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somiasis for the entire population. To this end, we reviewed available data on schistoso-
miasis in Zimbabwe from a literature search covering the 1980-2022 period considering
the potential impact of 26 environmental and socioeconomic variables obtained from
public sources. We studied the population requiring praziquantel with regard to whether
or not mass drug administration (MDA) had been regularly applied. Three machine-
Machine-learning learning algorithms were tested for their ability to predict the prevalence of schistoso-
Transmission risk model miasis in Zimbabwe based on the mean absolute error (MAE), the root mean squared error
Schistosomiasis (RMSE) and the coefficient of determination (R?). The findings revealed different roles of
Zimbabwe the 26 factors with respect to transmission and there were particular variations between
Schistosoma haematobium and S. mansoni infections. We found that the top-five correlation
factors, such as the past (rather than current) time, unsettled MDA implementation,
constrained economy, high rainfall during the warmest season, and high annual precipi-
tation were closely associated with higher S. haematobium prevalence, while lower
elevation, high rainfall during the warmest season, steeper slope, past (rather than cur-
rent) time, and higher minimum temperature in the coldest month were rather related to
higher S. mansoni prevalence. The random forest (RF) algorithm was considered as the
formal best model construction method, with MAE = 0.108; RMSE = 0.143; and R? = 0517
for S. haematobium, and with the corresponding figures for S. mansoni being
0.053; 0.082; and 0.458. Based on this optimal model, the current total schistosomiasis
prevalence in Zimbabwe under MDA implementation was 19.8%, with that of S. haema-
tobium at 13.8% and that of S. mansoni at 7.1%, requiring annual MDA based on a population
of 3,003,928. Without MDA, the current total schistosomiasis prevalence would be 23.2%,
that of S. haematobium 17.1% and that of S. mansoni prevalence at 7.4%, requiring annual
MDA based on a population of 3,521,466. The study reveals that MDA alone is insufficient
for schistosomiasis elimination, especially that due to S. mansoni. This study predicts a
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moderate prevalence of schistosomiasis in Zimbabwe, with its elimination requiring
comprehensive control measures beyond the currently used strategies, including health
education, snail control, population surveillance and environmental management.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Schistosomiasis is basically a chronic disease caused by schistosome parasite infections that were first discovered in Egypt
by Theodore Bilharz in 1851 (Hagan, 2009). World Health Organization (WHO) classifies it as one of the neglected tropical
diseases (NTD) (Utzinger et al., 2009). Depending on parasite species and site of infection, schistosomiasis appears as one of
two types: intestinal or urinary schistosomiasis, with the former caused by infection either by Schistosoma mansoni, S
japonicum, S. mekongi or S. intercalatum, whereas urinary schistosomiasis is only caused by S. haematobium (World Health
Organization., 2023). The clinical signs of the former are abdominal pain, diarrhoea and bloody stools that if not treated
eventually lead to hepatosplenomegaly and ascites by ongoing re-infections if not treated. The typical symptom of urinary
schistosomiasis is haematuria, with serious complications in the long run, including kidney failure, bladder cancer and/or
prostate cancer (Choto et al., 2020). Women infected with urinary schistosomiasis also are at increased risk of human im-
munodeficiency virus (HIV) infection (Bustinduy et al., 2014). In children, schistosomiasis can cause anaemia, stunted growth,
and even death (Ekpo et al., 2012). WHO, in its second NTD Global Roadmap for 2021-2030 (World Health Organization.,
2021), specifies elimination of schistosomiasis as one of its targets.

The life cycle of this parasite includes an intermediate freshwater snail host and transmission from snail to human that
occurs when individuals encounter water contaminated with Schistosoma cercariae, the infective stage of schistosoma
released from the intermediate snail host. This transmission mechanism may seem straightforward but is in fact complex as
snail presence and level of infections are strongly influenced by the climate and other environmental factors (Hu et al., 2017;
Yang & Bergquist, 2018; Zhou et al., 2008) as well as socioeconomic factors (Gong et al., 2021; Liu et al., 2023; Mutsaka-
Makuvaza et al., 2018). Schistosomiasis is the second most prevalent parasitic disease in Africa after malaria (Isaiah et al.,
2023). Approximately 250 million people worldwide required preventive treatment for schistosomiasis in 2021, but only
75.3 million actually received it, more than 90% of all patients in need of preventive chemotherapy live in Africa (World Health
Organization., 2023).

Even if sporadic reports on S. intercalatum in Zimbabwe have been published (Kolodziej et al., 2023), S. haematobium and S.
mansoni are in principle the only two species found there. The disease is of major public health concern (Chimbari, 2012) and
two national surveys have been conducted in 1981 and 2012, respectively. The first one targeted school-aged children (8—10
years old), whose infection rates for S. haematobium ranged from 0% to 97%, with a mean of 41%, while for S. mansoni they
ranged from 0% to 81%, with a mean of 8% (Taylor & Makura, 1985). The second survey targeted older school-aged children
(10—15 years old) and reported infection rates for S. haematobium ranging from 0% to 76%, with a mean of 18%, while for S.
mansoni they ranged from 0% to 64%, with a mean of 7.2% resulting in an overall schistosomiasis infection rate of 22.7% (Midzi
et al,, 2014). Since then, Zimbabwe has implemented a national schistosomiasis control programme, mainly involving a plan
of six years of mass drug administration (MDA) once annually, by praziquantel as preventive treatment for children aged 6—15
years. Treatment is school-based, which means that only the youngest pupils received all six rounds of MDA, with the older
ones dropping out of the scheme when leaving school after becoming 15 years old. After the six rounds of MDA, the prev-
alence of schistosomiasis among school-aged children in the project areas decreased to <1% (Mduluza et al., 2020). Although
these data provide evidence of the distribution of schistosomiasis in Zimbabwe, the surveys and the treatment strategy
mainly targeted school-aged children, so they do not reflect the disease burden in the entire population.

Identifying high-risk areas in the entire population and accurately predicting disease risk would allow precision in-
terventions, including targeted or prompted treatment, improvements in snail control, quality monitoring activities of water,
sanitation and hygiene (WASH) (Bartlett et al., 2022). Praziquantel was recommended by WHO to be the essential medicine
for the treatment of schistosomiasis. Praziquantel is effective on adult schistosomas but less susceptible to juvenile worms
(Agniwo et al., 2023; Diop et al., 2023). In addition, global donations of praziquantel to Africa are limited, so we need to better
identify areas at risk and use preventive medicines more effectively. In many cases, this can be done by automatically ana-
lysing data to discover patterns and using these patterns to make predictions. The advantage with an approach based on both
available and unseen data is that predictions can be made without necessarily having to engage in enlarged sampling.
Machine-learning (ML) technology (Keshavamurthy et al., 2022; Mooney & Pejaver, 2018; Rampogu, 2023; Vilne et al., 2019)
is a most useful way in this context. It involves designing and analysing algorithms that enable computers to learn auto-
matically. Unlike statistical methods, in which variable relationships are explicitly defined, ML models can achieve accurate
predictions more rapidly and have therefore become popular with regard to infectious diseases (Bergquist et al., 2024; Lu et al,
2022; Rampogu, 2023). This approach has been used to identify high-risk areas for S. japonicum transmission (Gong et al.,
2021) and the parasite’s intermediate host in China Oncomelania hupensis (Liu et al., 2023; Zheng et al., 2021).
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The previous national surveys in Zimbabwe primarily focused on schistosomiasis among school-aged children, over-
looking those of middle age and the elderly. In an effort to cover the entire country, we collected all available epidemiological
data on the disease in Zimbabwe over the past 40 years. We also collected the corresponding environmental and socio-
economic indicators, and used this information to construct a model for transmission risk predicting the current epidemic
risk under two different MDA implementation scenarios. We aimed to explore the distribution of both S. haematobium and S.
mansoni to assess the disease burden and the needed, required treatment for the country as a whole.

2. Methods
2.1. Study area

This study focused on distribution of S. haematobium and S. mansoni covering whole country of Zimbabwe, a landlocked
country in southern Africa. A digital map of Zimbabwe was downloaded from the Database of Global Administrative Areas
(GADM, https://gadm.org) and used for orientation.

2.2. Data collection

2.2.1. Epidemiological data

Schistosomiasis data with human infection rates were collected through literature searches, personal information and
from the Zimbabwe Public Health website (http://www.mohcc.gov.zw/). We conducted literature searches from four data-
bases (PubMed, Web of Science, ScienceDirect, and African Journals Online) that were searched using the following keywords:
‘Schistosoma mansoni’, ‘Schistosoma haematobium’, ‘schisto*’, ‘schistosomiasis’, ‘Schistosoma’, together with ‘Zimbabwe’.

This study applied stringent inclusion criteria. References were only included if they featured epidemiological surveys
conducted in Zimbabwe providing data on S. mansoni or S. haematobium infections within the population. Additionally, data
extraction for all surveyed individuals including overall prevalence was required. Only references published in English were
included. The earliest publication included was from 1 January 1980 and the final search was conducted on 17 April 2023.
Articles lacking detailed survey site information, offering only national- or provincial-level data, were excluded and so were
those not distinguishing between schistosome species.

Endnote X8 software was used to organize the references. After removing duplicate references, titles and abstracts were
reviewed excluding irrelevant literature, with full texts read when in doubt. The following information was extracted from the
selected references: literature identification, survey location, sex and age of study subjects, survey period, survey methods,
schistosome species, detection methods, total number of tested individuals, number of infected individuals, infection rate and
information on preventive chemotherapy for the population. Missing latitude and longitude information was geolocated
using Google Maps. Excel software was used to record the data.

2.2.2. Environmental and socioeconomic data

The environmental and socioeconomic variables involved in the transmission of schistosomiasis and its intermediate host
snails are listed in Table 1. They were all obtained from several public databases offering remotely sensed data (see bottom
part of Table 1). The R software (version 4.2.1, R Foundation for Statistical Computing, Vienna, Austria) was used to collect and
extract all environmental and socioeconomic raster data corresponding to the survey points and then resample and crop
them into the same spatial areas. All data were resampled and cropped to the spatial resolution of 5 x 5 km.

The 19 global bioclimatic variables (Hijmans et al., 2005; Fick and Hijmans, 2017) were obtained from the Global Climate
Database (http://www.worldclim.com). Elevation and slope were obtained from the Shuttle Radar Topography Mission
Digital Elevation Model (SRTM) by the U. S. National Aeronautics and Space Administration (NASA). Water body data came
from the global water body dataset that also originated from STRM and then the nearest water distance was calculated from
each grid cell to the nearest water body in the rasterised representation by using the ‘distance’ function in the ‘raster’ package
in R software. The normalized difference vegetation index (NDVI) was obtained from the Moderate Resolution Imaging
Spectroradiometer (MODIS) onboard the Terra Satellite managed by NASA.

Population data were sourced from WorldPop (http://www.worldpop.org.uk/), while information on the gross domestic
product (GDP) and the Human influence index (HII), a global 1-km? dataset created from different datasets related to pop-
ulation pressure, such as land use, land cover and general infrastructure data, were obtained from NASA's Socioeconomic Data
and Applications Center (SEDAC) (https://sedac.ciesin.columbia.edu/).

In addition, we included three categorical variables, the time, divided into three periods: 1980—1990, 1991-2010 and
2011—-2022; age group of the study subjects (<6 years old =1, 6—15 years =2 and >15 years=3) and information whether or
not MDA had been carried out. MDA was assigned values of 0 or 1, where the former represented its absence and 1 that it had
been executed.
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Table 1
Variables used in the study of schistosomiasis distribution in Zimbabwe.
Type of factor Variable Period Spatial resolution Source Link
Climate Bio1-19 1970—2000 1km Worldclim http://www.worldclim.org/
Environment Elevation 2020 5km Worldclim
Distance to water body 2009 5km GRG* vector data http://gis.ess.washington.edu/data/vector/
NDVI® 2000—2020 5km NASA® https://srtm.csi.cgiar.org/
Slope 2020 1km NASA® https://srtm.csi.cgiar.org/
Socio-economy Population density 2000—-2022 1km WorldPop http://www.worldpop.org.uk/
IGDP 1990, 2025 25 km SEDAC® https://sedac.ciesin.columbia.edu/
HII 1995—-2004 1km SEDAC® https://sedac.ciesin.columbia.edu/
2 Geomorphological Research Group.
> Normalized difference vegetation index.
¢ U.S. national aeronautics and space administration.
4 Gross domestic product (million USD).
€ Socioeconomic data and applications centre.
f

Human influence index.

2.3. ML model construction

2.3.1. Variable selection and correlation

This study employed ML to construct risk models built on transmission data. First, we examined the relationships among
the continuous variables. Spearman's correlation was used to calculate the strength of this relationship, which ranged from
—1 to 1. Values > 0 indicated positive correlations, whereas values < 0 indicated negative correlations. Based on the results,
variables with correlation coefficients >0.9 were considered to have strong multicollinearity and were therefore removed,
except that the variable with the highest correlation within this group, i.e. the coefficient with the dependent variable, was
selected and included in the model. Combining the remaining, continuous variables with the three categorical variables: time
period, age and MDA (whether it had been done or not) provided information for the model fitting. The ‘corrplot’ package in
the R platform was used to visualize the correlation matrix.

2.3.2. Model evaluation

ML provides various fitting models based on the research objectives and data type. This study used the ‘caret’ package of
the R software to find the best model and performance evaluation. All data were divided into training and testing sets at a 8:2
ratio. The training set data was used to train different models, including random forest (RF), gradient boosting machine (GBM)
and eXtreme Gradient Boosting (XGB). Corresponding models were constructed using these algorithms. The testing dataset
was used to evaluate the optimal performance of each model. For different models, hyperparameters in the training set were
determined using grid search. The performance of each hyperparameter combination was assessed through 10-fold cross-
validation to identify the combination that yielded the best performance. The details and hyperparameters of each ML
model used, both for S. haematobium and S.mansoni, are shown in Appendix 1. Three evaluation metrics (mean absolute error
(MAE), root mean squared error (RMSE), and the coefficient of determination (R?) as used by Huang's team (Huang et al.,
2020) were applied to assess the model's optimal performance on using the testing set. The first two reflect the predictive
performance error of the model. Lower values of these two parameters indicate a better model performance. R? represents
the fitness of actual and predicted data with a range of 0—1; the closer to 1, the better the prediction.

2.4. Model prediction and risk analysis

The optimal ML model was selected to calculate the transmission risk for both schistosome species throughout Zimbabwe
for the period 2011-2022. The variables for prediction were those from the model fitting: on the one hand the selected
continuous variables related to climate, demography and socio-economy, and the other one the three categorical ones, i.e.
period of investigation, age group and whether or not MDA had been done. To improve the stability of the models and to
compute 95% confidence intervals (CI) for estimates, 100 fitting repetitions were performed using resampled the training set
and testing set, with the average of which considered the final mean.

Prediction of the risk for S. mansoni or S. haematobium in Zimbabwe for the latest period was hypothesized for the two
different MDA scenarios and for three different age groups. The overall infection rate for the entire population was adjusted
based on the population distribution of Zimbabwe in 2022 when the proportions of Zimbabwe's population aged <5 years,
5—14 years and >14 years were 14%, 26% and 60%, respectively (PopulationPyramid.net ., 2023). The mixed infection rate of S.
haematobium and S. mansoni was calculated using the formula presented as follows (Kokaliaris et al., 2022; Lai et al., 2015):

prevalencemixed = prevalences mansoni + prevalences haematobium - Prevalences mansoni X prevalences haematobium
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Where "mixed" refers to geographical areas where the two species of schistosomes are co-endemic. This means that the
populations in these areas are exposed to both S. mansoni and S. haematobium, which could potentially lead to individuals
being infected with both species simultaneously.

The regional- or provincial-level average infection rates for the period of 2011—2022 and their 95% CI were extracted from
the predicted maps. Based on Zimbabwe's population at national and provincial level in 2022, the required amounts of
praziquantel was estimated at the national and regional levels based on WHO's global guidelines (2022) for schistosomiasis
elimination and control (World Health Organization., 2020). The burden of schistosomiasis was assessed by estimating the
number of years lived with non-fatal disability (YLD), which was calculated as follows:

YLD = number of population x incidence x average duration x disability weight = number of population x prevalence x
disability weight

The overall disability weight (Qian et al., 2011) were calculated by the probability and related sequelae caused by S.
haematobium and S. mansoni infections. The probability (Van der Werf et al., 2003) and disability weight of each sequela for
schistosomiasis were obtained from the Global Burden of Diseases (GBD) database (Global Burden of Disease Collaborative
Network., 2020 ).

3. Results
3.1. Reference review and data extraction

A total of 1,893 references were collected for this study. Among these, 148 were retrieved from PubMed, 65 from Web of
Science, 1,465 from ScienceDirect and 208 from African Journals Online. In addition, articles of particular relevance were
included, one of which was the second national survey report on schistosomiasis in Zimbabwe. After removing 61 duplicate
articles, 1,832 unique articles were obtained, from which 1,622 were excluded for not being relevant to the study. After
thoroughly reading the full texts of the remaining 210 articles, a total of 52 met the inclusion criteria. They included data from
155 survey points for S. haematobium infection distributed across ten provinces and 56 districts in Zimbabwe, and data from
110 survey points for S. mansoni infection covering ten provinces and 55 districts. The spatial distribution of the survey points
is shown in Fig. 1. The characteristics of the data extracted from the references regarding S. haematobium and S. mansoni
infections in Zimbabwe are presented in Appendix 2, organized by the selected period of year, age groups, diagnostic
methods, and MDA. The total number of individuals tested for S. haematobium infections was 40,896, with an average
infection rate of 28.8% (standard deviation (SD) = 20.84%), and 26,304 for S. mansoni infection, with an average infection rate
of 10.5% (SD = 10.01%). Urine filtration was the most commonly employed diagnostic method for S. haematobium infections,
representing 92.3% (142/155) of all surveys. The Kato-Katz method was the predominant diagnostic method for S. mansoni
infections, utilized in 96.4% (106/110) of the surveys.

Survey points

16°S 4
Type
17°S yp
e S. haematobium
A S. mansoni
18°S 4
[0}
S Prevalence
= 19°S 4
= 0.6
20°S+ 0.4
0.2
21°S
0.0
22°S 4

26°F 28°E 30°E 32°F
Longitude

Fig. 1. Observed prevalence of S. haematobium and S. mansoni in Zimbabwe.

1085



H.-M. Li, ].-X. Zheng, N. Midzi et al.

Table 2

Selected variables in the final model.

Infectious Disease Modelling 9 (2024) 1081—1094

Type of factor Variable Schistosoma haematobium? Schistosoma mansoni®

Time period 1980—1990 14.19% (8.70%—19.69%) 13.64 %(7.22%—20.05%)
1991-2010 21.94 %(15.42%—28.45%) 14.55% (7.96%—21.13%)
2011-2022 63.87% (56.31%—71.43%) 71.82% (63.41%—80.23%)

Age group <6 years 15.48% (9.79%—21.18%) 3.64% (0.14%—7.13%)
6—15 years 60.65% (52.95%—68.34%) 74.55% (66.41%—82.69%)
>15 years 23.87% (17.16%—30.58%) 21.82% (14.1%—29.54%)

MDA situation No (0) 87.10 %(81.82%—92.37%) 94.55% (90.3%—98.79%)
Yes (1) 12.90% (7.63%—18.18%) 5.45 %(1.21%—9.70%)

Bio2 Mean diurnal range 13.38 (12.88—13.82) /

Bio3 Isothermality 58.04 (57.40—-58.95) 58.15 (57.39—-58.87)

Bio4 Temperature seasonality 311.30 (286.80—327.30) 312.20 (288.70—328.80)

Bio5 Maximum temperature of the warmest month 29.70 (28.50—30.70) /

Bio6 Minimum temperature of the coldest month 6.50 (6.10—7.10) 6.50 (6.10—7.08)

Bio7 Annual temperature range 23.10 (22.05—23.70) 22.95 (22.23—23.88)

Bio8 Mean temperature of the wettest quarter / 22.27 (21.05—-23.10)

Bio12 Annual precipitation 779.00 (657.00—851.00) /

Bio13 Precipitation of the wettest month / 178.00 (138.00—208.00)

Biol5 Precipitation seasonality 110.79 (102.20—117.46) 106.93 (+9.48)

Biol7 Precipitation of the driest quarter 5.00 (3.00—10.50) 6.50 (3.00—11.00)

Bio18 Precipitation of the warmest quarter 308.00 (268.00—372.00) 312.00 (261.20—358.50)

Slope Grade of land tilt 1.82(1.18—-2.93) 1.71(1.04—2.99)

Elevation Altitude 1124.00 (947.00—1320.00) 1136.00 (929.20—1347.00)

NDVI Normalized difference vegetation index 0.11 (+0.38) 0.09 (+0.38)

HII Human influence index 22.00 (16.00—26.00) 22.00 (14.00—29.00)

Water distance Distance to closest water body
Population density Number of persons/km?
GDP Gross domestic product

17153.00 (11201.00—25259.00)
41.03 (24.79—143.60)
3.50 (2.00—5.00)

16597.00 (11143.00—24406.00)
34.05 (18.54—167.69)
3.25 (1.00—5.00)

¢ The characteristics of categorical variables are represented by frequency and 95% CI. The characteristics of continuous variables conforming to normal
distribution are described by mean (+ standard deviation), while those not conforming to normal distribution are described by median (upper quartile -
lower quartile).

3.2. Variable correlation and contribution

A total of 29 variables were used to construct the transmission model. Finally, 20 variables were selected in the S. hae-
matobium ML model and 19 variables for the S. mansoni model (Table 2).

Fig. 2 shows the correlation matrix for the relationship between the variables in S. haematobium and S. mansoni. Nine
factors, i.e. year period, age group, MDA distribution, economy, population density, HII, temperature, location, and precipi-
tation, were correlated with infection rates of S. haematobium and S. mansoni, respectively.

3.2.1. Variables associated with S. haematobium infection rates

Five variables showed particularly high associations with either high or low infection rates of S. haematobium, i.e. year
period, living in an area with MDA implementation (MDA=1), precipitation of the warmest quarter(Bio18), economical sit-
uation and annual precipitation.

The following variables were found to be associated with lower S. haematobium infection rates, i.e. the most recent period
of years (2011-2022), having experienced MDA (MDA=1), being socio-economically well off, and normally experiencing high
temperature (high Bio5, Bio2 and Bio7). Conversely, with respect to higher S. haematobium infection rates, we found high
rainfall (Bio18, Bio12 and Bio17), and relatively steep slopes correlate positively with higher number of S. haematobium
infections.

3.2.2. Variables associated with S. mansoni infection rates

The following variables were found to correlate positively with higher S. mansoni infection rates, i.e. precipitation of the
warmest quarter (Bio18), slope, minimum temperature of the coldest month (Bio6), precipitation of the driest quarter (Bio17),
isothermality (Bio3), mean temperature of the wettest quarter (Bio8), precipitation of the wettest month (Bio13), age, and
NDVI. By contrast, factors were found to correlate negatively with higher rates of S. mansoni infections, i.e. elevation, year
period (2011-2022), HII, population density, and economic conditions. Among these variables, five variables including
elevation, Bio18, slope, year period and Bio6 had the strongest correlations.

3.3. ML and model construction
The results of Table 3 indicated that the XGB models had lower MAE and RMSE and higher R? values than the GBM and RF
models for S. haematobium in the training dataset, but the RF model showed the best performance with regard to the testing

dataset. With regard to the optimal risk model for S. mansoni, it should be said that the RF and XGB models showed high
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Fig. 2. Correlation matrix of the relationship between variables in S. haematobium and S. mansoni

A=S. haematobium, B=S. mansoni; Spearman's correlation among various variables in relation to the prevalence of S. haematobium and S. mansoni. The variables
considered include climatic factors (Bio2, Bio3, Bio4, Bio5, Bio6, Bio7, Bio8, Bio12, Bio13, Bio15, Bio17, Bio18), environmental factors (Slope, Elevation, Water_-
distance, NDVI), and socio-economic factors (Age_type, MDA_type, Year_type, HII, Population, GDP). Positive correlations represented in blue and negative
correlations in orange.

Table 3
Evaluation of three machine-learning regression models.
Data Model S. haematobium S. mansoni
No. of survey points MAE RMSE R? No. of survey points MAE RMSE R?
Training set RF 124 0.047 0.063 0.937 89 0.034 0.049 0.822
GBM 0.052 0.067 0.900 0.042 0.063 0.629
XGB 0.027 0.040 0.964 0.038 0.053 0.749
Testing set RF 31 0.108 0.143 0.517 21 0.053 0.082 0.458
GBM 0.106 0.148 0.487 0.063 0.089 0.269
XGB 0.104 0.145 0.505 0.058 0.088 0.282

RF = random forest; GBM = gradient boosting machine; XGB = eXtreme Gradient Boosting; MAE = mean absolute error; RMSE = root mean squared error;
R2=determination coefficient.

consistency in the actual and predicted values in the training set, but the RF model again showed the best performance with
regard to the testing dataset. Based on the models’ performance, the RF model was the most optimal both for S. haematobium
(R? = 0.517) and S. mansoni (R? = 0.458).

3.4. Model prediction

Using the optimal models, predictions were conducted to assess the transmission risk of schistosomiasis under different
MDA scenarios. Infection rates were accounted for adjusted by population distribution, and risk maps for generated for S.
haematobium and S. mansoni separately as well as for mixed infections for the entire population for the period 2011-2022.
Fig. 3 shows the schistosomiasis risk when MDA was not implemented. Predictive results for S. haematobium infections
indicated a higher prevalence in the central, southern, and south-eastern regions of Zimbabwe, whereas the western area had
a lower prevalence. In contrast, the S. mansoni map predicted severe prevalence presented in the eastern, south-eastern, and
north-eastern areas of the country, with low infection rates in the western region. Without MDA, the population-adjusted
prevalence in 2022 was predicted to be 17.12% (95%Cl: 17.02%—17.23%) for S. haematobium, 7.43% (95%Cl: 7.36%—7.50%) for
S. mansoni, and 23.20% (95%Cl: 23.08%—23.32%) for mixed infections.

Additionally, a risk map for schistosomiasis in Zimbabwe for 2022 was predicted under the MDA implementation scenario
(Fig. 4). The prediction map clearly demonstrated that the infection rates for S. haematobium were significantly lower under
the MDA scenario than without MDA. However, this was not observed for S. mansoni. Under the MDA implementation sce-
nario, the population-adjusted prevalence in 2022 was predicted to be 13.75% (95% Cl: 13.65%—13.85%) for S. haematobium,
7.07% (95%Cl:7.01%—7.13%) for S. mansoni, and 19.79% (95%Cl: 19.67%—19.91%) for mixed infections.
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Fig. 3. Predictive risk map of infections with Schistosoma haematobium and Schistosoma mansoni and mixed infections in 2022 without MDA implemented
A=S. haematobium; B=S. mansoni; C=Mixed infections.
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Fig. 4. Predicting risk map of infections with Schistosoma haematobium and Schistosoma mansoni and mixed infections in 2022 with MDA implemented
A=S. haematobium;B=S. mansoni; C=Mixed infections.

The required quantity of praziquantel for MDA for the entire country and regional levels was estimated according to WHO
guidelines. In total, it required an annual MDA population of 3,521,466 (95%Cl:3502580—3540352) without MDA scenario and
3,003,928 (95%Cl: 2986151—3021705) under the MDA scenario (Table 4).

The overall estimated disability weights of total schistosomiasis as well as of S. haematobium, and S. mansoni, were0.023,
0.025, and 0.017, respectively. The estimated disease burden using YLD (Table 5) in the national level was 80,993 DALYs (95%
Cl: 80559—81428) for the non-MDA implementation scenario and 69,090 DALYs (95%Cl: 68681—69499) for the MDA
implementation scenario.

4. Discussion

This is the first study to predict the prevalence of schistosomiasis in Zimbabwe using ML algorithms. By comparing three
different algorithms, the RF one emerged as the best performing method for constructing the modelling, considering the
corresponding environmental and socioeconomic factors. This model confirmed that the average prevalence of schistoso-
miasis in Zimbabwe is moderate. Still, it is a significant public health problem, and the country is moving towards controlling
and eliminating targets. However, Zimbabwe has not yet conducted a nationwide survey based on the whole population, as a
results of unclear schistosomiasis prevalence and distribution yet in the country, although two national surveys based on the
school-aged children were conducted in last 4 decades (Midzi et al., 2014; Taylor & Makura, 1985). The findings of the study
that estimated the prevalence of schistosomiasis in Zimbabwe using machine-learning algorithms revealed that schistoso-
miasis remains a highly prevalent risk in Zimbabwe, particularly in the central, southern, south-eastern, north-eastern, and
eastern regions. Continued attention is essential for effective management and control of the disease in these areas of
Zimbabwe.

The correlation between the prevalence of schistosomiasis and the environmental and socioeconomic factors revealed
that factors such as extreme climatic conditions (rainfall and temperature), NDVI, distance to water bodies, elevation, slope,
and economic and population factors had various effects on the transmission risk of schistosomiasis. This is consistent with
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Table 4
Predicted, required quantity of praziquantel need for MDA in 2022 by region in Zimbabwe.
Region Population S. haematobium S. mansoni Mixed infection MDA
2022 Prevalence (%) MDA population  Prevalence (%) MDA population  Prevalence (%) MDA population ;\r]r(l)planted Yes/
(95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)
Midlands 1811908 16.87 (16.57 305580 (300292  5.02 (4.93 90996 (89248 20.96 (20.60 379732 (373200 No
—17.16) —310868) —5.12) —92745) —21.32) —386265)
Matabeleland 760345 14.03 (13.78 106687 (104799  4.82 (4.72 36683 (35861 18.18 (17.87 138252 (135873 No
South —14.28) —108576) —4.93) —37506) —18.50) —140631)
Matabeleland 827626 10.58 (1049 87545 (86816 417 (4.11 34536 (33989 1430(14.17 118350(117239 No
North —10.67) —88274) —4.24) —35083) —14.43) —119462)
Masvingo 1638539 2222 (22.01 364131 (360624 12.08 (11.84 197877 (194034 31.76 (31.54 520368 (516743  No
—22.44) —367637) -12.31) —201719) —31.98) —523994)
Mashonaland 1893578  16.04 (15.92 303675 (301532  6.70 (6.59 126912 (124696  21.67 (21.52 410378 (407422 No
West —16.15) —305817) —6.82) —129127) —21.83) —413334)
Mashonaland 1731181  24.42 (23.92 422811 (414084  7.20 (6.95 124624 (120305  30.04 (29.52 519999 (511095 No
East —24.93) —431538) —745) —128943) —30.55) —528903)
Mashonaland 1384891  20.05(19.74 277618 (273423  11.96 (11.72 165654 (162306  29.59 (29.25 409781 (405087 No
Central —20.35) —281812) —12.20) —169002) —29.93) —414475)
Manicaland 2037762  20.98 (20.66 427595 (421094 1220 (11.92 248569 (242909  30.82 (30.50 628080 (621598 No
—21.30) —434095) —12.48) —254229) —31.14) —634562)
Harare 2427209 1246 (11.83 302321 (287152  3.77 (3.41 91522 (82687 15.96 (15.22 387393 (369416  No
—13.08) —317490) —4.13) —100357) —16.70) —405370)
Bulawayo 665940 10.14 (9.51 67532 (63313 3.29 (3.16 21883 (21044 12.97 (12.26 86399 (81665 No
—10.77) —71750) —3.41) —22722) —13.68) —91133)
Zimbabwe 15178979 17.12(17.02 2599277 (2583213 7.43 (7.36 1127509 (1117315 23.20 (23.08 3521466 (3502580 No
—17.23) —2615340) —7.50) —1137703) —23.32) —3540352)
Midlands 1811908  12.91(12.62 233946 (228660 4.79 (4.70 86788 (85228 17.04 (16.74 308822 (303358  Yes
—13.20) —239231) —4.88) —88348) —17.35) —314286)
Matabeleland 760345 12.02 (11.79 91380 (89640 4.63 (4.53 35173 (34408 16.04 (15.80 121989 (120136  Yes
South —12.25) —93120) —4.73) —35939) —16.29) —123842)
Matabeleland 827626 8.64 (8.56 71480 (70856 4.06 (4.00 33603 (33087 1234 (12.25 102111 (101350  Yes
North —-8.71) —72105) —4.12) —34120) —12.43) —102872)
Masvingo 1638539  18.60 (18.39 304750 (301374 11.31(11.08 185263 (181542  27.94 (27.75 457747 (454658  Yes
—18.81) —308127) —11.53) —188985) —28.12) —460836)
Mashonaland 1893578  11.41(11.29 215986 (213834  6.46 (6.35 122327 (120184  17.12 (16.98 324158 (321509  Yes
West —11.52) —218138) —6.57) —124471) —17.26) —326807)
Mashonaland 1731181  20.30(19.76 351510 (342085 6.89 (6.66 119364 (115381  25.97 (25.50 449625 (441524  Yes
East —20.85) —360935) —7.13) —123347) —26.44) —457725)
Mashonaland 1384891  15.17 (14.83 210081 (205420 11.36 (11.13 157296 (154172  24.88 (24.56 344526 (340089  Yes
Central —15.51) —214741) —11.58) —160419) —25.20) —348962)
Manicaland 2037762  17.38 (17.06 354190 (347638 11.50(11.23 234382 (228914  26.99 (26.70 550069 (544096 Yes
—17.70) —360743) -11.77) —239850) —27.29) —556041)
Harare 2427209  10.99 (10.33 266717 (250776  3.73 (3.39 90448 (82170 1431 (1349 347236 (327538  Yes
—11.65) —282658) —4.07) —98726) —15.12) —366935)
Bulawayo 665940 8.69 (8.07 57844 (53746 3.28 (3.16 21849 (21012 11.66 (11.02 77659 (73371 Yes
—9.30) —61943) —341) —22685) —12.31) —81947)
Zimbabwe 15178979 13.75(13.65 2086544 (2071209 7.07 (7.01 1073044 (1063462 19.79 (19.67 3003928 (2986151 Yes
—13.85) —2101879) —7.13) —1082627) —19.91) —3021705)
Table 5
Prediction of disease burden for schistosomiasis in Zimbabwe in 2022.
Schistosome species Disability weight YLD (95% CI)
Non-MDA scenario MDA scenario
S. haematobium 0.025 64,981 (64,580—65,383) 52,163 (51,780—52,546)
S. mansoni 0.017 19,167 (18,994—19,340) 18,241 (18,078—18,404)
Mixed infection 0.023 80,993 (80,559—81,428) 69,090 (68,681—69,499)

previous studies (John et al., 2008; Pedersen et al., 2014; Stensgaard et al., 2016). However, these factors correlated differently
with the two schistosomiasis species. For S. haematobium, three of the five was most closely associated socioeconomic factors,
whereas two were related to environmental factors. Over time, five impact factors, including a later time period of investi-
gation, implementation of MDA, low rainfall during the warmest season, higher GDP level, and low annual precipitation, were
the top five factors closely related to the decline in the prevalence of S. haematobium. In contrast, among the five most relevant
factors for S. mansoni prevalence, four were environmental and one was economic factors. The lower prevalence of S. mansoni
was closely related to five impact factors, such as higher elevation, low rainfall during the warmest season, lower slope, a later
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time period of investigation, as well as lower minimum temperature of the coldest month. These results are in line with a
prior study that the limited impact of climate change on the prevalence of schistosomiasis was presented in Zimbabwe
(Pedersen et al., 2017). This study also found that although climatic factors are important in the transmission of schistoso-
miasis, the infection of S. haematobium is also associated with socio-economic factors, whereas S. mansoni infection is closely
related to topographical and environmental factors in addition to climatic factors. These findings provide valuable infor-
mation for formulating strategies to control and eliminate schistosomiasis eventually, especially in the low endemic areas.
Thus, a tailored strategy considering the various characteristics of different schistosome species and the related impact factors
are of importance and very crucial.

Although the distance to the nearest water body correlated with the prevalence of schistosomiasis, it was not among the
top-ranking associations. This observation could be related to Zimbabwe's climate pattern, which is characterised by distinct
rainy and dry seasons. Seasonality could influence the abundance of the intermediate snail host, but not stop their presence
(Gouvras et al., 2017). Water bodies have extensive coverage during the rainy season, resulting in easy access to water,
whereas they tend to dry up during the dry season, leading people to search for water sources, thus concentrating at just a few
water bodies or sites. These water sources may be used for swimming, bathing, gardening, fishing, washing, etc (Mutsaka-
Makuvaza et al.,, 2019; Mutsaka-Makuvaza et al., 2019). Although such unprotected water sources can lead to schistosomi-
asis infection (Nyati-Jokomo & Chimbari, 2017), their distance from residential areas might not the most significant factor
(Mwai et al., 2021).

ML algorithms have been employed to predict the risk of transmission of schistosomiasis. Although those algorithms are
often likened to a black box, as they can be challenging to decipher through traditional mathematical calculations, they have
been utilized in previous studies that focused on predicting discrete or continuous results. The predicted prevalence in this
study was consistent with the quantified prevalence at any point obtained from the prediction map. Although the predicted
results of this study were higher than those of a previous study conducted elsewhere (Kokaliaris et al., 2022), they were
similar to those of recent field surveys conducted in Zimbabwe (Mutapi et al., 2021; Mutsaka-Makuvaza et al., 2018; Mutsaka-
Makuvaza et al., 2019).

This study used a scenario analysis to predict the prevalence of schistosomiasis with and without MDA implementation.
Zimbabwe has been implementing six-year MDA programs targeting school-aged children since 2012. The regions where the
program was implemented have witnessed a significant decrease in the prevalence of schistosomiasis among school-aged
children, and MDA continues to be a major schistosomiasis control measure in Zimbabwe. However, it is difficult to obtain
exact information about where MDA was implemented and where it was not. Scenario analysis was conducted including the
implementation of MDA as a factor in the model and exploring schistosomiasis transmission risk under different MDA
scenarios. The results indicated a lower transmission risk where MDA was used, especially for S. haematobium, which may
relate to S. haematobium being more sensitive to praziquantel than S. mansoni (Kabuyaya et al., 2018). These results provide a
reference for predicting the risk of schistosomiasis based on the actual implementation of the MDA in different regions.

Given the lack of prevalence survey data, estimates of the number of individuals requiring treatment on different
administration level can serve as a reference for local implementation of MDA, which will improve the feasibility of MDA
administration and optimize resource allocation. Effective MDA should prevent both the potential overuse of praziquantel,
which could lead to drug resistance, and under-treatment, which may increase the disease burden. Local authorities are also
recommended to continuously monitor and evaluate the effectiveness of MDA and adjust strategies as needed. Furthermore,
the study reveals that MDA alone is insufficient for schistosomiasis elimination, especially with respect to S. mansoni. Local
control efforts should therefore integrate other measures such as WHO-recommended health education to raise awareness
about disease and preventive practices, and safe water and sanitation and hygiene (WASH) strategies. In addition, snail
control should be revived tackle the presence of the intermediate host, though environmental modifications to reduce snail
habitat suitability, and warnings at common points of water contact to reduce exposure. These comprehensive control efforts
are expected to enhance overall prevention and control outcomes.

5. Limitations

Despite collecting over 40 years of publicly available schistosomiasis epidemiological data in Zimbabwe, the actual
number of data points was limited, which might have led to biases in the model's predictive results. Secondly, most of the data
obtained were from relatively high prevalence areas, with less information obtained from low-prevalence or non-epidemic
areas, which might have led to the overestimated of the predictions. Thirdly, the numbers of environmental and socioeco-
nomic variables used in this study could not reflect all influential factors. The ones used were derived from public databases,
and potential measurement and accuracy errors in these data could have contributed to model prediction biases.

6. Conclusion

The RF algorithm emerged as the most formal method for constructing the model. We also found that the impact of various
factors on the prevalence of S. haematobium and S. mansoni differed. Socioeconomic and environmental factors were closely
associated with S. haematobium, whereas topographical and environmental factors were more closely associated with S.
mansoni prevalence. The study reveals that MDA alone is insufficient for schistosomiasis elimination, especially S. mansoni.
These findings provide insights into tailoring different schistosomiasis control strategies during periods of low prevalence.
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Additionally, this study revealed that schistosomiasis control measures in Zimbabwe have primarily focused on MDA in
school-aged children, with few other control strategies implemented. Based on the latest WHO schistosomiasis control
guidelines and China's schistosomiasis control experience, achieving schistosomiasis elimination goals requires a more
comprehensive approach. It is recommended that Zimbabwe adopt an integrated control strategy that includes not only
population-wide MDA, but also snail control by environmental modification, better access to clean water sources and sani-
tation facilities, health education. Systematic monitoringwould be important to follow up.
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Appendix 1. The hyperparameters of each machine learning model for S. haematobium and S.mansoni

For S. haematobium:
The hyperparameters used in this Random Forest (RF) model for S. haematobium are as follows.

. mtry (Number of variables tried at each split): 22

. ntree (Number of trees): 500 (default)

. nodesize (Minimum size of terminal nodes): 5 (default)

. maxnodes (Maximum number of terminal nodes): NULL (no limit, default)

AW N -

The final hyperparameters for the XGBoost model for S. haematobium are are as follows.

. eta (learning rate): 0.3

. max_depth (maximum depth of a tree): 3

. gamma (minimum loss reduction required to make a further partition on a leaf node): 0
. colsample_bytree (subsample ratio of columns when constructing each tree): 0.6

. min_child_weight (minimum sum of instance weight needed in a child): 1

. subsample (subsample ratio of the training instances): 1

. nrounds (number of boosting rounds): 100

N U WN =

The hyperparameters for the GBM model for S. haematobium are are as follows.

—

. shrinkage: 0.1
2. n.minobsinnode (minimum number of observations in each node): 10
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3. n.trees (number of trees in the model): 100
4. interaction.depth (depth of variable interactions): 2

For S.mansoni:
The hyperparameters used in the Random Forest (RF) model for S.mansoni are as follows.

1. mtry (Number of variables tried at each split): 2
2. ntree (Number of trees): 500 (default)
3. nodesize (Minimum size of terminal nodes): 1 (default)
4. maxnodes (Maximum number of terminal nodes): NULL (no limit, default)
The hyperparameters used in this XGBoost model for S.mansoni are as follows.
1. eta (Learning rate): 0.3
2. max_depth (Maximum depth of a tree): 1
3. gamma (Minimum loss reduction required to make a further partition on a leaf node): 0
4. colsample_bytree (Subsample ratio of columns when constructing each tree): 0.6
5. min_child_weight (Minimum sum of instance weight needed in a child): 1
6. subsample (Subsample ratio of the training instances): 1
7. nrounds (Number of rounds for boosting): 50
The hyperparameters for the GBM model for S.mansoni are as follows.
1. shrinkage: 0.1
2. n.minobsinnode (minimum number of observations in each node): 10
3. n.trees (number of trees in the model): 100
4, nteraction.depth (depth of variable interactions): 2

Appendix 2. Characteristics for S. haematobium (A) and S. mansoni (B) in Zimbabwe during 1980—2022 extracted from
references

A
Characteristic No. of survey No. of No. of Infection rate
points participants positives
Mean (+standard Median (upper quartile-lower
deviation) quartile)
Year period
1980~1990 22 5257 2149 40.88% (+25.07%) 33.69% (15.90%—50.58%)
1991~2010 34 12051 5081 42.17% (£21.37%) 39.84% (24.27%—59.69%)
2011~2022 99 23588 4542 19.26% (+14.86%) 12.07% (4.26%—26.30%)
Age group
<6 24 5643 993 17.60% (+14.82%) 13.53% (4.63%—30.33%)
6~15 94 22335 7094 31.76% (+£23.25%) 18.05% (5.90%—40.86%)
>15 37 12918 3686 28.53% (+16.63%) 20.29% (8.45%—35.32%)
Diagnostic method
Urine filtration 141 36082 9615 26.65% (+20.28%) 16.30% (5.90%—34.90%)
Urinary dipstick 2 1005 163 16.22% (+2.62%) 16.85% (15.00%—18.70%)
Urine filtration and urinary dipstick 1 551 329 59.71% (+2.09%) 59.71% (59.71%—59.71%)
Sedimentation-centrifugation and miracidial 11 3258 1666 51.14% (+20.98%) 40.12% (26.68%—62.70%)
hatching
MDA implementation
No 135 37278 11490 30.82% (+£21.15%) 20.90% (9.00%—39.80%)
Yes 20 3618 283 7.82% (+7.09%) 6.31% (3.35%—9.16%)
Total 155 40896 11773 28.79% (+20.84%) 18.60% (6.08%—36.62%)
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B
Characteristic No. of survey No. of No. of Infection rate
points participants positives
Mean (+standard Median (upper quartile-lower
deviation) quartile)
Year period
1980~1990 15 2743 368 13.41% (+11.01%) 8.10% (2.60%—19.00%)
1991~2010 16 10061 1376 13.71% (+8.61%) 14.01% (0.70%—15.95%)
2011~2022 79 13500 1013 7.51% (+9.81%) 0.80% (0.00%—6.50%)
Age group
<6 4 937 5 0.51% (+2.71%) 0.26% (0.00%—4.33%)
6~15 82 18427 1787 9.71% (+10.71%) 1.50% (0.00%—12.15%)
>15 24 6940 965 13.91% (+8.21%) 4.65% (0.18%—15.22%)
Diagnostic method
Kato Katz 34 7279 716 9.81% (+9.21%) 3.25% (0.00%—14.26%)
Formol-ether concentration 2 2030 349 17.21% (+4.11%) 18.72% (15.79%-.)
Kato Katz and formol-ether concentration =~ 72 15444 1420 9.21% (+10.31%) 0.85% (0.00%—8.93%)
Sedimentation-centrifugation and miracidial 2 1551 272 17.51% (+6.71%) 18.20% (13.50%—18.20%)
hatching
MDA implementation
No 104 25092 2732 10.91% (+10.21%) 2.29% (0.00%—13.00%)
Yes 6 1212 25 2.11% (+3.61%) 1.30% (0.00%—7.20%)
Total 110 26304 2757 10.51% (+10.01%) 2.05% (0.00%—12.33%)
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