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Most chronic liver diseases (CLDs) are characterized by inflammatory processes with aberrant expressions of various pro- and
anti-inflammatory mediators in the liver. These mediators are the driving force of many inflammatory liver disorders, which often
result in fibrosis, cirrhosis, and liver tumorigenesis. c-Myc is involved in many cellular events such as cell growth, proliferation,
and differentiation. c-Myc upregulates IL-8, IL-10, TNF-𝛼, and TGF-𝛽, while IL-1, IL-2, IL-4, TNF-𝛼, and TGF-𝛽 promote c-Myc
expression. Their interactions play a central role in fibrosis, cirrhosis, and liver cancer. Molecular interference of their interactions
offers possible therapeutic potential for CLDs. In this review, current knowledge of the molecular interactions between c-Myc and
various well known inflammatory mediators is discussed.

1. Introduction

Chronic liver diseases (CLDs) are an important cause of
morbidity and mortality worldwide. Moreover, the burden of
CLDs is projected to increase. Inflammatory cytokines are
a group of important regulatory mediators involved in the
development of CLDs. The development and progression of
CLDs are associated with hepatitis B, hepatitis C, alcoholic
liver disease, drug-induced liver disease, autoimmune liver
disease, hepatocellular carcinoma (HCC), and cholangiocar-
cinoma (CCA).

c-Myc can be heterodimerized with Max to transactivate
its target genes through binding the consensus sequence
E box within the promoter region [1–3]. c-Myc has been
implicated in regulating awide variety of biological processes,
including division, apoptosis, cellular growth, and angiogen-
esis [4, 5].Wewill summarize the interaction of inflammatory
mediators with c-Myc in CLDs. Although NF-𝜅B and AP-
1 are not inflammatory mediators, they play key roles in
the interaction of c-Myc and inflammatory mediators. We

will also discuss their links with inflammatory mediators
and c-Myc. Furthermore, we will discuss the relevance of
inflammatory mediators and c-Myc for liver diseases and for
the development of anti-CLD strategies.

2. Inflammatory Mediators

2.1. IL-1. IL-1 is an important upstream proinflammatory
cytokine that affects immunity and hematopoiesis by induc-
ing cytokine cascades. IL-1 mediates inflammation mainly by
inducing a local cytokine network, enhancing inflammatory
cell infiltration, and augmenting adhesion molecule expres-
sion on endothelial cells (ECs) and leukocytes [6].

IL-1𝛽, one of the major agonists of IL-1, is only active
in its processed, secreted form and mediates inflammation,
promoting invasiveness, immunosuppression, and tumori-
genesis [7]. IL-1𝛽 is a potent inflammatory cytokine mainly
produced by macrophages. Toll-like receptors (TLRs) play a
critical role in innate immune responses. IL-1𝛽 production
requires stimulation by TLR ligands as well as a second signal
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Table 1

Liver diseases Inflammatory mediator expressions References

Chronic hepatitis B and
hepatitis C

Up IL-1a, IL-4, IL-6, IL-8, IL-10, c-Jun, IFN-𝛾, TGF-𝛽, and TNF-𝛼 [120–124]
Down IL-2

Cholangiocarcinoma Up IL-6, TGF-𝛽, and TNF-𝛼 [41, 125]

Alcoholic hepatitis
Up IL-1, IL-4, IL-6, IL-8, TGF-𝛽, and TNF-𝛼 [126, 127]

Down IL-10

Hepatocellular carcinoma Up IL-6, IL-8, IL-10, c-fox, c-Jun, NF-𝜅B, TGF-𝛽, and TNF-𝛼 [122, 128–131]

Primary biliary cirrhosis
Up IL-1, IL-2, IL-6, IL-8, IL-10, c-fox, c-Jun, IFN-𝛾, NF-𝜅B, TGF-𝛽, and TNF-𝛼 [122, 129, 130, 132–135]

Down IL-10

Infantile cholestatic hepatitis
syndrome

Up IL-6, TNF-𝛼 [136]

Injury of liver Up IL-1𝛽, IL-6, IL-8, and TNF-𝛼 [45, 137]

such as muramyl dipeptide- (MDP-) mediated stimulation
of NOD-like receptors (NLR) or P2X7 receptors [8]. IL-1𝛽
is involved in nonalcoholic fatty liver disease and alcoholic
steatohepatitis [9–12].

Hepatic stellate cells (HSCs) are key players in fibro-
genesis in chronic liver diseases. In HSCs, IL-1𝛽 mediates
the upregulation of fibrogenic tissue inhibitor of metallo-
proteinase-1 (TIMP-1) and the downregulation of bone mor-
phogenetic protein and activin membrane-bound inhibitor
(BAMBI) [1]. Moreover, IL-1𝛽 promotes the survival of
activated HSCs in mice [13]. Overexpression of IL-1𝛽 triggers
spontaneous liver injury and fibrosis [14].

Several oncogenes, including Myc and Ras, both medi-
ate neoplastic transformation and activate inflammatory
cytokines that establish the proinvasive tumormicroenviron-
ment [15].Myc activation in pancreatic𝛽 cells rapidly induces
the expression and release of the proinflammatory cytokine
IL-1𝛽. IL-1𝛽 inhibition significantly inhibits and delays Myc
activation of islet angiogenesis, confirming the key role of
IL-1𝛽. IL-1𝛽 is the principal Myc effector responsible for
triggering rapid onset of islet angiogenesis [16]. IL-1𝛽 directly
affects the survival and proliferation of endothelial cells
and promotes the induction of other proangiogenic factors
such as matrix metalloproteinases (MMPs), TGF-𝛽, TNF-𝛼,
angiopoietin-1, IL-6, and vascular endothelial growth factor
(VEGF) A [17, 18]. Myc plays an important role in the PI3K-
mediated VEGF regulation in neuroblastoma (NB) cells [19].
c-Myc is essential for vasculogenesis and angiogenesis during
development and tumor progression. This effect is partially
associated with a requirement for c-Myc in VEGF expression.
However, c-Myc is also required for the proper expression
of other angiogenic factors, including angiopoietin-1 [20]. In
a transgenic model of Myc-dependent carcinogenesis such
as pancreatic 𝛽 cells, IL-1𝛽 is both necessary and sufficient
to mediate Myc-induced release of VEGF and onset of islet
neoangiogenesis.

IL-1 expression increases in alcoholic hepatitis and cir-
rhosis. IL-1a expression is increased in chronic hepatitis B
and hepatitis C, while IL-1𝛽 expression rises in alcoholic

liver injury (Tables 1 and 2). IL-1𝛽 and IL-1 increase c-
Myc expression while IL-1 increases IL-1𝛽mRNA expression
(Figure 1(A)).

2.2. IL-2. IL-2 is a pleiotropic cytokine secreted by lympho-
cytes that stimulates the proliferation of mucosal lympho-
cytes, natural killer cells, and macrophages [21]. It can also
promote B cell antibody production and proliferation [22]
and is essential for activation-induced cell death, important
in homeostasis and eliminating potentially harmful autore-
active cells [23].

Many studies confirm that IL-2 receptors are expressed
in the surface of many tumor cells, a feature that when
combined with IL-2 could inhibit tumor cell growth [24,
25]. The spleen tyrosine kinase and protein tyrosine kinase
(SykPTK) is physically associated with IL-2R in peripheral
blood lymphocytes [26]. Therefore, SykPTK may be an
integral signaling molecule engaged by the IL-2R. It has been
identified that SykPTKplays a role inmediating IL-2-induced
expression of c-Myc and subsequent cellular proliferation.
There are two IL-2 receptor-dependent signaling pathways;
one is the c-Fos/c-Jun induction pathway mediated by src
family protein tyrosine kinases while the other is the c-Myc
induction pathway [27]. Genistein decreases expression of rat
c-Myc mRNA, which is increased by IL-2 [28]. The IL-2/IL-
2R interaction causes c-Myc overexpression and cytochrome
P450 (CYP) downregulation in cultured rat hepatocytes [29,
30].

IL-2 increase is associatedwith hepatic fibrosis in humans
[31]. IL-2 directly increased c-Myc mRNA expression in
rat hepatocytes and indirectly promoted c-Myc expression
through activation of c-Jun in T cells from chronically
infected HIV+ patients. c-Jun expression increased when
bound to the AP-1 response element of a mouse c-Myc pro-
moter. Even though IL-2 expression decreases in patientswith
chronic HBV and HCV infection, its expression increases in
those with cirrhosis (Tables 1 and 2). IL-2 promotes c-Myc
expression and a positive interaction between IL-2RA and IL-
2 (Figure 1(B)).
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Table 2

Genes Functions Expression in chronic liver diseases References

IL-1 It activates T and B cells and monocytes Up [123, 132, 135, 138]

IL-2 It is necessary for the growth, proliferation, and differentiation of
thymic-derived lymphocytes (T cells)

Up, down [133]

IL-4 It induces secretion of Ig by B cells, pleiotropic effect on T cells Up [123]

IL-6 It is an important mediator of fever and of the acute phase response and
stimulates thymocyte proliferation and fibroblast growth factor activity

Up [137, 139]

IL-8
It acts as neutrophil chemotactic factor and can induce chemotaxis in
target cells, primarily neutrophils, and also other granulocytes, causing
them to migrate toward the site of infection

Up [120, 128, 134]

IL-10 It stimulates proliferation of B cells, thymocytes, and mast cells,
stimulates IgA production by B cells, and also enhances B cell survival

Up, down [123, 124, 138]

Jun It is intronless and is mapped to 1p32-p31, a chromosomal region
involved in both translocations and deletions in human malignancies

Up [124]

NF-𝜅B Upon activation of either T or B cell receptor, it upregulates genes
involved in T cell development, maturation, and proliferation

Up [130]

TGF-𝛽 It suppresses T cell growth and differentiation Up, down [121, 139]

TNF-𝛼
It is an adipokine involved in systemic inflammation, is a member of a
group of cytokines that stimulate the acute phase reaction, and is a
mediator of immune functions in the regulation of immune cells

Up, down [140]

TGF-𝛽
NF-𝜅B

TGF-𝛽1 TGF-𝛽3

AP-1

NF-𝜅B

AP-1IL-10

NF-𝜅B

IL-8

IL-1𝛽

IL-1

Myc

Jun

IL-2

IL-1RA

AP-1
NF-𝜅B

IL-6

IL-4

p53

(A) Interaction of Myc,

(B) Interaction between IL-2,
IL-2RA, Jun, and Myc

(C) Interaction between IL-4,

(D) Interaction between IL-6,(E) Interaction between IL-8,
NF-𝜅B, and c-Myc

(F) Interaction between IL-10,

(G) Interaction between TNF-𝛼,

(H) Interaction between TGF-𝛽,TNF-𝛼

NF-𝜅B

NF-𝜅B

IL-1, and IL-1𝛽

NF-𝜅B, p53, and c-Myc

NF-𝜅B, AP-1, and c-Myc

NF-𝜅B, AP-1, and c-Myc

NF-𝜅B, AP-1, and c-Myc

NF-𝜅B, AP-1, and c-Myc

Figure 1: The interaction between Myc and mediators of inflammation. Arrow = positive regulation, Dot arrow = positive regulation with
unclear mechanisms. Arrows in beginning and end = regulation of each other positively. Bar = negative regulation. IL-2RA: interleukin 2
(IL-2) receptor alpha. (A) Interaction of Myc, IL-1, and IL-1𝛽. (B) Interaction between IL-2, IL-2RA, Jun, and Myc. (C) Interaction between
IL-4, NF-𝜅B, p53, and c-Myc. (D) Interaction between IL-6, NF-𝜅B, AP-1, and c-Myc. (E) Interaction between IL-8, NF-𝜅B, and c-Myc.
(F) Interaction between IL-10, NF-𝜅B, AP-1, and c-Myc. (G) Interaction between TNF-𝛼, NF-𝜅B, AP-1 and c-Myc. (H) Interaction between
TGF-𝛽, NF-𝜅B, and c-Myc.
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2.3. IL-4. IL-4 is a multifunctional pleiotropic cytokine
produced mainly by activated T cells and also by basophils,
mast cells, and eosinophils, in response to receptor-mediated
activation events. IL-4 plays a critical role in defining the
Th2 phenotype of lymphocytes and in regulating cell pro-
liferation, apoptosis, and the expression of numerous genes
in various cell types, including macrophages, lymphocytes,
fibroblasts, and epithelial and endothelial cells [32, 33].

Poly (ADP-ribose) polymerase (PARP)14 is an ADP ribo-
syltransferase expressed inB lymphocytes [34]. PARP14 inter-
acts with signal transducers and activators of transcription
(STAT) 6. PARP14 is required in IL-4 enhanced glycolysis in B
cells, a process central to the role of PARP14 in IL-4-induced
survival. PARP14 contributes to Myc-induced lymphoma
pathobiology [34]. Both IL-4 and IGF-I can induce an early
c-Myc response gene expression. IL-4 synergizes with IGF-
I for hematopoietic cell proliferation, likely through cross
talk between SHC/Grb2/MAPK and STAT6 pathways and
through c-Myc gene upregulation [35]. IL-4 can promote
human embryonic stem cells differentiation into “fibrogenic”
fibroblast-like cells [36]. IL-4 can increase expression of c-
Myc mRNA in tumor-associated macrophages and promote
its translocation to the nucleus [37].

Deregulated IL-4 expression leads to direct or indirect
activation of c-Myc (Figure 1(C)). Aberrant IL-4 expression is
associated with HBV and HCV infection, alcoholic hepatitis,
primary biliary cirrhosis (PBC), and chronic hepatitis in
humans [38, 39] (Tables 1 and 2). It is interesting to char-
acterize how IL-4-mediated c-Myc expression is involved in
molecular patterns of IL-4-c-Myc, IL-4-NF-𝜅B-c-Myc, or IL-
4-p53-c-Myc in CLDs.

2.4. IL-6. IL-6, both an immunomodulatory factor and an
inflammatory mediator, could stimulate cell growth and
extracellular matrix proliferation [40]. IL-6 has been iden-
tified as a central factor in liver inflammation, which leads
to liver epithelial changes. IL-6 significantly increases in
liver epithelia in response to stimulation and inflammatory
mediators, such as endotoxin and TNF-𝛼 [41].

IL-6 can enhance the translation of c-Myc in multiple
myeloma cells [42]. Moreover, IL-6 can promote c-Myc
expression and cultured vascular smooth muscle cell prolif-
eration [43]. The acute phase response is an inflammatory
process dominated by the cytokine IL-6. STAT3 activation
transduces IL-6 signaling, which induces the production of
acute phase proteins such as fibrinogen and haptoglobin.
IL-6 could enhance c-Myc protein expression in multiple
myeloma cells independent of any effect onMyc transcription
[42]. Also, IL-6 can reverse CD33 expression by upregulating
Myc and subsequently downregulating CCAAT/enhancer
binding protein (CEBPA) expression in myeloma cells [43].

Upregulation of human IL-6 protein is associated with
infantile hepatitis syndrome, cholestasis subtype, alcoholic
hepatitis, chronic hepatitis B and hepatitis C infection [29,
44, 45], cirrhosis, CCA, HCC, and experimental liver injury
(Tables 1 and 2). c-Myc expression is activated by IL-6-c-Myc
and IL-6-AP-1-c-Myc pathways while it is suppressed by the
IL-6-NF-𝜅B-c-Myc pathway (Figure 1(D)).

2.5. IL-8. IL-8 is a readily activated small molecule polypep-
tide secreted by a variety of immune cells such as monocytes-
macrophages, T lymphocytes, neutrophils, andHBV-infected
liver cells. Cholangiocytes can produce IL-6, IL-8, TGF-
𝛽, TNF-𝛼, and platelet-derived growth factor (PDGF) B
chain [46, 47]. These cytokines can lead to cellular injury
by stimulating an immune response and promoting tissue
fibrosis. Cholangiocytes are highly responsive to Toll-like
receptor (TLR) agonists [48]. Interaction of cholangiocytes
with lymphocytes, HSC, and portal fibroblasts contributes to
chronic inflammation and fibrosis in cholestatic liver disease
[49]. c-Myc expression increases in the cholestasis-associated
CCA and cholestatic liver injury [1, 2]. IL-8 is activated in
patients with CLDs [50–52].

Opisthorchis viverrini (OV) has been reported to be an
important risk factor of HCC and CCA [53]. It has been
found that the secreted/excreted products of OV can induce
IL-8 expression and secretion, which is a primary event in
opisthorchiasis and CCA pathogenesis [54]. HBV infection
can activate the immune system to induce liver cell synthesis
of a large number of TNF-𝛼 [55], which also induces liver
cells production of many IL-6 and IL-8, leading to liver
inflammation and liver cell injury [56].

Hypoxia has been implicated in the pathogenesis of a
broad range of liver diseases, especially in HCC and CCA
[1, 53]. Gene expression regulated by hypoxia inducible factor
(HIF) 𝛼 subunits is currently very interesting due to the inter-
action of HIF-1𝛼/HIF-2𝛼 and c-Myc/Max proteins. HIF-2𝛼
increases c-Myc activity by stabilizing the c-Myc:Max com-
plex, which promotes cell cycle progression.However,HIF-1𝛼
inhibits the c-Myc function and cell proliferation [57]. Since
HIF-1𝛼 binds to theMax protein, it competes with c-Myc and
inhibits c-Myc protein stability [58]. HIF-1𝛼 downregulates
IL-8 expression via attenuation of the Nrf2 transcription
factor expression and activity in human endothelial cells [59].
Moreover, inactivation ofMxi1 (forMax interactor 1) induces
IL-8 secretion activation in polycystic kidneys [60]. Nrf2 and
c-Myc attenuation downregulates IL-8 expression in hypoxia
[61].

IL-8 increase is associated with chronic hepatitis B and
hepatitis C, alcoholic hepatitis, CCA,HCC, and experimental
liver injury (Tables 1 and 2). Upregulation of human IL-8
protein in serum is also associated with human liver cirrhosis
while upregulating transgenic c-Myc protein in mouse liver
increases progression to hepatocarcinoma in mice [62, 63].
Upregulation of IL-8 is associated withMyc-IL-8 andNF-𝜅B-
Myc-IL-8 circuitry (Figure 1(E)).

2.6. IL-10. IL-10 is a negative regulator mainly secreted by
Th2 cells, activated B cells, monocytes, and macrophages.
It helps regulate immune and inflammatory responses and
tumorigenesis. IL-10 is an important anti-inflammatory
mediator essential for attenuating inflammatory responses.
For example, mice lacking IL-10 are more likely to die from
excessive inflammatory responses when exposed to bacterial
pathogens. JAK2 inhibition induced apoptosis required the
inhibition of autocrine IL-10 and c-Myc expression [64]. In
addition, Myc inactivation correlated with elevated levels
of IL-10 receptor, causing dormancy in murine two-hit B
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lymphomas [65]. Transgenic c-Myc andmTOR-activated sig-
naling increase mouse IL-10 expression in serum from mice
exhibiting anorexia-cachexia [66]. IL-10 decreases regenera-
tion of liver and inflammatory liver injury [32, 45].

The Ser/Thr protein kinase mammalian target of
rapamycin (mTOR) critically regulates cell growth,
proliferation, apoptosis, and metabolism. mTOR pathway
inhibition downregulated renal tissue p53 expression [67].
Hypoxia induced p53, especially in the IL-10 [68]. A physical
association between mTOR and the transcription factor
signal transducer and activator of transcription-1 (STAT1)
was recently identified in human cells, suggesting a similar
role for mTOR in interferon-𝛾-stimulated gene transcription.
mTOR inactivation enhanced its association with STAT1
and increased STAT1 nuclear content in PP2Ac-dependent
fashion [69] while STAT1 could also regulate IL-10 and Myc.

Upregulation of IL-10 is associated with chronicHBV and
HCV infection and HCC. IL-10 downregulation is related to
alcoholic hepatitis (Tables 1 and 2). The interaction of IL-10
and c-Myc pathways includes Myc-IL-10, NF-𝜅B-Myc-IL-10,
and AP-1-Myc-IL-10 (Figure 1(F)).

2.7. TNF-𝛼. TNF-𝛼 is an adipokine involved in systemic
inflammation and belongs to a group of cytokines that
stimulate the acute phase reaction. TNF-𝛼 regulates immune
and inflammatory responses, tissue remodeling, cell motility,
cell cycle, and apoptosis. TNF-𝛼 is one of the major inflam-
matory mediators in liver fibrosis and a major contributor
of alcoholic liver disease. TNF-𝛼 and its cognate receptors
activate the JNK (c-JunN-terminal kinase) pathway signaling
cascade. JNK has been found to promote cell survival by
regulating c-Jun and cell death by regulating c-Myc and
p53 activity. Other researches [70] also found that long
term elevated levels of TNF-𝛼 increase the tendency toward
malignant transformation inmesenchymal stem cells (MSCs)
through NF-𝜅B-mediated upregulation of the oncogenes c-
Myc and c-Fos. Dysregulation of TNF-𝛼 production has been
implicated in a variety of human diseases such as CLDs.

TNF-𝛼 regulates c-Myc expression in a cell-type spe-
cific manner. TNF-𝛼 treatment could markedly induce the
expression of gene c-Myc and cyclin D1 in cancer cells
[71]. TNF-resistant cells could overexpress c-Myc in C3H
mouse embryo fibroblasts [72]. TNF-𝛼 has been shown to
downregulate the expression of c-Myc in HL60 cells [73].

2.8. TGF-𝛽. TGF-𝛽 is a pleiotropic cytokine with key roles
in development, immunity, wound healing, and carcino-
genesis [74]. Hepatic macrophages can produce TGF-𝛽,
which promotes myofibroblast fibrogenesis. TGF-𝛽 not only
mediates its profibrotic actions by stimulating hepatic stellate
cells (HSCs) through Smad-dependent pathways, but also
represses HSC proliferation. HSCs also produce TGF-𝛽 to a
lesser degree. TGF-𝛽 upregulation occurred in chronic HBV
andHCV infection, alcoholic hepatitis, PBC, HCC, and CCA
(Tables 1 and 2).

TGF-𝛽 could induce Myc expression by stimulating
Smad3 [75]. It has been found that Helicobacter infection
led to increased production of TNF-𝛼 in colonic tissue from

Smad3−/− mice [76]. As mentioned above, Myc interacts
with E2F1, which could be induced by Kruppel-like factor
6 (KLF6). Moreover, KLF6 could stimulate TGF-𝛽1. The c-
Myc expression in fibroblasts is initially repressed by TGF-𝛽,
but subsequent cyclin D1/cyclin-dependent kinase 4 (CDK4)
goes through a complete functional change to stimulate c-
Myc. TGF-𝛽 inhibits cell growth by downregulating c-Myc
via the Smad2 phosphorylation at the C-terminal regions
(pSmad2C and pSmad3C) pathways [77].

3. Key Players Link c-Myc and
Mediators of Inflammation

3.1. NF-𝜅B. NF-𝜅B appears to play a major role in the
network regulation of inflammatory genes and Myc. NF-
𝜅B is composed of c-Rel, RelA(p65), RelB, NF-𝜅B1(p50),
and NF-𝜅B2(p52). The five subunits share a conserved N-
terminal domain that mediates DNA binding, dimerization,
and nuclear import. It also has been found that murine c-
Myc is a direct transcriptional target of Rel/NF-𝜅B, which
upregulates c-Myc. B cells lacking p50 and c-Rel fail to
increase in size upon mitogenic stimulation due to reduced
induction in c-Myc expression. NF-𝜅B activation pathways
have type 1 (p50-dependent) and type 2 (p52-dependent)
pathways. While LPS and B cell activation factor (BAFF)
mainly activate the type 1 or type 2 pathways, respectively,
CD40 ligand (CD40L) strongly activates both [78]. c-Myc
was induced in anti-CD40 and LPS treatment group. NF-
𝜅B knockout in mice and c-Rel knockout in mice decrease
expression of mouse c-Myc mRNA in primary B lympho-
cytes. NF-𝜅B increases regulation of the c-Myc promoter
upstream regulatory element [79].

Peroxisome proliferator-activated receptor gamma
(PPAR𝛾) expression is involved inmacrophage inflammatory
responses, T cell proliferation, cytokine production, and B
cell proliferation as well as immune regulation. PPAR-gamma
can inhibit HSC proliferation, hepatic fibrosis [80], and HCC
metastases in vitro and in mice [81]. Liver-specific PPAR𝛾
deficiency improves fatty liver in ob/ob mice [82]. PPAR-𝜅
may be an important molecule in mediating NF-𝜅B and Myc
expression. PPAR𝛾 agonists activated NF-𝜅B (p50, Rel A, and
c-Rel) binding to the upstream NF-𝜅B regulatory element
site of c-Myc [83]. PPAR𝛾 agonists increased binding of a
DNA fragment containing an upstream NF-𝜅B regulatory
element from c-Myc gene and mouse p50 protein [84].

P65 can mediate c-Myc expression. Using the inducible
c-MycER system and c-Myc null fibroblasts found c-Myc
expression significantly inhibited p65-mediated transactiva-
tion [85]. c-Myc expression inhibited NF-𝜅B activation by
interfering with p65 transactivation. They also found c-Myc
expression could not inhibit the transactivation potential of
p65.Their studies suggest that c-Myc attenuated NF-𝜅B tran-
scription by impairing p65 transactivation and subsequently
sensitized cells to TNF-mediated apoptosis. Furthermore, c-
Myc protein decreases transcriptional activator activation of
human p65 increased by TNF protein. P65 and p50 can
transactivate the c-Myc promoter [86]. Blocking p65 protein
synthesis with specific antisense oligonucleotides greatly
reduced carcinoma cell growth rate [87]. The inhibitory
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effect seems to be mediated by the suppression of c-Myc
gene expression, since treatment with antisense oligonu-
cleotides for p65 gene interfered negatively with c-Myc gene
expression. p65 antisense decreases human c-Myc mRNA
expression. NF-𝜅B/Rel transcription factors could regulate
many genes including the c-Myc oncogene [87]. There is a
relationship between the p65 and aryl hydrocarbon receptor
(AhR) [88]. AhRandRelA increase c-Myc protein expression.
This relationship activates c-Myc gene transcription in breast
cancer cells. In transient cotransfection, p65 and AhR gene
products demonstrated cooperation in transactivating the c-
Myc promoter, which was dependent on the NF-𝜅B elements,
and in inducing endogenous c-Myc protein levels. Thus, p65
participated in the expression of c-Myc gene.

It has been reported that transgenic c-Myc in mouse
liver increases formation to hepatocarcinoma in mice [63,
89]. Mutant human c-Met and c-Myc also increase mouse
hepatocarcinoma formation [90]. c-Myc gene knockout
decreases size of hepatocytes [91] and decreases ploidy of
hepatocytes inmouse liver [92]. p50/p105 knockout decreases
hepatocytes proliferation in livers from mice treated with
diethylnitrosamine [93]. In 129S1/Svmouse, NF-𝜅B knockout
increases liver inflammation in mice [94]. p50 knockout
increases liver injury in mice, which involve T. congolense-
variant antigen type 13 [95]. Thus, it has been discovered that
both c-Myc and v-Myc can induce a truncated form of the
p65, RelA(p37) [96]. More and more data demonstrate that
transcriptional repression of NF-𝜅B can be mediated by c-
Myc under certain physiological circumstances [97, 98].

3.2. AP-1. c-Myc gene overexpression is implicated in HCC
in the hepadnavirus-infected woodchucks [99], ground
squirrels [100], cholestasis-accelerated CCA [1], and LCA-
mediated liver injury [101]. In chronic diseases, c-Myc overex-
pression may significantly predispose the liver to hepatocar-
cinogenesis [102]. In general, c-Myc promotes a cell survival
unless exposed to environmental stress such as enforced c-
Myc overexpression.

c-Fos, which heterodimerizes with c-Jun, leads to a more
stable AP-1 complex that increases the capacity of c-Jun to
transactivate target genes. c-Myc expression requires phos-
phorylation and nuclear translocation of extracellular signal-
regulated kinase (ERK), which produces c-Fos phosphoryla-
tion and forms a specific AP-1 [103]. c-Fos downregulation
in dysplastic liver nodules is associated with the initiation
stage of liver cancer in humans [104]. Deletion analysis of the
promoter region of the c-Fos gene indicated that the ATF2
responsive element conferred the Myc-induced expression of
c-Fos [105]. Coexpression of the dominant-negative mutants
of c-Fos, p38, and Rac1 blocked the Myc-mediated apoptosis
[105]. Moreover, hepatitis B virus X protein (HBx) helps
downregulate human c-Fos protein increased by mouse c-
Myc protein. Thus, c-Fos could be a mediator of c-Myc-
induced apoptosis.

The c-Jun NH2-terminal kinase (JNK) and c-Jun in
the liver play an important role in growth regulation via
the JNK pathway. Both c-Jun-deficient mice [106, 107] and
JNK1-deficient mice [108] exhibit major defects in liver
regeneration following partial hepatectomy. Furthermore,

both c-Jun-deficient mice and JNK1-deficient mice were pro-
tected against the development of HCC following exposure
to the carcinogen diethylnitrosamine (DEN) [108, 109]. Even
though the mechanism of JNK and c-Jun signaling in the
liver that contributes to regeneration and HCC is unclear,
downregulation of the proliferation inhibitor p21CIP1 and
upregulation of c-Myc appear to be critical factors [107, 108].

4. Summary

IL-1 receptor antagonist is considered an independentmarker
of nonalcoholic steatohepatitis in humans [110]. Since IL-
1𝛽 levels increase in patients with alcoholic liver disease
(ALD), further studies should focus on defining regulatory
mechanisms in which IL-1, IL-1𝛽, and c-Myc on various cell
types affect multiple cellular responses in ALD.

Elevated circulating soluble IL-2 receptors in patients
with chronic liver diseases are associated with nonclassical
monocytes [111]. This may not only improve our under-
standing of how IL-2 regulates c-Myc expression, but also
allow us to focus therapeutic efforts on this downstream
transcriptional master-c-Myc in the monocytes.

Drug-induced liver injury (DILI) can lead to significant
patient morbidity andmortality [112]. IL-4 plays a prominent
role in mediating toxicity. Hepatocyte culture DILI model
will improve our understanding of how IL-4 regulates c-Myc
expression and help to find therapeutic targets.

IL-8 levels increase in CLDs, especially in patients in
end-stage cirrhosis and patients with cholestatic diseases.
Intrahepatic IL-8 upregulation could be associated with neu-
trophil infiltration in patients with PBC [53]. Increased IL-8
levelswere associatedwith hepaticmacrophage accumulation
in noncholestatic cirrhosis. Monocyte-derived macrophages
from CLD patients, especially the nonclassical CD16+ sub-
type, displayed enhanced IL-8 secretion in vitro. Interestingly,
IL-8 correlated with liver function, inflammatory cytokines,
and noninvasive fibrosis markers [53]. c-Myc regulation
represents a novel anti-IL-8 therapy for use in inflammatory
liver disease.

IL-10 may play a dual role in controlling liver injury via
proinflammatory cytokine TNF-𝛼 inhibition and ethanol-
induced steatosis, leading to potentiating alcoholic liver
injury and ameliorating alcoholic liver injury, or via the
inhibition of the hepatoprotective cytokine IL-6 [113]. In
fact, c-Myc may play an important role in regulating liver
injury (Figure 1(F)). Adjusting c-Myc expressionmay provide
a novel anti-IL-10 therapy for use in alcoholic liver injury.

Alcoholic hepatitis, chronic hepatitis B and hepatitis
C, cirrhosis, CCA, HCC, and experimental injury of liver
can increase TNF-𝛼 expression (Tables 1 and 2). On one
hand, c-Myc promotes TNF-𝛼 expression, and on the other
hand, TNF-𝛼-NF-𝜅B-Myc-TNF-𝛼 and TNF-𝛼-AP-1-Myc-
TNF-𝛼 pathways activate TNF-𝛼 (Figure 1(G)). However,
anti-TNF-𝛼 agents potentially cause DILI [114].

TGF-𝛽 is a key regulator in CLDs, contributing to all
stages of disease progression from initial liver injury through
inflammation and fibrosis to cirrhosis and HCC [115]. TGF-
𝛽 interacts with multiple important pathways, such as NF-
𝜅B, AP1, and c-Myc (Figure 1(F)). Since TGF-𝛽 expression is
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dominant in livermacrophages and low inHSCs, target TGF-
𝛽 signaling should focus on the right cell type at the right time
during CLD development.

The NF-𝜅B signaling pathway is particularly relevant
to hepatitis (liver infection by Helicobacter, viral hepatitis
induced by HBV and HCV), liver fibrosis, cirrhosis, and
HCC. The NF-𝜅B-c-Myc signaling pathway is a potential
target to develop hepatoprotective agents. Although sev-
eral types of drugs including IKK inhibitors, antioxidants,
selective estrogen receptor modulators (SERMs), protea-
some inhibitors, and nucleic acid-based decoys have been
demonstrated to interfere with NF-𝜅B activity at different
levels, some of the drugs also influence c-Myc activity. The
hepatoprotective agents for targeting NF-𝜅B-c-Myc molec-
ular patterns need to be taken into consideration during
development of new therapeutic regimens.

AP-1 plays an important role in the development of
HCC [116]. AP-1 is involved in dietary obesity, hepatic lipid
metabolism, and NAFLD [117, 118]. A selective AP-1 inhibitor
T-5224 [119] has been investigated in phase II human clinical
trials. Nevertheless, no effective AP-1 inhibitors have yet been
approved for clinical use, especially in treating liver diseases.
Identifying selective and efficacious AP-1 inhibitors serves as
a viable therapeutic strategy for liver diseases.

Aberrant expression of IL-17, IL-20, IL-22, and IL-33 is
found in chronic liver disease, but the interaction between
the inflammatory mediators and c-Myc must accumulate.
Our review will help to understand the links between hepatic
inflammation mediators and c-Myc in CLDs.
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