France). At 48 h post-transfection, cells were solubilized with 0.5 mL of

IP buffer (Beyotime, Haimen, China). Then, cleared lysates from transfected cells were mixed

with GST or GST-p21 protein expressed in E. coli and Glutathione Sepharose 4 Fast Flow (GE

Healthcare, Pittsburgh, PA, USA) and the mixtures were incubated for 1 h at 4˚C with agita-

tion. After three washes, the bound proteins were separated by SDS-PAGE. GST-tagged pro-

teins in the eluates were detected by Coomassie blue staining, and non-GST tagged proteins

were detected by western blotting.

Peptide synthesis

The peptide mimic was synthesized by GenScript (Nanjing, China). In short, transmembrane

peptide was added to the C-terminus of the peptide, along with PEG modification, to enable it

to pass through the cell membrane. The amino acid sequence was as follows: ALMAGCIQ

{PEG2}YGRKKRRQRRR.

Mass spectrometry analysis

Mass spectrometry was performed and the results were analyzed using Applied Protein Tech-

nology (Shanghai, China). In brief, 20 μg of protein for each sample were mixed with 5× load-

ing buffer and boiled for 5 min. The proteins were separated by 12.5% SDS-PAGE (constant

current 14 mA, 90 min). Protein bands were visualized by Coomassie blue R-250 staining and

protein identification was performed by bioinformatic analysis.
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Animal experiments

All animal studies were carried out in strict accordance with the recommendations of the

Guide for the Care and Use of Laboratory Animals of the Ministry of Science and Technology

of the People’s Republic of China, as well as the institutional guidelines of China Agricultural

University (CAU) (approval SKLAB-B-2017-003), and were approved by the Beijing Associa-

tion for Science and Technology of China (approval SYXK, Beijing, 2007–0023). Groups of 6-

to 8-week-old female C57/BL6J mice (Gempharmatech, Nanjing, China) were anesthetized

with Zoletil (tiletamine-zolazepam; Virbac; 20 μg/g) and intranasally inoculated with 50 μL of

diluted infectious virus in PBS. For AH1 viruses, 50 TCID50 (peptide experiment) or 100

TCID50 of each test virus was used for inoculation. Six mice from each group were euthanized

at 3 and 5 dpi, and viral titers in the lung were determined by the infection of MDCK cells.

The body weight and survival of mice were monitored daily from day 1 post-infection.

Histological analysis

After euthanization, the lung tissues of WT and p21−/− mice were removed from the thorax,

washed with PBS, and fixed with 4% formaldehyde. After fixation of the lung tissue and pro-

cessing in paraffin wax, sections (5 μm thick) were cut longitudinally through the left and right

lungs and stained with hematoxylin and eosin (H&E) for histopathological assessment. Histo-

pathological scoring was conducted according to a previously published study [51]. In brief,

lung microscopic lesions were blindly evaluated from 0 to 4 in five random fields to account

for the distribution and severity of interstitial pneumonia.

Immunohistochemical analysis

The lung tissue sections were quenched in 3% H2O2 and then pretreated with proteinase K for

15 min. Slides were blocked for 30 min, rinsed with Tris-buffered saline with Tween 20

(TBST) and incubated with a rabbit polyclonal antibody specific for type A influenza nucleo-

protein antigen (AA5H; Abcam, Hong Kong) at a 1:100 dilution for 2 h. The sections were

then incubated with horseradish peroxidase-conjugated secondary antibody for 60 min at

room temperature. The signal was detected using a Vector Elite ABC Kit (Vectastain, Vector

Laboratories, Burlingame, CA, USA). The tissue sections were also stained with H&E for rou-

tine morphologic analysis.

Statistical analysis

Values are shown as the mean ± SEM. All experiments were performed with at least three-

independent repeats giving consistent results. A Student’s t test was used to compare differ-

ences between two groups. One-way ANOVA or two-way ANOVA was performed for multi-

ple comparisons using GraphPad Prism v8.0 (GraphPad Software Inc., San Diego, CA, USA).

The Kaplan–Meier method was employed to analyze the survival rates. A P-value less than

0.05 was considered statistically different.

Supporting information

S1 Fig. Differentially expressed genes in A549 cells after IAV infection. (A and B), Differen-

tially expressed genes in A549 cells after IAV infection. A549 cells were infected with AH1

viruses at a 0.1 MOI for 18 h. Total RNA was extracted and used for RNA-Seq analysis. Results

were obtained based on a threshold fold-change of Z> 2.0 and a P-value <10−90. (C) A549

cells were infected with UV-treated AH1 viruses for different times. For C, data are
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representative of three independent experiments.

(TIF)

S2 Fig. p21 inhibits the replication of multiple subtypes of IAV. (A) and (B) A549 cells were

transfected with siRNA oligonucleotides against p21 or shRNA and infected with a 0.1 MOI of

AH1 virus. The expression of proteins was detected by western blotting. (C and D) A549 cells

were transfected with scrambled control siRNA and siRNA oligonucleotides against p21 and

infected with AH1 virus. Cell viability and growth rate were assessed using a CCK-8 kit and a

cell count assay, respectively. (E) NHBE cells treated with siControl or siRNA#1 were infected

with AH1 virus at 0.01 MOI. Cell lysates were collected and analyzed by western blotting.

Supernatants were titrated by a TCID50 assay. (F) A549 cells were treated with UC2288 (5 μM)

or the vehicle control and infected with AH1 virus at 0.1 MOI. Cell lysates were collected and

analyzed by western blotting, and the virus yields were determined by a TCID50 assay. (G to I)

A549 or HeLa cells treated with Flag-tagged p21 plasmids were infected with AH1 virus at 0.1

MOI. Cell viability and growth rate were assessed using a CCK-8 kit and a cell count assay,

respectively. Cell lysates were collected and analyzed by western blotting, and the virus yields

were determined by a TCID50 assay. (J) A549 cells treated with siControl or siRNA#1 were

infected with H3, H7 and H1 subtype viruses at 0.1 MOI. Cell lysates were collected and ana-

lyzed by western blotting. (K) A549 cells treated with siControl or siRNA#1 were infected with

AH1 virus at 0.1 MOI. Cell lysates were collected at the indicated time points and analyzed by

RT-PCR. All data are representative or presented as the mean ± SEM of three independent

experiments unless specified. �P< 0.05, ��P< 0.05.

(TIF)

S3 Fig. Inhibition of p21 increases the pathogenicity of IAV in mice. (A) C57BL/6J mice

were orally gavaged with UC2288 or corn oil (n = 6 mice in each group). After 24 h, the mice

were euthanized and the lungs were subjected to immunoblotting. (B) WT or p21-/- mice were

infected with AH1 virus. Cytokines were detected using a CBA kit at 5 dpi. (C) Immunohisto-

chemically stained sections of the mouse lungs infected with AH1 viruses demonstrating the

presence of IAV. Scale bar = 100 μm. All data are representative or presented as the

mean ± SEM of three independent experiments unless specified.�P< 0.05.

(TIF)

S4 Fig. Identification of IAV proteins that interact with p21. (A) Co-IP assay of HA-NP,

HA-PB2, HA-PB1, HA-M1, HA-NS1 and Flag-p21 in HEK293T cells. HEK293T cells were

transfected individually or in combination with plasmids that expressed Flag-p21, HA-NP,

HA-PB2, HA-PB1, HA-M1 or HA-NS1. Cell lysates were immunoprecipitated with anti-Flag

mAb and were subjected to western blotting. (B and C) p53-knockout HCT116 cells or IFNR-

knockout A549 cells were infected with AH1 virus and whole cell lysates were collected and

analyzed by western blotting. (D) A549 cells were transfected with different amounts of PB2

expression vectors and the protein levels of p21 were detected. All data are representative of

three independent experiments.

(TIF)

S5 Fig. The genotyping results of WT and p21-KO HEK293T cells. (A-D) Generation of

p21-KO HEK293T cells. Genomic DNA was extracted and purified from HEK293T cells using

the DNeasy Blood and Tissue Kit (Qiagen). PCR and sequencing were performed to identify

the WT and KO cells. NC, ddH2O was used as a negative control. The genotype of the gener-

ated HEK293T cells was identified by western blotting. (E) HA-PB1, PB2 and p21 were co-

transfected into p21-KO HEK293 cells. After 48 h, cell lysates were harvested for immunopre-

cipitation using anti-HA antibody and blotted using the indicated antibodies. For D and E,
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data are representative of three independent experiments.

(TIF)

S6 Fig. Differentially expressed gene analysis in the WT and p21-KO A549 cells after IAV

infection. KEGG analysis and differentially expressed genes in the WT and p21-KO cell lines

after virus infection. A549 cells were transfected with scrambled control siRNA and siRNA oli-

gonucleotides against p21. After 24 h, the cells were infected with a 0.1 MOI of AH1. Total

RNA was extracted and used for RNA-Seq analysis.

(TIF)

S7 Fig. p21 inhibits ubiquitin degradation of HO-1 protein. (A) WT or p21-KO HEK293T

cells were pretreated with 25 mM CHX and incubated for the time periods indicated. Endoge-

nous HO-1 was detected, and the intensity of the HO-1 bands was quantified and plotted on a

semi-log graph. (B) HEK293T cells treated with p21 expression vectors were pretreated with

25 mM CHX. Endogenous HO-1 was detected for the time periods indicated. (C) WT and

p21-KO HEK293T cells were treated with 10 mM of MG132. Cell lysates were subjected to an

in vivo ubiquitination assay for the detection of the ubiquitin-conjugated endogenous HO-1

protein. (D) A549 cells were transfected with HO-1 plasma or siHO-1 oligonucleotides and

infected with AH1 virus. Cell lysates were collected and analyzed by RT-qPCR. (E) and (F)

p21−/− mice were orally gavaged with hemin or an equal volume of vehicle control every other

day and challenged with AH1 virus. Lung tissues were collected and analyzed by western blot-

ting and immunohistochemistry. Scale bar = 100 μm. For A–C and E–F, data are representa-

tive of three independent experiments. For A, B and D, data are presented as the mean ± SEM

from three independent experiments. �P< 0.05, ��P< 0.05.

(TIF)

S8 Fig. p21 peptide mimics inhibit IAV replication. (A and B) A549 cells were treated with

scrambled control peptides or peptide mimics. The cell cycle phase and growth rate were

detected by flow cytometry and a CCK-8 kit, respectively. (C) C57/BL6J mice were intraperito-

neally injected with p21 peptide mimics or scrambled peptides every other day and challenged

with AH1 virus at 50 TCID50 (n = 6 mice in each group). Lung tissues were collected and ana-

lyzed by immunohistochemistry. Scale bar = 100 μm. All data are representative or presented

as the mean ± SEM from three independent experiments unless specified.

(TIF)

S9 Fig. Enlarging version of S1B Fig. A549 cells were infected with AH1 viruses at a 0.1 MOI

for 18 h. Total RNA was extracted and used for RNA-Seq analysis. Results were obtained

based on a threshold fold-change of Z> 2.0 and a P-value<10−90.

(EMF)

S1 Table. Primers used in this study.

(DOCX)

S2 Table. Host proteins interacting with p21 protein in A549 cells tested by mass spec-

trometry.

(XLSX)
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Cip1/WAF1 Is Induced by FcγR Activation and Restricts the Replication of Human Immunodeficiency

Virus Type 1 and Related Primate Lentiviruses in Human Macrophages. Journal of Virology. 2009; 83:

12253–12265. https://doi.org/10.1128/JVI.01395-09 PMID: 19759136

33. Boivin S, Cusack S, Ruigrok RWH, Hart DJ. Influenza A virus polymerase: Structural insights into repli-

cation and host adaptation mechanisms. Journal of Biological Chemistry. 2010; 285: 28411–28417.

https://doi.org/10.1074/jbc.R110.117531 PMID: 20538599

34. Deng T, Engelhardt OG, Thomas B, Akoulitchev A V, Brownlee GG, Fodor E. Role of ran binding protein

5 in nuclear import and assembly of the influenza virus RNA polymerase complex. Journal of virology.

2006; 80: 11911–11919. https://doi.org/10.1128/JVI.01565-06 PMID: 17005651

PLOS PATHOGENS p21 restricts influenza A virus

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010295 February 18, 2022 25 / 26

https://doi.org/10.1371/journal.ppat.1000491
https://doi.org/10.1371/journal.ppat.1000491
http://www.ncbi.nlm.nih.gov/pubmed/19557158
https://doi.org/10.2217/fvl.14.66
http://www.ncbi.nlm.nih.gov/pubmed/25431616
https://doi.org/10.3389/fimmu.2018.00320
http://www.ncbi.nlm.nih.gov/pubmed/29556226
https://doi.org/10.1038/nri888
http://www.ncbi.nlm.nih.gov/pubmed/12209136
https://doi.org/10.1084/jem.20081582
http://www.ncbi.nlm.nih.gov/pubmed/19398754
https://doi.org/10.1038/72272
http://www.ncbi.nlm.nih.gov/pubmed/10655105
https://doi.org/10.1016/s1074-7613%2802%2900302-3
https://doi.org/10.1016/s1074-7613%2802%2900302-3
http://www.ncbi.nlm.nih.gov/pubmed/11970874
https://doi.org/10.1084/jem.20080187
http://www.ncbi.nlm.nih.gov/pubmed/18779345
https://doi.org/10.1172/JCI44539
http://www.ncbi.nlm.nih.gov/pubmed/21403397
https://doi.org/10.1002/eji.200939262
https://doi.org/10.1002/eji.200939262
http://www.ncbi.nlm.nih.gov/pubmed/19283709
https://doi.org/10.3389/fcell.2019.00023
http://www.ncbi.nlm.nih.gov/pubmed/30863749
https://doi.org/10.1172/JCI83404
http://www.ncbi.nlm.nih.gov/pubmed/27427981
https://doi.org/10.1002/jbmr.3080
http://www.ncbi.nlm.nih.gov/pubmed/28128866
https://doi.org/10.1002/eji.200838676
http://www.ncbi.nlm.nih.gov/pubmed/19224635
https://doi.org/10.1128/JVI.01324-17
https://doi.org/10.1128/JVI.01324-17
http://www.ncbi.nlm.nih.gov/pubmed/28931685
https://doi.org/10.1128/JVI.79.7.4479-4491.2005
https://doi.org/10.1128/JVI.79.7.4479-4491.2005
http://www.ncbi.nlm.nih.gov/pubmed/15767448
https://doi.org/10.1128/JVI.01395-09
http://www.ncbi.nlm.nih.gov/pubmed/19759136
https://doi.org/10.1074/jbc.R110.117531
http://www.ncbi.nlm.nih.gov/pubmed/20538599
https://doi.org/10.1128/JVI.01565-06
http://www.ncbi.nlm.nih.gov/pubmed/17005651
https://doi.org/10.1371/journal.ppat.1010295


35. Te Velthuis AJW, Fodor E. Influenza virus RNA polymerase: Insights into the mechanisms of viral RNA

synthesis. Nature Reviews Microbiology. 2016/07/11. 2016; 14: 479–493. https://doi.org/10.1038/

nrmicro.2016.87 PMID: 27396566

36. Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clinical

Microbiology Reviews. 2009; 22: 240–273. https://doi.org/10.1128/CMR.00046-08 PMID: 19366914

37. Takeuchi O, Akira S. Pattern Recognition Receptors and Inflammation. Cell. 2010; 140: 805–820.

https://doi.org/10.1016/j.cell.2010.01.022 PMID: 20303872

38. Yanai H, Chiba S, Hangai S, Kometani K, Inoue A, Kimura Y, et al. Revisiting the role of IRF3 in inflam-

mation and immunity by conditional and specifically targeted gene ablation in mice. Proceedings of the

National Academy of Sciences of the United States of America. 2018; 115: 5253–5258. https://doi.org/

10.1073/pnas.1803936115 PMID: 29712834

39. Cummins NW, Weaver EA, May SM, Croatt AJ, Foreman O, Kennedy RB, et al. Heme oxygenase-1

regulates the immune response to influenza virus infection and vaccination in aged mice. The FASEB

Journal. 2012; 26: 2911–2918. https://doi.org/10.1096/fj.11-190017 PMID: 22490782

40. Zhao M, Wang L, Li S. Influenza A virus-host protein interactions control viral pathogenesis. Interna-

tional Journal of Molecular Sciences. 2017; 18: 1–15. https://doi.org/10.3390/ijms18081673 PMID:

28763020

41. Han J, Perez JT, Chen C, Li Y, Benitez A, Kandasamy M, et al. Genome-wide CRISPR/Cas9 Screen

Identifies Host Factors Essential for Influenza Virus Replication. Cell Reports. 2018; 23: 596–607.

https://doi.org/10.1016/j.celrep.2018.03.045 PMID: 29642015

42. Meier R, Franceschini A, Horvath P, Tetard M, Mancini R, Von Mering C, et al. Genome-wide small

interfering RNA screens reveal VAMP3 as a novel host factor required for Uukuniemi virus late penetra-

tion. Journal of virology. 2014; 88: 8565–8578. https://doi.org/10.1128/JVI.00388-14 PMID: 24850728

43. Hao L, Sakurai A, Watanabe T, Sorensen E, Nidom CA, Newton MA, et al. Drosophila RNAi screen

identifies host genes important for influenza virus replication. Nature. 2008; 454: 890–893. https://doi.

org/10.1038/nature07151 PMID: 18615016

44. Li B, Clohisey SM, Chia BS, Wang B, Cui A, Eisenhaure T, et al. Genome-wide CRISPR screen identi-

fies host dependency factors for influenza A virus infection. Nature communications. 2020; 11: 1–18.

https://doi.org/10.1038/s41467-019-13993-7 PMID: 31911652

45. Zhou Z, Cao M, Guo Y, Zhao L, Wang J, Jia X, et al. Fragile X mental retardation protein stimulates ribo-

nucleoprotein assembly of influenza A virus. Nature communications. 2014; 5: 3259. https://doi.org/10.

1038/ncomms4259 PMID: 24514761

46. Karlas A, MacHuy N, Shin Y, Pleissner KP, Artarini A, Heuer D, et al. Genome-wide RNAi screen identi-

fies human host factors crucial for influenza virus replication. Nature. 2010; 463: 818–822. https://doi.

org/10.1038/nature08760 PMID: 20081832

47. Al Bitar S, Gali-Muhtasib H. The role of the cyclin dependent kinase inhibitor p21cip1/waf1 in targeting

cancer: Molecular mechanisms and novel therapeutics. Cancers. 2019; 11: 1475. https://doi.org/10.

3390/cancers11101475 PMID: 31575057

48. Fu B, Wang L, Ding H, Schwamborn JC, Li S, Dorf ME. TRIM32 Senses and Restricts Influenza A Virus

by Ubiquitination of PB1 Polymerase. PLoS Pathogens. 2015; 11: 1–23. https://doi.org/10.1371/journal.

ppat.1004960 PMID: 26057645

49. Sun N, Jiang L, Ye M, Wang Y, Wang G, Wan X, et al. TRIM35 mediates protection against influenza

infection by activating TRAF3 and degrading viral PB2. Protein and Cell. 2020; 11: 894–914. https://doi.

org/10.1007/s13238-020-00734-6 PMID: 32562145

50. Luo W, Zhang J, Liang L, Wang G, Li Q, Zhu P, et al. Phospholipid scramblase 1 interacts with influenza

A virus NP, impairing its nuclear import and thereby suppressing virus replication. PLoS Pathogens.

2018; 14: 1–26. https://doi.org/10.1371/journal.ppat.1006851 PMID: 29352288

51. Wu W, Zhang W, Duggan ES, Booth JL, Zou MH, Metcalf JP. RIG-I and TLR3 are both required for

maximum interferon induction by influenza virus in human lung alveolar epithelial cells. Virology. 2015/

04/11. 2015; 482: 181–188. https://doi.org/10.1016/j.virol.2015.03.048 PMID: 25880109

PLOS PATHOGENS p21 restricts influenza A virus

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010295 February 18, 2022 26 / 26

https://doi.org/10.1038/nrmicro.2016.87
https://doi.org/10.1038/nrmicro.2016.87
http://www.ncbi.nlm.nih.gov/pubmed/27396566
https://doi.org/10.1128/CMR.00046-08
http://www.ncbi.nlm.nih.gov/pubmed/19366914
https://doi.org/10.1016/j.cell.2010.01.022
http://www.ncbi.nlm.nih.gov/pubmed/20303872
https://doi.org/10.1073/pnas.1803936115
https://doi.org/10.1073/pnas.1803936115
http://www.ncbi.nlm.nih.gov/pubmed/29712834
https://doi.org/10.1096/fj.11-190017
http://www.ncbi.nlm.nih.gov/pubmed/22490782
https://doi.org/10.3390/ijms18081673
http://www.ncbi.nlm.nih.gov/pubmed/28763020
https://doi.org/10.1016/j.celrep.2018.03.045
http://www.ncbi.nlm.nih.gov/pubmed/29642015
https://doi.org/10.1128/JVI.00388-14
http://www.ncbi.nlm.nih.gov/pubmed/24850728
https://doi.org/10.1038/nature07151
https://doi.org/10.1038/nature07151
http://www.ncbi.nlm.nih.gov/pubmed/18615016
https://doi.org/10.1038/s41467-019-13993-7
http://www.ncbi.nlm.nih.gov/pubmed/31911652
https://doi.org/10.1038/ncomms4259
https://doi.org/10.1038/ncomms4259
http://www.ncbi.nlm.nih.gov/pubmed/24514761
https://doi.org/10.1038/nature08760
https://doi.org/10.1038/nature08760
http://www.ncbi.nlm.nih.gov/pubmed/20081832
https://doi.org/10.3390/cancers11101475
https://doi.org/10.3390/cancers11101475
http://www.ncbi.nlm.nih.gov/pubmed/31575057
https://doi.org/10.1371/journal.ppat.1004960
https://doi.org/10.1371/journal.ppat.1004960
http://www.ncbi.nlm.nih.gov/pubmed/26057645
https://doi.org/10.1007/s13238-020-00734-6
https://doi.org/10.1007/s13238-020-00734-6
http://www.ncbi.nlm.nih.gov/pubmed/32562145
https://doi.org/10.1371/journal.ppat.1006851
http://www.ncbi.nlm.nih.gov/pubmed/29352288
https://doi.org/10.1016/j.virol.2015.03.048
http://www.ncbi.nlm.nih.gov/pubmed/25880109
https://doi.org/10.1371/journal.ppat.1010295

