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Accurate prediction of lymph-node metastasis in cancers is pivotal for the next

targeted clinical interventions that allow favorable prognosis for patients. Different

molecular profiles (mRNA and non-coding RNAs) have been widely used to establish

classifiers for cancer prediction (e.g., tumor origin, cancerous or non-cancerous state,

cancer subtype). However, few studies focus on lymphatic metastasis evaluation using

these profiles, and the performance of classifiers based on different profiles has also

not been compared. Here, differentially expressed mRNAs, miRNAs, and lncRNAs

between lymph-node metastatic and non-metastatic groups were identified as molecular

signatures to construct classifiers for lymphatic metastasis prediction in different cancers.

With this similar feature selection strategy, support vector machine (SVM) classifiers

based on different profiles were systematically compared in their prediction performance.

For representative cancers (a total of nine types), these classifiers achieved comparative

overall accuracies of 81.00% (67.96–92.19%), 81.97% (70.83–95.24%), and 80.78%

(69.61–90.00%) on independent mRNA, miRNA, and lncRNA datasets, with a small

set of biomarkers (6, 12, and 4 on average). Therefore, our proposed feature selection

strategies are economical and efficient to identify biomarkers that aid in developing

competitive classifiers for predicting lymph-node metastasis in cancers. A user-friendly

webserver was also deployed to help researchers in metastasis risk determination by

submitting their expression profiles of different origins.

Keywords: lymph-node metastasis, molecular profiles, classifiers, webserver, biomarker

INTRODUCTION

Regional lymph-node metastasis is an important predictor for tumor recurrence and survival in
patients with aggressive cancers (Hermanek, 2000; Xu et al., 2018). The diagnosis of lymphatic
metastasis in a certain cancer may be uncertain even after extensive clinical examinations, such
as endosonography, magnetic resonance imaging, and computed tomography (Christensen et al.,
2006; Obinu et al., 2018; Zeng et al., 2019). Cancer patients examined with ambiguous lymphatic
metastasis usually suffer from uncontrolled disease progression and a short overall survival period
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(Biaoxue et al., 2011; Yang et al., 2019a). Though the prognosis
depends on different factors including tumor cell type, primary
site, dissemination ability, clinical intervention, and drug
response, the low survival rate of patients may be mainly
attributed to the unclear determination of lymph-nodemetastasis
(Li et al., 2019; Sugimura and Yoshimura, 2019). Therefore, it
is of great importance to accurately predict regional lymphatic
metastasis in cancerous patients for early tumor spread detection
and appropriate clinical decision-making.

With rapid development of high-throughput molecular
profiling technologies, large amounts of expression data [mRNA
and non-coding RNA (ncRNA) that includes microRNA
(miRNA) and long non-coding RNA (lncRNA)] have been
generated and are publicly available, which facilitate forecasting
paradigms in tumor origin, cancerous or non-cancerous state,
and cancer subtype by using these profiles (Perez-Diez et al.,
2007; Rosenfeld et al., 2008; Jiang et al., 2009, 2010; Monzon
et al., 2010; Varadhachary, 2013; Flippot et al., 2016). As a key
prognostic factor in cancer prediction, lymphatic metastasis has
also been evaluated in several attempts based on these molecular
profiles and now become useful diagnostic algorithms (Moriya
et al., 2009; Qu et al., 2018; Ma et al., 2019).

As well-recognized genetic biomarkers in cancers, genes have
been large-scale profiled at the transcriptional level (mRNA) and
the expression profiling has been used in several studies for
lymph-node metastasis evaluation (Kikuchi et al., 2003; Wang
et al., 2005). For example, Zhou et al. proposed a mRNA-
based logistic regression model to discriminate lymph-node
metastatic and non-metastatic cases in patients with oral tongue
squamous cell carcinoma (Zhou et al., 2006). This classifier
showed a high overall accuracy rate of 85% with a small number
of gene markers. The expression profiles of miRNAs that are
small non-coding RNAs regulating the expression of genes
involved in biological processes such as tumor cell proliferation,
migration, and invasion have also been utilized to predict
lymph-node metastasis in cancers (Zhang et al., 2016; Cheng
et al., 2018). For example, a recent study reported a miRNA
classifier that screened a 4-miRNA signature based on differential
expression analysis and quantitative expression validation and
achieved a perfect sensitivity and specificity in lymph-node
metastasis evaluation for breast cancer patients (Chen et al.,
2018). LncRNAs are newly identified long non-coding RNAs
that act as complicated regulatory roles in diverse biological
processes (Alvarez-Dominguez et al., 2012; Ulitsky and Bartel,
2013; Fatica and Bozzoni, 2014; Jiang et al., 2014, 2015; Liu
et al., 2018; Cheng et al., 2019) and even cancers (Gutschner and
Diederichs, 2012;Mitobe et al., 2018;Wang et al., 2019). Sørensen
et al. demonstrated the potentiality of forecasting lymphatic
metastasis in breast cancer using lncRNA profiles (Sorensen
et al., 2015). The authors established a lncRNA classifier based
on support vector machine (SVM) algorithm that gained a high
overall accuracy in prediction of lymphatic metastasis in breast
cancer patients.

To our knowledge, the existing studies mostly applied a
retrospective in-hospital strategy that seems to be procedure-
tedious in patient surveying. In this process, several limiting
factors such as individual difference, environmental change,

and differentiated clinical management may be origins of noise
and ultimately affect the classification performance (Bur et al.,
2019; Reijnen et al., 2019). Instead, large samples of different
molecular profiles available in public serve as useful resources
for the development of machine leaning methods in lymph-node
metastasis evaluation by computational biologists. As seen in
existing studies, only a few types of common cancers have been
focused. Indeed, large-scale genome sequencing projects (e.g.,
The Cancer Genome Atlas Program abbreviated as TCGA) for
most cancers have been performed and thus all of them should
be scheduled in clinical application. In addition, systematical
comparison and evaluation of classifiers based on different
profiles and algorithms may be necessary prior to establishment
of promising prediction platforms.

With the above considerations, we established SVM classifiers
based on different profiles to predict lymphatic metastasis in a
spectrum of cancers. For these classifiers, novel feature selection
strategies were adopted to screen differentially expressed
signatures between lymph-node metastatic and non-metastatic
groups in cancers. A total of 2,491 mRNA, 2,364 miRNA, and
2,491 lncRNA expression datasets were retrieved from TCGA to
develop classifiers in nine representative cancers. The efficiency
of these SVM classifiers was revealed having an overall accuracy
of 81.25% on different profiles with small biomarker sets (seven
biomarkers on average). We also compared these SVM classifiers
with two other benchmark classifiers (K-Nearest Neighbor, KNN;
Random Forest, RF) based on the same profiles, and our
results showed that SVM classifiers had the better performance.
To enable researchers to predict lymph-node metastasis in
tumor samples of their interest, we made these SVM classifiers
publicly available through an interface-concise webserver named
LNMpredictor (http://lnmpredictor.wchoda.com).

MATERIALS AND METHODS

Cancer Screening and Data Collection
Figure 1 shows the flowchart of our data collection, analysis,
classifier construction, and webserver development. We
firstly used the clinical TNM (Tumor, Node, and Metastatic
classification index) staging data from TCGA to screen those
cancers that have definite lymph-node metastasis in patients. In
detail, cancers with an N- and T-index of 1–4 and an M-index
of 0 were determined as lymph-node metastatic cases, and
cancers with an N- and M-index of 0 and a T-index of 1–4 were
determined as non-metastatic controls. It is notable that the cases
with an M-index of 1–4 were filtered out to avoid the possible
noise in modeling of lymph-node metastasis evaluation because
distant organ metastasis co-existed with regional lymphatic
metastasis in these cases. In total, nine types of cancers with clear
TNM-based lymphatic metastasis classification information were
retained. For these selected cancers, 2,491 mRNA, 2,364 miRNA,
and 2,491 lncRNA expression profiles including normal, lymph-
node metastatic, and non-metastatic samples were collected
(see details in Table 1; note that sufficient samples of more
than 10 in the above three groups were required for subsequent
feature selection). The samples sequenced for mRNA, miRNA,
and lncRNA profiles were selected from the Illumina platform
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wherein miRNA expression was specifically sequenced with the
BCGSC (IlluminaHiSeq_miRNAseq) sequencing platform (that
facilitates highly sensitive and specific detection of common
human miRNAs). All the clinical and expression data of patients
were retrieved using customized functions implemented in the R
package TCGAbiolinks (Colaprico et al., 2016) and handled with
our in-house Python scripts.

Data Preprocessing
Gene expression quantification (a data type of TCGA) ofmRNAs,
miRNAs, and lncRNAs across samples was selected as molecular
profiles for cancers as individual datasets. For each dataset of a
given cancer, we discarded mRNAs, miRNAs, and lncRNAs that
had missing values in more than 30% of all the samples. The
remaining missing values were estimated using the impute.knn
function implemented in the R package imput (http://www.
bioconductor.org/packages/release/bioc/html/impute.html).
Due to the fact that mRNAs and lncRNAs are fused as expression
profiles for cancers in current TCGA sequencing platforms, we
therefore separated them for their separate feature selection
and profile-based classifier construction. For this purpose,
in-house Python scripts were implemented based on the
genomic annotation files (gencode.v30.basic.annotation.gff3 and
gencode.v30.long_noncoding_RNAs.gtf ) of human mRNAs and
lncRNAs retrieved from Gencode (https://www.gencodegenes.
org) that provides high-quality reference gene annotation with
experimental validation for human genomes.

Feature Selection
For each of the nine representative cancers, three rounds
of feature extraction analysis were conducted for establishing
practical classifiers that can achieve desirable classification
performance with a small set of biomarkers (high relevance with
target class and low redundancy in feature dimension), as follows:
(1) we firstly screen differentially expressed mRNAs, miRNAs,
and lncRNAs as biomarkers between lymph-node metastatic and
non-metastatic groups in a certain cancer (significant P values
were chosen the same as ≤0.01 for mRNA, miRNA, and lncRNA
profiles); (2) from these biomarkers, differentially expressed
ones between normal and diseased groups were re-screened,
wherein the diseased group represented a pool of lymph-node
metastatic and non-metastatic cases in a cancer (significant P
values were set the same as in the first round of analysis); (3)
finally, principal component analysis (PCA) was performed for
dimensionality reduction if the re-screened biomarkers seemed
high-dimensional. We used the R package DESeq2 that can
estimate variance-mean dependence in count data from high-
throughput sequencing assays and test for differential expression
using the negative binomial distribution (Love et al., 2014), to
identify differentially expressed mRNAs, miRNAs, or lncRNAs
between case and control groups in the first two rounds of
analysis, and dimensionality reduction was performed using the
PCA function implemented in the Python package scikit-learn
[a machine learning toolkit accessible at http://scikit-learn.org/
stable/index.html (Swami and Jain, 2013)].

In the whole strategy, the first round of analysis ensures
that the screened mRNA, miRNA, and lncRNA markers have

strong relevance to lymph-node metastatic class in cancer
samples, which is necessary for regional lymphatic metastasis
evaluation. For this purpose, mRNAs, miRNAs, and lncRNAs
with false discovery rate (FDR)-adjusted P ≤ 0.01 were screened
as candidates that showed significantly different mean values
between lymph-node metastatic and non-metastatic groups in
certain cancers. We were also concerned about a prerequisite
that the screened biomarkers should be related to a diseased
state that involved lymph-node metastatic and non-metastatic
substates in cancers. Therefore, the second round of analysis
was implemented to discard ones that might have no roles in
cancer progression and cause the possible bias in classification.
From another perspective, this round of implementation can
help lower the redundancy in feature dimension as that in
the third round of analysis. Because of the much higher
dimensionality of both mRNA and lncRNA profiles than that
of miRNA profiles, we applied the PCA-based dimensionality
reduction for mRNA and lncRNA profiles in our feature
extraction analysis.

Classifier Construction and Webserver
Development
The screened mRNAs, miRNAs, and lncRNAs from the above
feature selection were considered as differentially expressed
biomarkers for cancer lymph-node metastasis prediction. In
this study, SVM-based machine learning algorithm was adopted
as the classifying model that has been demonstrated to
have good performance in many classification cases with
different types of molecular profiles (Hira and Gillies, 2015;
Singh and Sivabalakrishnan, 2015; Huang et al., 2018; Liu
et al., 2019). As described above, our proposed feature
selection strategy guaranteed the acquisition of a small set
of biomarkers with a high prediction performance that
is a main objective of the research in cancer prediction,
including cancer origin prediction, tumor subtype classification,
and cancerous and non-cancerous sample determination.
With the same biomarker set, SVM classifiers based on
different profiles were systematically compared with other two
commonly used benchmark classifiers, KNN and RF, for a
more comprehensive evaluation of the SVM algorithm. As
to the imbalanced samples of lymph-node metastatic and
non-metastatic groups in cancers, we adopted an under-
sampling strategy to achieve balanced datasets in these two
groups, which can avoid the imbalance problem and improve
the SVM classifier performance (Jiang et al., 2013; Hazan
et al., 2018). After this, all individual models were trained
with a fivefold cross-validation to improve their prediction
performance. With the trained SVM models, we developed a
Python-based webserver named LNMpredictor to enable users
to predict lymph-node metastasis in cancers by uploading
mRNA, miRNA, or lncRNA expression profiles of their own
labs. The webserver was constructed using a freely available and
open source framework, Django (https://www.djangoproject.
com). The trained SVM classifying models were stored as
individual files by joblib, a Python package named scikit-
learn (https://scikit-learn.org). The corresponding web interface
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FIGURE 1 | Schematic illustration of the workflow of data collection, analysis, classifier construction, and webserver development.

TABLE 1 | Sample number of each cancer for mRNA, miRNA, and lncRNA profile, feature selection, training, and testing datasets.

Cancers mRNA- or lncR-based datasets miR-based datasets

NR LNM NM Sets for

feature

selection

Sets for

training/testing

SVM

classifiers

NR LNM NM Sets for

feature

selection

Sets for

training/testing

SVM classifiers

Bladder urothelial

carcinoma

19 26 134 179 160 19 27 135 162 162

Breast invasive

carcinoma

112 148 454 714 602 103 145 449 594 594

Cervical and

endocervical cancers

3 27 80 110 107 3 27 80 107 107

Colon adenocarcinoma 41 41 242 324 283 8 38 224 262 262

Kidney renal clear cell

carcinoma

72 11 201 284 212 71 12 198 210 210

Lung adenocarcinoma 59 53 231 343 284 46 53 221 274 274

Lung squamous cell

carcinoma

49 40 259 348 299 45 39 242 281 281

Pancreatic

adenocarcinoma

4 58 20 78 78 4 59 20 79 79

Rectum

adenocarcinoma

10 18 79 107 97 3 18 75 93 93

Total 369 422 1,700 2,487 2,122 302 418 1,644 2,062 2,062

miR, miRNA; lncR, lncRNA; NR, normal samples; LNM, lymph-node metastatic samples; NM, non-metastatic samples. mRNA- and lncR-based datasets had the same sample number.

was deployed by uWSGI (https://uwsgi-docs.readthedocs.io) and
Nginx (http://nginx.org).

RESULTS

Cancer and Sample Statistics
In this study, we focused on those cancers with clear
measurement of lymph-node metastasis and adequate samples

size, to construct different profiles based on SVM classifiers.
The majority of the nine selected cancers are adenocarcinomas
(∼70%) together with squamous cell and urothelial carcinomas
(account for ∼20%), covering a wide range of organs or tissues,
such as breast, lung, kidney, colon, bladder, cervix uteri, pancreas,
and rectum (a total of eight organ or tissue types). Therefore,
our strategy ensured a complete representation of main cancer
types defined by their anatomic tissues or original organs. Among
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TABLE 2 | Number of mRNA, miR, and lncR signatures in feature selection and SVM performance using mRNA, miR, and lncR profiles.

Cancers No. of mRNA

signatures

mRNA-based

SVM classifiers

No. of miR

signatures

(first

round)

miR-based SVM

classifiers

No. of lncR

signatures

lncR-based SVM

classifiers

First

round

Second

round

Third

round

Training_

Acc (%)

Testing_

Acc (%)

Training_

Acc (%)

Testing_

Acc (%)

First

round

Second

round

Third

round

Training_

Acc (%)

Testing_

Acc (%)

Bladder urothelial

carcinoma

1,176 500 8 89.29 77.08 27 100 77.55 496 165 7 88.39 81.25

Breast invasive

carcinoma

1,629 834 6 79.81 67.96 8 76.39 73.74 875 410 12 79.33 69.61

Cervical and

endocervical

cancers

220 40 3 70.27 84.85 6 71.62 81.82 45 6 3 70.27 84.85

Colon

adenocarcinoma

706 559 3 84.85 87.06 6 90.16 88.61 459 373 3 86.87 87.06

Kidney renal clear

cell carcinoma

660 414 6 98.65 92.19 8 95.24 95.24 215 123 2 97.30 84.38

Lung

adenocarcinoma

3,495 2,465 6 80.81 84.88 14 88.48 79.52 2,146 1,272 2 79.80 84.88

Lung squamous

cell carcinoma

443 304 18 87.08 90.00 29 93.88 84.71 167 113 2 86.12 90.00

Pancreatic

adenocarcinoma

56 × 2 75.93 75.00 3 80.00 70.83 14 × 2 75.93 75.00

Rectum

adenocarcinoma

293 200 3 88.06 70.00 11 92.31 85.71 51 21 2 86.57 70.00

Overall accuracy 83.86 81.00 87.56 81.97 83.40 80.78

miR, miRNA; lncR, lncRNA; NR, normal samples; LNM, lymph-node metastatic samples; NM, non-metastatic samples.

the cancers, lung-derived adenocarcinomas and squamous cell
carcinoma were both presented due to their high lymph-node
metastasis risk in clinical cases (Zhong et al., 2018; Deng et al.,
2019). For the following classifier establishment, a total of 2,491
mRNA samples, 2,364 miRNA samples, and 2,491 lncRNA
samples were respectively selected, wherein normal, lymph-node
metastatic, and non-metastatic cases were separated for each
cancer type and cancer-specific profiles (Table 1).

Feature Overview
Identifying efficient features for lymph-node metastasis
prediction in different cancers is a key step for the construction
of classifiers with high performance. To achieve this goal, we
used differentially expressed mRNAs and ncRNAs (miRNAs and
lncRNAs) between lymph-node metastatic and non-metastatic
groups in a cancer as biomarkers that can differentiate between
patients with and without lymph-node metastasis. Another
concern about the selected feature is their sizes in different
cancers with a given molecular profile. Logically, the first two
rounds of analysis is necessary for all the profile types in true
biomarker extraction. Indeed, miRNA profile has a quite low
dimension (∼1,880) compared with that of mRNA (45,312-
dimension) and lncRNA (15,171-dimension) profiles. Therefore,
for miRNA-based datasets with 1,881 common miRNAs in
different cancers, we only adopted the first round of analysis for
feature selection that can screen differentially expressed miRNAs
as biomarker set with appropriate size (3–27 features, with an

average of 12 miRNAs as biomarkers in all cancers; see details in
Table 2). For both mRNA- and lncRNA-based datasets, the first
two rounds of analysis were initially conducted. We observed
that comparative numbers of biomarkers were obtained in the
two rounds of analysis (see details in Table 2). However, the size
of biomarker sets extracted from mRNA and lncRNA profiles in
different cancers seemed unpractical with an average of 591 and
276 features. Therefore, the third round of analysis (PCA-based
feature reduction) was implemented. After this reduction, we
saw a similar size of biomarkers for mRNA and lncRNA profiles
(six and four biomarkers on average), which is smaller than
that in miRNA profile. Detailed information regarding the final
extracted mRNA, miRNA, and lncRNA features is available
in Supplementary Table 1. Among the screened mRNA and
ncRNA features, miRNA biomarkers represented the real
molecular entities because PCA-based feature reduction was not
conducted in this study. We constructed an expression heatmap
of differentially expressed miRNAs for all the cancer samples
to demonstrate the rationality of our feature selection method,
and the resulting Figure 2 showed the clear distinction of some
cancer types with others due to their differentially expressed
miRNA signatures in diverse cancer types.

Classifiers Performance Evaluation
The performance of a classifier is mainly determined by the
quality and the number of extracted features (Saeys et al.,
2007; Tang et al., 2014). In our strategy, differentially expressed
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FIGURE 2 | Expression heatmap of differentially expressed miRNAs for all the cancer samples (nine cancer types). In the plot, nine cancer types (rows) were indicated,

namely, bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), cervical and endocervical cancers (CESC), colon adenocarcinoma (COAD), kidney

renal clear cell carcinoma (KIRC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), pancreatic adenocarcinoma (PAAD), and rectum

adenocarcinoma (READ), and differentially expressed miRNA signatures (columns) were top-down placed according to the left–right ordinal cancer types.

FIGURE 3 | An overview of LNMpredictor that shows the tutorial, webserver portal, and document pages.
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mRNAs, miRNAs, and lncRNAs in lymph-node metastasis of
cancers were selected as discriminatory features for different
classifiers. For miRNA-based datasets, the optimal number of
differentially expressed miRNAs was gained as biomarkers from
the first round of feature extraction analysis (with only biological
consideration), whereas the best performance of mRNA- and
lncRNA-based classifiers were gained using all the three rounds
of feature extraction analysis (with both biological consideration
and PCA-based feature reduction). With the optimal selection of
differentially expressed biomarkers, we used the SVM algorithm
to train the classifiers and generated individual models. Here,
samples of lymph-node metastatic and non-metastatic groups
in each cancer for different profiles were balanced and then
fed to SVM classification algorithm, and all the training for
different classifiers went through a fivefold cross-validation. For
a comprehensive evaluation of the algorithm, we compared
the performance of SVM classifiers with other two benchmark
classifiers (KNN and RF). The reported prediction results of
the three kinds of classifiers based on different profiles are
available in Supplementary Table 2, where detailed training and
testing accuracies were provided for useful information on cancer
lymph-node metastasis prediction. Our results showed that the
SVM classifiers slightly outperformed both the KNN and RF
classifiers with an average 2% increase. Table 2 shows the fivefold
cross-validation training and testing accuracy of our SVM
classifiers based on different profiles for the nine cancers. The
lymph-node metastatic states in cancers correctly predicted by
mRNA-, miRNA-, and lncRNA-based SVM predictors accounted
for the majority of all TCGA cases, with overall testing
accuracies of 81.00% (mRNA-based, interval: 67.96–92.19%),
81.97% (mRNA-based, interval: 70.83–95.24%), and 80.78%
(lncRNA-based, interval: 69.61–90.00%) by average small size
of features (6, 12, and 4). We also made these SVM classifiers
publicly available in a webserver named LNMpredictor (http://
lnmpredictor.wchoda.com) that aids researchers in predicting
lymph-node metastasis by uploading their expression profiles of
different types (Figure 3).

DISCUSSION

Uncertain lymph-node metastasis in cancer diagnosis is a
major limiting factor for patient survival and prognosis. A
clear prediction of regional metastasis will aid in targeted
tumor treatment and optimal clinical management. With
massive amounts of expression profile data of different
types available, machine learning methods have been widely
applied in cancer prediction such as tumor origin, cancerous
or non-cancerous state, and cancer subtype (Blaveri et al.,
2005; Tang et al., 2018). Although attempts have focused
on several cancer types using small samples of patient
retrospective survey, the lymphatic metastasis evaluation of
most cancers based on different profiles remained to be
systematically explored with different prevalent classification
algorithms, which should be conducted to improve the clinical
evaluation and treatment of patients as efficient genomics
diagnostic algorithms.

In this study, we applied an integrated analysis of clinical
patient data (textual) and expression profile data (digital) of
cancer cases. Using TNM-based staging and sample annotation
information, we differentiated normal, lymph-node metastatic,
and non-metastatic cases for each of the selected cancer
types. Based on this, a novel feature selection strategy was
proposed to identify differentially expressed mRNAs, miRNAs,
and lncRNAs as discriminatory biomarkers in cancer lymph-
node metastasis prediction. This feature extraction demonstrated
its economy with small feature size, and also efficiency with
high classification performance when used in SVM classifiers.
For representative cancers, we showed that these classifiers
had comparative results based on the same profiles. We also
compared our SVM classifiers with other two benchmark
classifiers (KNN and RF), and the results showed that
the SVM classifiers had better performance. Given this, we
developed a webserver that deployed SVM predictors to
aid users in lymph-node metastasis forecasting by uploading
their mRNA, miRNA, or lncRNA expression profiles of
interested cancers.

The datasets for lymphatic metastasis prediction represented
one main data regime (v > s), where v and s denote
variable (i.e., gene) number and sample size, respectively. For
mRNA, miRNA, and lncRNA-based dataset, v is much larger
than s, which is particularly for mRNA and lncRNA cases
(∼2 orders of magnitude). As to miRNA profiles, the first
round of feature extraction with only biological consideration
ensured appropriate number of features to shape accurate
classifiers. Instead, all three rounds of feature extraction,
which considered both biological and mathematical aspects,
was necessary for mRNA and lncRNA profiles in constructing
competing classifiers. Thus, the differentiated feature extraction
pipelines of different profiles depended much on nature of
the data. In addition, we showed that classifiers with different
profiles as well as different classification algorithms had the
comparative prediction results, indicating the plasticity and
efficiency of our feature extraction in lymph-node metastasis
risk evaluation.

Apart from mRNA, miRNA, and lncRNA profiles, we can
also consider other types of profiles (e.g., DNA methylation
and protein) for lymph-node metastasis prediction. As an
important epigenetic regulatory mechanism, DNA methylation
has been large-scale profiled and extensively applied in cancer
prediction, such as tumor classification and prognosis (Hu
et al., 2019; Yang et al., 2019b). Therefore, the schedule of
establishing classifiers with all profiles separated or integrated
will enhance this related research. We also noted that the
extracted biomarkers had strong heterogeneous property
in different types of cancers, which may have specific
contributions in certain lymph-node metastatic events
and should be explored in further experimental studies.
Moreover, international cancer sequencing projects have been
performed, and the generated abundant expression profile
data are accessible in ICGC [International Cancer Genome
Consortium (Romeo-Casabona et al., 2012)], which may provide
useful clues for improvement of prediction strategy from a
cross-population perspective.
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