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Abstract

Background Pharmacokinetics (PK) are severely altered in critically ill patients due to changes in volume of distribution
(Vd) and/or drug clearance (Cl). This affects the target attainment of antibiotics in critically ill children. We aimed to iden-
tify gaps in current knowledge and to compare published PK parameters and target attainment of antibiotics in critically ill
children to healthy children and critically ill adults.

Methods Systematic literature search in PubMed, EMBASE and Web of Science. Articles were labelled as relevant when
they included information on PK of antibiotics in critically ill, non-neonatal, pediatric patients. Extracted PK-parameters
included Vd, Cl, (trough) concentrations, AUC, probability of target attainment, and elimination half-life.

Results 50 relevant articles were identified. Studies focusing on vancomycin were most prevalent (17/50). Other studies
included data on penicillins, cephalosporins, carbapenems and aminoglycosides, but data on ceftriaxone, ceftazidime, peni-
cillin and metronidazole could not be found. Critically ill children generally show a higher CI and larger Vd than healthy
children and critically ill adults. Reduced target-attainment was described in critically ill children for multiple antibiotics,
including amoxicillin, piperacillin, cefotaxime, vancomycin, gentamicin, teicoplanin, amikacin and daptomycin. 38/50 articles
included information on both Vd and Cl, but a dosing advice was given in only 22 articles.

Conclusion The majority of studies focus on agents where TDM is applied, while other antibiotics lack data altogether. The
larger Vd and higher Cl in critically ill children might warrant a higher dose or extended infusions of antibiotics in this patient
population to increase target-attainment. Studies frequently fail to provide a dosing advice for this patient population, even
if the necessary information is available. Our study shows gaps in current knowledge and encourages future researchers to
provide dosing advice for special populations whenever possible.
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1 Introduction

Antibiotics make up the most common class of drugs pre-
scribed to hospitalized children, with roughly 50% of patients
receiving an antibiotic agent during their hospital stay [1]. In
critically ill children, the prophylactic and therapeutic use of
intravenous antibiotics is even more prevalent [1].

Currently, critically ill children are generally started on
the same (weight-corrected) dose of antibiotic therapy as
their non-critically ill counterparts. As a consequence of
altered pharmacokinetics (PK) due to critical illness there
is a high likelihood that target concentrations, associated
with optimal efficacy while minimizing toxicity, are not
attained. In intensive care unit (ICU) patients, antibiotic
concentrations are outside of the therapeutic window in up
to 41% of adult patients [2] and even 95% in a critically ill
pediatric ICU (PICU) population [3]. This non-target attain-
ment in critically ill patients is caused by pathophysiological
changes in volume of distribution (Vd), protein binding and/
or drug clearance (Cl) [4-6]. Contrary to renal dysfunction,
an increased renal clearance caused by hemodynamic altera-
tions during critical illness, described as augmented renal
clearance (ARC), is reported in up to 65% of critically ill
adults [7, 8] and children [9, 10].

In addition to these pathophysiological alterations, young
children also show developmental changes in almost all pro-
cesses involved in drug disposition. Apart from differences
in body composition, children also show maturation of drug
metabolizing enzymes and glomerular filtration rate (GFR)
in the first years of life [11]. Currently, most pediatric dos-
ing guidelines for children older than 1 month (e.g. British
National Formulary for Children and Dutch Pediatric For-
mulary) only present a single body-weight based dose, not
accounting for these developmental changes.

Whether these changes in drug disposition lead to non-
target attainment of antibiotics in patients obviously also
depends on the pharmacodynamic (PD) interaction between
antibiotic and micro-organism. The two main parameters in
this interaction are the susceptibility of the micro-organism,
defined as the minimum inhibitory concentration (MIC),
and the kill-characteristic of the antibiotic [4]. Different
classes of antibiotics have different kill-characteristics and
can be divided in time-dependent, concentration depend-
ent and exposure dependent antibiotics [4]. When the kill-
characteristic of an antibiotic are known, PD targets can be
established for these antibiotics. Common PD targets for
time-dependent, concentration dependent and exposure
dependent antibiotics are the time free drug concentrations
are above the MIC at the site of infection (fT > MIC), peak
concentration over MIC (Cmax/MIC) and area under the
curve (AUC) over MIC (AUC/MIC), respectively. Subse-
quently, the probability of reaching these targets in special
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populations, such as critically ill children, can be simulated
using PK data [12].

Knowledge of altered PK parameters and desired PD tar-
gets is essential to serve as the basis for the development of
individualized starting dosing guidelines and further indi-
vidualized dose adjustments using therapeutic drug monitor-
ing (TDM). Multiple studies have shown that the application
of TDM improves target attainment of antibiotic agents in
critically ill patients [3, 13-16].

The aim of this systematic review is to summarize the
reported PK data and target attainment of antibiotics in
critically ill children, in relation data from non-critically ill
children and/or critically ill adult patients. This may aid to
identify gaps in current knowledge for future research, to
optimize dosing guidelines and support TDM practice.

2 Methods
2.1 Search Strategy

We performed a systematic search in concordance with
PRISMA guidelines in MEDLINE (using PubMed),
EMBASE and Web of Science databases from 1900 to April
2017. The PRISMA checklist is included as Supplemental
Data File 1. Researchers were alerted to additional results for
the search after April 2017 until May 15th 2019 by automatic
e-mail alerts, and articles after this period were screened and
selected in the same manner as articles in the original search.
Duplicate articles within each database and between data-
bases were excluded by using EndNote and manual selec-
tion. The main research question was broken down into four
domains (Pharmacokinetics, Antibiotics, Critically ill and
Children). Keywords were allocated to these domains and as
many synonyms for each keyword as possible were included
in the search. Whenever possible, keywords were converted
to corresponding MeSH-terms and/or subject headings. In
the final search, both MeSH-terms, Subject Headings and
keywords in the title and abstract were included. In order to
include all antibiotic agents for the ‘Antibiotic’ domain in
our search, we used the term “Anti-Bacterial Agents” [Phar-
macological Action] from the MeSH Database in combina-
tion with a free text search built with all the drug names and
substance names linked to this MeSH-term [17]. Antiviral
and antifungal therapies were left out of the scope of this
systematic review. An overview of the final search strategy
is depicted in Table 1 and a full list of antibiotic agents in
Supplemental Data File 2.

2.2 Study Selection

The title and abstract of every result in the search were
screened for eligibility by SH, ND and LO. A study was
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labelled as eligible when it contained information on all
four domains (Pharmacokinetics, Antibiotics, Critically
ill and Children). Studies were labelled as ineligible when
information on one or more domains was missing, when
the study population consisted of only adults or neonates
(< 1 month old), and/or when all patients were treated with
renal replacement therapy or extracorporeal membrane
oxygenation because of the direct influence on Vd and Cl
depending on the extracorporeal circuit. Critical illness was
based solely on the mention of ICU admission, regardless
of disease severity scores, organ dysfunction or diagnoses of
patients. This was done in order to best reflect the heterog-
enous PICU population and identify the impact of (critical)
illness on their PK parameters. When the study population
consisted of a mix of critically ill children and non-critically
ill children, neonates or adults studies were only included
when PK data of the critically ill children was reported sepa-
rately. Other exclusion criteria were non-English articles,
conference abstracts, letters to the editor, no full-text avail-
ability, animal studies, in vitro studies and/or oral dosing.
Review articles were also excluded but the references in
these reviews were screened for additional relevant articles
not identified by our search.

Overlapping articles were included and non-overlapping
articles between the three reviewers were screened again
by SH and SdW and included if labelled as eligible by both
researchers.

2.3 Data Extraction

For each eligible article data was systematically extracted
and all the extracted data was entered in a database using
Microsoft Excel. The extracted data included type of anti-
biotic studied, study design, dose, sample size, type of

population, disease severity based on validated clinical
scores (PELOD, PIM, PRISM-scores or STAT categories),
renal dysfunction and age of subjects. In addition, the PK-
analysis used in the article was studied, whether a (Pop)PK
model was used, how many compartments were included in
the model, studied co-variates on PK, what PK-parameters
were found, and any additional findings of interest were
noted. Lastly, when a dosing advice for critically ill children
was provided, this was noted.

The PK-parameters of interest that were collected were
Vd, Cl, trough (Cmin) and peak (Cmax) concentrations,
AUC, half-life (#/2) and elimination rate constant (k). All
values of PK-parameters were normalized in order to ease
comparability between different studies. Vd was normalized
to liters/kilogram (I/kg) and Cl values to 1/kg/h (I/kg/h). In
case of allometric scaling or covariate contribution to one
of these parameters, which is often seen in pharmacometric
models, the covariate values of a mean/median study patient
were used to normalize PK-parameter values.

PD parameters that were collected included the prob-
ability of target attainment (PTA), MIC and PD targets for
time-dependent, concentration dependent and exposure
dependent antibiotics: fT >MIC, AUC/MIC and Cmax/MIC,
respectively.

3 Results

The literature search in PubMed, EMBASE and Web of Sci-
ence yielded 1742 articles. After the exclusion of duplicate
articles within each database and between the 3 databases a
total of 1313 articles were screened. From the screening pro-
cess a total of 70 articles were labelled as eligible (Fig. 1).

Table 1 Overview of final search strategy in PubMed with MeSH (Medical Subject Headings) terms and free text keywords for each of the four

domains (Pharmacokinetics, Antibiotics, Critically ill, and Children)

Pharmacokinetics Antibiotics Critically ill Children

MeSH terms MeSH-terms MeSH terms MeSH terms
Pharmacokinetics [Mesh] Anti-Bacterial Intensive Care Units [Mesh] Adolescent [Mesh]
Pharmacokinetics [Subheading] Agents [Phar- Critical Illness [Mesh] Child [Mesh]

Monte Carlo Method [Mesh]
Drug Monitoring [Mesh]
Drug Dosage Calculations [Mesh]

macological
Action]
Anti-Bacterial
Agents [Mesh]
Title/abstract
See Electronic
Supplementary
Material

Title/abstract

Peak concentration*, Trough concentra-
tion*, Area Under Curve, Therapeutic
Equivalency, Tissue Distribution,
Pharmacokinetic*, PopPK, Target-
attainment, Drug monitoring, TDM,
Pharmacodynamic*, Dose calculation*,
Drug dos*

Critical Care [Mesh]

Title/abstract

Severe ill, severe illn*, severely ill, PICU, Child*, schoolchild*, infan*,
PICUs, ICU, ICUgs, Critical Care, Inten-
sive Care Unit*, serious illn*, serious
ill, seriously ill, critical illn*, critical ill,
critically ill*

Infant [Mesh]

Title/abstract

adolescen®, pediatri*, paediatr*,
boy, boys, boyhood, girl, girls, girl-
hood, youth, youths, baby, babies,
toddler*, teen, teens, teenager*,
postnat®, puberty, preschool*,
suckling*, picu

Terms within each domain were combined with OR, all domains were combined with AND, as shown in the Electronic Supplementary Material
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Twenty-three of the included articles did contain infor-
mation on the PK of antibiotic agents in a population of
critically ill children but results were mixed with either adult
data or non-critically ill data and therefore excluded. One
article [18] was included from the references of included
articles and/or reviews regarding the subject. Additionally,
two articles that did not come up during the systematic
review and were not mention in references of reviews were
added after the peer-review process [19, 20]. Data-extraction
was performed for 50 full-text articles with data on the PK
of antibiotics in critically ill children. A complete list of all
50 articles and extracted PK-data is presented in Table 2.

3.1 B-Lactam Antibiotics
3.1.1 Penicillins

3.1.1.1 Amoxicillin and Clavulanic Acid Both studies on
amoxicillin PK included patients that were treated with
amoxicillin combined with clavulanic acid as a f-lactamase
inhibitor [21, 22]. Doses used in the studies ranged from a
single dose of 50 mg/kg amoxicillin and 5 mg/kg clavulanic
acid to 100 mg/kg/day of amoxicillin and 20 mg/kg clavu-
lanic acid every 6 h. Patient characteristics within these 2
studies varied: Jones et al. [22] studied 15 children with
pneumonia, asthma or pyelonephritis who were slightly
older than the 50 patients in the study by de Cock [21]. In
addition, data on renal function were not reported by Jones,

nor was there any information on disease severity. The
study by De Cock et al. included a varied PICU population
of which 44% received the combination for postoperative
prophylaxis. Patients had a median (range) PRISM-score of
6.5 (0-32) and median (range) PELOD score of 1 (0-31).

Median estimated Vd was 0.368 and 0.469 I/kg for amoxi-
cillin and 0.306 and 0.434 1/kg for clavulanic acid for the
De Cock and Jones study, respectively. Cl of amoxicillin,
normalized to I/kg/h, was comparable between both studies
at 0.242 and 0.257 1/kg/h, whereas clavulanic acid Cl was
slightly higher in the study by Jones et al. (0.256 1/kg/h)
compared to 0.174 I/kg/h in the study by De Cock et al.

De Cock et al. estimated PK-parameters using popula-
tion PK (PopPK) modelling. They identified weight, post-
menstrual age, cystatin C based estimated GFR (eGFR) and
vasopressor treatment as significant co-variates on either Vd
and/or ClI of amoxicillin and clavulanic acid. Target attain-
ment, which was defined as fT > MIC of 40% against an MIC
of 8 mg/l, was reported only for clavulanic acid for 3 differ-
ent dosing regimens, including dosing regimens of 25 mg/
kg every 4-12 h the authors based on the British National
Formulary for Children and Samford Guide for Antibiotic
Therapy. Target attainment was estimated at 48-96% for
bolus infusions and 53-99% for extended infusions of 1 h.
Target attainment for amoxicillin was not reported in exact
numbers but was identified from figures. Target attainment
of time above MIC of 8 mg/l ranged from 10 to 85% for
three different dosing schemes using bolus injections in
children with no vasopressors and no renal dysfunction.

Fig.1 A total of 1742 articles

were screened from the 3 MEDLINE EMBASE Web of Science

databases. After excluding 388 782 572

duplicates and non-eligible arti- I I

cles and including articles from

references a total of 48 eligible .

articles were analyzed for data Duplicates ¢ excluded Reason for exclusion:
extraction. RRT renal replace- 429 - 354 Neonatal studies

ment therapy, ECMO extracor-

v - 285 No antibiotics

poreal membrane oxygenation,
ICU intensive care unit

Screened for eligibility

- 137 No pharmacokinetic data
- 130 Adult studies

1313
- 91 Conference abstract
luded - 72 Not critically ill children

- 70 Review of literature
- 64 Patients on RRT or ECMO

v - 14 Not full-text

Eligible from search -13 Non English
70 -7 Animal studies

Reason for exclusion:
-20ICU & non-ICU patients
- 3 Adult & pediatric patients

<_excluded_
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- 4 Oral medication
- 2 In vitro studies

| —included—|” 1 Included from references
v - 2 Included after peer-review

Data extraction
50
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Prolonged infusion of 1 h increased PTA to 25-100%. The
authors propose a daily amoxicillin dose of 150 mg/kg/day
in six doses. Duration of infusion is dependent on renal func-
tion, with an extended infusion in children with cystatin C
concentrations < 1 mg/1.

3.1.1.2 Piperacillin and Tazobactam Five studies reported
PK-parameters of piperacillin with or without the addition
of the B-lactamase inhibitor tazobactam [3, 23-26]. Median
doses used ranged from 300 to 400 mg/kg/day in 3—4 doses,
with 1 study using a prolonged infusion time of 4 h [23]
and 1 study not reporting exact dosing schedules used in
the study [3]. In total 153 patients were included in these
5 different studies, with a median age of 0.8—5 years and
ages ranging from 0.1 to 18 years. Risk of mortality was
reported in 1 study [25], with a median PRISM-score of 8
(range 0—40) and median PELOD scores, reported in 2 stud-
ies [25, 26], ranged from 1 to 10. Patients with renal dys-
function were largely excluded from analyses, with only 1
study including 1 patient with renal dysfunction within the
cohort [26].

Reported median piperacillin Vd ranged from 0.240 to
0.444 1/kg with the study cohort consisting of predominantly
septic, neutropenic and/or burn patients showing the highest
Vd [24]. Cl ranged from 0.190 to 0.299 1/kg/h. Patients from
the cohort with the lowest median piperacillin Cl still had a
particularly high median eGFR of 142 ml/min/1.73 m* based
on serum creatinine[26].

Four of the 5 studies used a PopPK approach and data was
best described by a 2-compartment model in 2 studies [24,
25]. In 2 other studies a 1-compartment model best fitted the
data, probably because of the use of an extended infusion
time [23] or a lack of samples in the distribution phase [26].
All models included weight as a covariate for Vd and/or CL.
Additional covariates that were included in the final models
of these studies were post-menstrual age with a maturation
coefficient [25] and eGFR [26] as a covariate for piperacil-
lin Cl and PELOD-2 scores for Vd [26]. Nichols et al. [23]
included gender as a covariate in their final model for tazo-
bactam Cl. Other covariates that were tested for significance
but were not included in the final models include cystatin
C based eGFR, PRISM-scores, reason for admission, and
co-medication [25].

Target attainment of piperacillin was tested for multiple
targets and dosing schemes using Monte Carlo simulations
in all four modelling studies. Three of these four used the
same target of fT >MIC of 50% against an MIC of 16 mg/l,
reflecting the clinical breakpoint of Pseudomonas aerugi-
nosa [23-25]. Simulations in all studies concluded extended
infusion over> 1 h is needed to reach a PTA of >90%, but
proposed daily piperacillin doses varied, ranging from
300 mg/kg/day by Nichols et al. up to 600 mg/kg/day by
Béranger et al.

3.1.2 Cephalosporins

3.1.2.1 Cefotaxime While three studies were found report-
ing cefotaxime PK in critically ill children [27-29], most
children in the study by Von Hattingberg et al. were neo-
nates, with only two patients>1 month of age included
in the PK analysis [27]. Doses used varied from 100 to
300 mg/kg/day in 3—4 daily doses, with patients>50 kg
receiving adult doses of three daily doses of 1000 mg in the
study by Béranger et al. [28]. Although the exact reason for
admission was only clear from the study by Hartman et al.
[29], organ dysfunction scores and length of PICU stay was
reported in two studies [28, 29]. Organ dysfunction scores
and disease severity were highest among the meningococ-
cal septic shock patients studied by Hartman et al. PELOD
scores were included in both the model building and valida-
tion cohorts by Béranger et al. [28].

Vd and CI were reported by Von Hattingberg and
Béranger et al. For the typical study patient (weighing
10.9 kg and 23.7 months of age) in the study by Béranger
the median Vd and Cl were 0.31 1/kg and 0.334 1/kg/h,
respectively. The authors used allometric scaling based on
both body weight and postnatal age to predict individual
cefotaxime Cl. The two patients in the study by Von Hat-
tingberg et al., one with and one without kidney injury, had
aVdof 0.16 and 0.31 I/kg and Cl of 0.109 and 0.479 l/kg/h,
respectively. Elimination %2 of cefotaxime were similar in
both studies, ranging from 0.34 to 1.15 h in the study by
Béranger et al. and 0.46—1.02 h for the two patients without
and with kidney injury by Von Hattingberg et al.

Both studies used a one-compartment model to describe
PK parameters, possibly due to the limited sampling strategy
with a median of two samples per patient. The co-variates
studied by Béranger et al. include weight, age, serum cre-
atinine, and PELOD-scores [28]. Only weight and age were
included in the final model as significant covariates on Cl
and/or Vd. Monte-Carlo simulations were performed with
several dosing regimens to identify the needed dose to reach
the target of fT > MIC and {T > 4xMIC of 100%, against
MIC values of 0.5 mg/l. The authors concluded that inter-
mittent dosing without prolonged infusion, for patients over
1 month of age, would require a daily dose of 4500 mg/kg to
reach these targets. However, continuous dosing of 100 mg/
kg/day would be sufficient to reach adequate targets in all
age groups. Therefore, the authors advised to use continu-
ous dosing for optimal cefotaxime dosing in critically ill
children.

The study by Hartman et al. found a slightly higher
percentage of target attainment (71.3%) for the PD-target
of fT > 4xMIC of 100% against an MIC of 0.5 mg/1 using
standard doses. Higher MIC values of 1 and 4 mg/l, that
might be more clinically relevant, showed a lower target
attainment of 55.1% and 14.7%, respectively. The authors

A\ Adis



194

S.J.F. Hartman et al.

state that this is a best-case scenario of target attainment,
as samples were randomly drawn across the dosing interval
and no PK model to simulate actual probability of target
attainment was developed.

3.1.2.2 Cefuroxime We identified only one study on cefuro-
xime PK in PICU patients [30], 15 patients in total, includ-
ing 4 non-critically ill patients with pharyngitis. The 11
PICU patients were divided in 2 groups: a severely ill group
of 5 PICU patients not requiring mechanical ventilation, and
a very severely ill group with 6 patients requiring mechani-
cal ventilation. No severity of illness scores were provided.
All patients were treated with a cefuroxime dose of 400 mg/
kg/day in four doses as intermittent infusions over 30 min.

Both Vd and CI were higher in mechanically ventilated
patients compared to control and PICU patients that did not
require mechanical ventilation. Even though differences
between Vd and CI between control and non-intubated
PICU patients were minimal, #/2 of cefuroxime was longer
in both critically ill groups compared to the control patients
(1.0-1.3 h vs. 0.5 h).

The study used both 1- and 2-compartment models to
describe the obtained PK-data, for each individual patient. In
the majority of patients (8/11) a 2-compartment model gave
the best fit of the observed data. No dosing advice was given
to account for these PK changes in critically ill patients.

3.1.2.3 Cefazolin Three cefazolin studies were included in
our review, all conducted before, during or after cardiopul-
monary bypass (CPB) [19, 20, 31]. One study included only
patients under 10 kg bodyweight and up to 2.6 years of age
[31] while the other 2 studies basically covered the whole
pediatric age range from birth to 16 years old [19, 20]. Used
cefazolin doses varied between the 3 studies with de Cock
et al. and Cies et al. both using 25 mg/kg/dose preopera-
tively and during CPB and Haessler et al. using 40 mg/kg
preoperatively and 105 mg/kg/day in 3 doses in the days
after surgery. Interestingly, Cies et al. also added a dose of
25 mg/kg bodyweight cefazolin to the CPB primer solution
to ensure stable antibiotic levels during CBP.

In the study by Haessler et al. cefazolin concentrations
during and after surgery showed a mean Cmax of 166 mg/1
and a steady-state Cmin of 15 mg/l was reached [31]. Elimi-
nation rate constants of cefazolin were significantly lower
during CBP (0.331/h) and significantly higher after surgery
(1.429/h) compared to before surgery (0.738/h). In addition,
the Vd increased during CBP due to increased blood vol-
ume during extracorporeal circulation (0.357 1/kg compared
to 0.191 1/kg before surgery). After surgery Vd returned
to baseline values (0.127 1/kg). This increase in Vd dur-
ing CPB was also seen by de Cock et al. who used a CPB-
compartment ranging from 150 to 1000 ml in their model.
The mean population values for Cl and Vd in their model,
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0.229 1/kg/h and 0.635 1/kg respectively, show a comparable
elimination rate constant but a higher Vd, possibly due to
including older patients in their cohort. PK parameters in the
study by Cies et al. are hard to compare with the other stud-
ies due to their alternative dosing strategy, giving markedly
lower clearance values of roughly 0.0005 I/kg/h. Volume
of distribution values found by Cies et al. were comparable
with those found by de Cock et al., except for the oldest age
group of 4-16 years old.

Both de Cock et al. [19] and Cies et al. [20] used a PopPK
approach by using a 2-compartment and 1-compartment
model, respectively. Both models included bodyweight and
age in their final models, with de Cock et al. also including
eGFR as a covariate for Cl and albumin concentrations as a
covariate for protein binding. Dosing simulations were per-
formed only by de Cock et al., using a PD-target of 50-100%
fT > MIC against MICs ranging from 0.125 to 16 mg/l. They
conclude that the standard dosing regimen of 25 mg/kg/dose
shows a PTA of roughly 50%, while the optimal dosing regi-
men that used doses up to 40 mg/kg/dose showed a PTA of
88-99%. Cies et al. conclude that adding cefazolin to the
CPB primer solution ensures stable, adequate concentra-
tions of cefazolin throughout surgery, but more research is
needed.

3.1.2.4 Ceftaroline Cies et al. mentioned TDM outcomes
in 7 patients treated with non-standard (higher) doses of
60 mg/kg/day in 4 doses in a paper on multiple antibiotics
[3]. The majority of patients did not require an additional
dose alteration to achieve target attainment.

Cies and colleagues also published a case series of 7
patients treated with ceftaroline, presumably the same
patients as mentioned in the previous publication, which
is the only PK-data of ceftaroline we identified [32]. All
patients were treated for a suspected MRSA infection and
patients with an estimated creatinine clearance below 60 ml/
min/1.73 m? were excluded. Patients started with a non-
standard dose of 54-60 mg/kg/day, but dosing regimens
were altered to reach the target of fT >4-6 x MIC for 40% of
the dosing interval, with MICs ranging from 0.38 tol mg/l.
Individual PK-parameters for several dosing regimens are
mentioned, but for the starting regimen median Vd, CI and
12 were 0.41 1/kg, 0.218 I/kg/h and 1.3 h. The authors com-
pare their observed PK-parameters to the PK-parameters
for healthy pediatric patients in the package insert. The
patients in the study showed a higher median Vd (0.41 I/
kg), higher CI (0.218 1/kg/h) and shorter #¥2 (1.3 h) than
the package insert estimates, which were 0.28 1/kg, 0.138 1/
kg/h and 2.7 h, respectively [33]. All patients required a
dose alteration or a non-FDA-approved dose to reach tar-
get attainment, and all patients eventually were cured from
their MRSA infections. The authors advise a 6-h dosing
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interval in bloodstream infections, pneumonia or meningitis
with MRSA and a dose of 15 mg/kg/dose in patients with
increased Vd.

3.1.3 Carbapenems

3.1.3.1 Meropenem For meropenem 1 case report and 1
PopPK model, both by Cies et al., were identified [34, 35].
The case report describes a 2-year-old girl with a Serratia
marcescens ventriculitis [34]. She was treated with 150 mg/
kg/day intermittent infusions for 30 min, but this resulted
in undetectable meropenem plasma concentration 4 h after
dosing. Eventually she was successfully treated with an
increased dose of meropenem of 200 mg/kg/day as a con-
tinuous infusion, reaching plasma concentrations of 13 mg/1
and CSF concentrations of 0.5 mg/l. The calculated Cl of
this patient was 0.612 1/kg/h. The authors claim this clear-
ance is higher than reported values in healthy adults and
critically ill children on extracorporeal membrane oxygena-
tion, but exact numbers are not reported.

The 2017 PopPK model by Cies et al. included data from
9 patients treated with doses ranging from 40 to 200 mg/kg/
day [35]. Most patients received intermittent infusions in
30 min, 2—4 times per day. One patient was treated with con-
tinuous infusion of 200 mg/kg/day and one patient received
100 mg/kg/day in 2 daily doses as prolonged infusions
for 2 h. Median (range) age of patients was 2 (1-9) years.
No patients with renal dysfunction were included, and the
median eGFR was 168 ml/min/1.73 m?, indicating possible
ARC within the study population.

A roughly 2 times larger Vd (0.78 I/kg) and slightly
higher Cl1 (0.419 I/kg/h) were described in this cohort by
Cies et al. [35]. compared to other studies in clinically stable
pediatric patients by Du et al. [36] and Blumer et al. [37]
(Vd 0.2-0.43 1/kg and C1 0.18-0.34 1/kg/h, respectively).

After a sparse sampling scheme with a total of 16 mero-
penem concentrations a Pmetrics 2-compartment PopPK
model was used to estimate PK. Weight, age and creatinine
clearance were considered to be significant covariates for
Vd and/or CL

Target attainment of 40% T > MIC was only reached in
simulations of dosing regimens with prolonged or continu-
ous infusion of 120-160 mg/kg/day, with MICs ranging
from 0.25 up to 2 mg/1. Target attainment of 80% fT >MIC
was only reached with continuous infusion for MICs up to
2 mg/l. For higher MICs, the PTA was below 90% in all
simulations.

3.1.3.2 Imipenem Gianonni et al. studied imipenem PK
in 19 critically ill children ranging from 9 days to 12 years
of age [38]. Patients were treated with 100 mg/kg/day in
3—4 daily 30-min infusions. The median (range) PRISM
score was 9 (0-23) and although patients with renal dys-

function were included, the exact number of patients with
impaired renal function is unclear.

A non-compartmental analysis was performed to esti-
mate Cl, #/2 and Vd of imipenem in critically ill children
after the first dose and at steady state. All PK-parameters
slightly increased from first dose to steady state. The
authors compared their findings to other studies in (non-
critically ill) children with imipenem. PK-parameters were
within the reported values for pediatric patients, with a
slightly lower Cl, higher Vd and a longer %2 in critically
ill patients. Moreover, the correlation between several
covariates and the PK-parameters was tested, including
age, weight, creatinine clearance, albumin, lactate, dis-
ease severity, blood pressure and heart rate. Eventually, Cl
parameters correlated best with creatinine clearance, mean
arterial pressure and lactate acidosis, although it is unclear
how creatinine clearance was measured or estimated.

3.1.4 Other Penicillins

3.1.4.1 Aztreonam The only PK-data on aztreonam, a
broad-spectrum monobactam antibiotic agent, is found
within a case-report by Cies et al. [39]. In this case-report
the authors describe a case of a 16-year-old tetraplegic
patient with a pneumonia caused by a multi-resistant Pseu-
domonas aeruginosa [39]. This pathogen was susceptible
to aztreonam against an MIC of 6 mg/l and the patient was
treated with aztreonam 8 g/day in 4 prolonged infusions of
4 h. CI was 0.138 I/kg/h, almost double of the adult CI val-
ues reported in the package insert (0.078 I/kg/h) [40]. The
used dose resulted in plasma concentrations above 6 mg/l
for at least 40% of the time with a Cmax of 71 mg/l.

3.2 Glycopeptide Antibiotics
3.2.1 Vancomycin

A total of 17 studies reporting PK-parameters of vancomy-
cin in critically ill children were identified by the search,
with more than 1000 PICU patients included in total
over the whole pediatric age range [41-57]. Most studies
included a mixed population, but also specific populations
(such as patients with hematologic/oncologic [43, 45], car-
diac [51, 53, 56, 57], traumatic [50] and infectious dis-
eases [44, 48]) being studied separately. Four studies [42,
43, 46, 48] were prospective PK studies and the remaining
13 studies were based on TDM data.

Most studies used intermittent dosing with daily doses
of vancomycin ranging from 30 to 60 mg/kg/day, with only
1 study reporting higher mean doses (81 mg/kg/day) [45]
and 1 study not mentioning the dose at all [41]. Two studies
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reported data on continuous dosing schedules, using a load-
ing dose of 15 mg/kg and a maintenance dose of 40-45 mg/
kg over 24 h [42, 55].

Vancomycin is predominantly cleared by glomerular fil-
tration and is also associated with nephrotoxicity, therefore 7
studies mainly reported findings on the effect or occurrence
of acute kidney injury (AKI) and/or ARC in patients treated
with vancomycin [41, 44, 49, 50, 52, 54, 56]. Several studies,
including 2 studies with over 250 patients, reported conflict-
ing results regarding vancomycin Cmin in patients with and
without AKI. Bonazza et al. [41] showed increased Cmin in
patients with AKI whereas Totapally et al. [49] and Holsen
et al. [54] both found no significant differences in Cmin and/
or Cmax between patients with and without AKI. To identify
whether higher vancomycin Cmin lead to kidney injury Cies
et al. performed a retrospective study comparing 2 groups,
with either a high (15-20 mg/l) or low (10-15 mg/l) target
Cmin of vancomycin [44]. The incidence of AKI was not
significantly different between these 2 groups.

ARC is the main focus of 2 studies, 1 case report [50]
and 1 cohort study with 250 patients aged 0-21 years old
[52]. ARC was defined by an estimated creatinine clearance
of > 150 and > 160 ml/min/1.73 m? by Goboova et al. [50]
and Avedissian et al. [52], respectively. The patient in the
case report required a doubling and tripling of the initial
dose (from 2 g/day in 2 doses to 4-6 g/day in 2 doses) to
reach therapeutic Cmin of 10-15 mg/l. Avedissian et al.
found 29 patients with ARC, 12% of their total cohort [52].
PK data were analyzed using pop-PK with NONMEM.
Patients with ARC were significantly older and had lower
baseline serum creatinine levels. PK-parameters for vanco-
mycin were significantly different in patients with ARC: they
had lower median Cmin, higher median Cl, larger median
Vd and a shorter median #/2. Subtherapeutic drug concentra-
tions were more common in patients with ARC compared to
patients without ARC (79% and 58%, respectively), but this
difference was not statistically tested. Both age and serum
creatinine were independent covariates for Cl. Weight was
the only independent covariate for Vd.

Of the 17 vancomycin articles, 8 reported Cmin and/or
Cmax as the only PK-parameters. Six of these have already
been discussed in the previous paragraphs regarding AKI
or ARC [41, 44, 49, 50, 54, 56]. The 2 remaining articles,
by Glover et al. [47] and Thomas et al. [53], both included
patients with a normal renal function at the start of treat-
ment. Both studies analyzed PK-parameters in steady state
after the initial dose, while Glover et al. also looked at the
final doses used after TDM. After the initial therapy with a
mean dose of 47.3 mg/kg/day mean Cmin were 6.2 mg/l on
average [47]. Mean doses after TDM were roughly 60 mg/
kg/day, resulting in higher mean Cmax and Cmin of 26.0 and
7.8 mg/l, respectively. The authors advised to use 60 mg/
kg/day in critically ill patients with normal renal function
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to ensure optimal target attainment, but do not specify the
desired target concentrations. Thomas et al. included both
neonates, infants and children in their study [53]. They found
that roughly 50% (39 of 77) of patients reach adequate Cmin
(using a dose of 3040 mg/kg/day and a target Cmin between
8 and 15 mg/l) and sub- and supratherapeutic concentrations
in 31.2% and 18.2% of patients, respectively. Multivariable
regression analysis identified age, weight and creatinine
clearance at the start of treatment as significant co-variates
for vancomycin Cmin.

Cmin measurements are mainly used for TDM as a sur-
rogate parameter of the true PD target of vancomycin used
in adults (AUC/MIC > 400) and is commonly extrapolated
to pediatric patients. Several studies determined, simulated
or estimated AUC/MIC in their analysis [42, 43, 45, 46,
54,55, 57]. Giachetto et al. reported vancomycin AUC,_,,/
MIC on both day 1, using an initial dose of 33—45 mg/kg/
day, and after TDM on day 3 for MICs of 1 and 2 mg/1 [46].
Mean AUC:s for day 1 and day 3 were 364 mg/l/h for both
days, with roughly 50% of patients reaching the target of
AUC/MIC > 400 for the MIC of 1 mg/l and 5-7% for the
MIC of 2 mg/l. Simulations with several dosing regimens
in the study by Moffett et al. [57] showed a target attain-
ment of >90% for regimens using 60 mg/kg/day in 3—4 doses
and a target attainment ranging from 33.2 to 60% for dosing
regimens with a lower daily dose of 40-45 mg/kg/day in 2—4
doses. Other studies reporting AUC/MIC data all reported
similar percentages of target-attainment of approximately
50%, with only Genuini et al. [55] (using a continuous
dose of 45 mg/kg/day) reporting lower target attainment of
17-32%. De Cock et al. also included 3 patients with con-
tinuous dosing, but no separate PK-parameters for these 3
patients were presented [42]. The study by de Cock et al. was
the only study including free AUC/MIC values, with a target
of fAUC, ,4/MIC>200 assuming an unbound fraction of
50% [42]. The measured unbound fraction of vancomycin
in their study was higher than this assumption (71.1%). The
majority of patients (83%) reached this unbound vancomy-
cin target using a dose of 60 mg/kg/day. When using Cmin
between 5 and 10 mg/l as a surrogate target, only 8% of
patients reach this target, questioning the validity of this
surrogate target in critically ill pediatric patients.

Other PK-parameters presented in several studies include
Cl and Vd in 7 studies [43, 45, 46, 48, 51, 52, 57], with 2
studies reporting data on vancomycin #/2 [48, 52]. Mean
Vd within each study ranged from 0.44 to 1.04 I/kg, with
a median Vd among studies of 0.77 I/kg. Mean Cl in each
study ranged from 0.072 to 0.19 1/kg/h, with a median of
0.154 1/kg/h found among studies. Avedissian et al. and Gous
et al. both reported a similar #/2 (3.4 and 3.62 h, respectively)
[48, 52].
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3.2.2 Teicoplanin

Three prospective studies describe teicoplanin PK in criti-
cally ill children with ages ranging from 7 days to a maxi-
mum of 12 years old [18, 58, 59]. Doses used in studies var-
ied, with 2 studies [58, 59] using 3 loading doses of 10 mg/
kg teicoplanin every 12 h and afterwards a maintenance
dose of 10 mg/kg every 24 h. The study by Lukas et al. was
designed as a randomized controlled trial where patients in
the other study arm received a higher maintenance dose of
15 mg/kg every 24 h [58]. One study, by Reed et al., used
lower daily doses of 6 mg/kg in patients undergoing cardiac
or head surgery, without information on whether a loading
dose was given [18].

Sanchez et al. described 21 patients, mainly post cardiac
surgery, including 1 patient with renal dysfunction with an
eGFR of 55 ml/min/1.73 m? [59]. A total of 127 samples
were drawn, with a full PK-curve after the first dose of
teicoplanin and Cmin 1, 2, 3 and 7 days after the first dose.
PK-parameters were determined by a non-compartmental
analysis using an open 2-compartment model. Mean Cmax
values at 0.5 h were 26.2 mg/l, Cmin at steady state were
5.8 mg/l and mean AUC was 224.5 mg/l/h. Vd at steady state
was 1.02 I/kg and total Cl was 0.045 I/kg/h and a terminal 72
of 17.41 h. PK-parameters are presented without an indica-
tion of variance, which makes extrapolation to other cohorts
difficult. The authors used a target of > 10 mg/l, which was
reached in only 11% of Cmin samples. Teicoplanin concen-
trations and PK-parameters did not differ between patients
under 3 months, 3—12 months and over 12 months of age
although it is unclear how many patients were represented
in each age group and the overall group size was relatively
small.

As mentioned before, Lukas et al. performed a rand-
omized controlled trial with half of the patients receiving a
larger maintenance dose [58]. However, no significant differ-
ences in teicoplanin concentrations were observed between
these 2 dosing strategies. The authors did find a significant
difference between young infants (aged < 12 months) and
older children (> 12 months), with a lower target attainment
in older children (65%) compared to young infants (92%).
Further analyses in this study focused on the differences in
PK-parameters between these 2 age groups, regardless of the
randomized maintenance dose. Children > 12 months had a
higher Cl, larger Vd and longer #/2 (3.9 l/kg/h, 0.29 1/kg and
9.32 h, respectively) compared to younger infants (1.05 1/
kg/h, 0.09 I/kg, 8.1 h, respectively). The authors concluded
that for younger infants 3 loading doses of 5 mg/kg every
12 h followed by 4 mg/kg once daily would be sufficient
to reach adequate target attainment. For older children,
the authors advise 3 loading doses of 10 mg/kg every 12 h
and subsequently 8 mg/kg once daily as maintenance dose.

Interestingly, this is a lower maintenance dose than used in
the study population that showed limited target attainment.

Reed et al. [18] included 12 patients with a median age
of 6 years; 11 after cardiac surgery and 1 with head surgery.
Teicoplanin PK-parameters were determined after the 1st
and 5th dose in a 3-compartment model using PCNONLIN.
Cmax and Cmin were 39.3 mg/l and 1.8 mg/l, respectively,
after the first dose and 40.8 mg/l and 3.1 mg/l, after the fifth
dose. After the first dose, Vd was 0.46 1/kg and total Vd in
steady state, after the 5th dose, was 0.56 1/kg. Total body Cl
after the first dose was 2.38 1/kg/h, with renal CI contribut-
ing for 1.09 1/kg/h of total CI. After the 5th dose only total
body CI was determined at 2.19 I/kg/h. Terminal %2 was
11.3 and 16.3 h after the first and fifth dose, respectively.
No additional covariates were identified for their influence
on teicoplanin PK. The authors recommended using higher
doses (than the 6 mg/kg once daily used in this study) of
teicoplanin in critically ill children, 8 mg/kg every 12 h
to reach Cmin of > 10 mg/l and 15 mg/kg every 12 h for
Cmin > 20 mg/1 (e.g. in case of endocarditis).

3.3 Aminoglycoside Antibiotics
3.3.1 Gentamicin

Haessler et al., also determined gentamicin concentrations
before, during and after cardiac surgery in children < 10 kg
[31]. During surgery, gentamicin Cmax reached 20.8 mg/1
and mean Cmin on day 2 and 3 were 1.1 (SD 0.5) mg/I and
0.8 (SD 0.4) mg/l, respectively. Like the results for cefazo-
lin, as discussed above, k for gentamicin declined during
surgery (0.336/h) compared to baseline (0.962/h). However,
contrary to cefazolin data, the k remained significantly lower
after surgery (0.188/h). Vd also showed a different pattern
for gentamicin than cefazolin. Vd increased during surgery
(0.237 1/kg before surgery to 0.400 1/kg during surgery),
in concordance with cefazolin data. However, Vd remained
increased after surgery (0.624 1/kg) compared to baseline,
and was even larger than the Vd during surgery.

Three other studies report PK-parameters of gentamicin
in critically ill children [60-62]. The study by Kraus et al.
[62] used a dosing scheme of multiple daily doses, whereas
the other 2 studies used a single daily dose [60, 61]. Kraus
et al. used doses ranging from 1.8 to 3.1 mg/kg/dose with
2-3 daily doses, with the majority of patients (39/44) receiv-
ing 3 daily doses [62]. The group of 44 patients was divided
in 2 groups based on the number of gentamicin Cmax and
Cmin concentrations that were available. The group with
only 1 set of Cmax and Cmin concentrations (n =unknown)
was used to determine population-based PK-parameters,
which were validated in the other group of patients with
multiple sets of Cmax and Cmin concentrations. The
population-based values for Vd, Cl and #/2 were 0.416 1/
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kg, 0.114 1/kg/h and 2.8 h, respectively. PK-parameters for
the validation group with multiple sets of Cmax and Cmin
concentrations were not significantly different from these
population-based values. There was no correlation between
age or post-operative status and PK-parameters. Dosing sim-
ulations were performed using the population-based values,
with Cmax =7 mg/l and Cmin =1 mg/I as predefined target.
A mean daily dose of 9.1 mg/kg/day (range 5.2-14.8 mg/kg/
day) divided in 2—6 daily doses was predicted to reach these
target concentrations.

Lopez et al. used a dosing scheme of 8 mg/kg every
24-36 h [61]. The actual dose used in the study by Zakova
et al. is unknown, but Monte-Carlo simulations for target
attainment were performed with a simulated dose of 6 mg/
kg every 24 h [60]. Both studies used a mixed patient popu-
lation; with Zakova mainly using younger children, aged up
to 21 months and Lopez et al. including older patients up
to 14 years old (and including 14 neonatal patients as well
that are not included in this review). Both studies included
patients with renal dysfunction, 10% of patients in the study
by Lopez et al. required renal replacement therapy, but for
both studies it is unclear how many patients actually suffered
from any form of renal dysfunction.

Several co-variates were tested for their influence on
PK-parameters; both studies identified age and weight as
significant co-variates for Vd and/or CI. Serum creatinine
was correlated with the & in the study by Zakova [60], but
was not found to improve the model of Lopez et al. [61].
Other tested co-variates by Zakova et al. were gender, co-
medication, admission unit, PRISM-scores and serum albu-
min, with only the admission unit (PICU or Cardiac Critical
Care Unit) being significantly correlated with Vd and k in
multiple regression analysis [60].

The 2 measured PK-parameters by Zakova et al. are Vd
and the k [60]. Values for Cmax, AUC and the drug-free
interval were simulated using Monte-Carlo simulations.
Median Vd was 0.39 1/kg and & 0.18/h. Using a simulated
dose of 6 mg/kg every 24 h, median Cmax, AUC and drug-
free interval values were 17.6 mg/l, 78.6 mg/l/h and 15.2 h.
The simulated dosing scheme of 6 mg/kg resulted in 28.4%
of patients within the Cmax target of 16-20 mg/l (38.8%
below, 32.8% above), 22.4% of patients within AUC target
of 70-100 mg/h/1 (37.3% below, 40.3% above) and 53.7% of
patients within the drug-free interval target of 4-16 h (6%
below, 40.3% above).

Lopez et al. used non-linear mixed effect modelling to
determine population-based PK-parameters in a 2-compart-
ment model [61]. Mean population value for Cl was nor-
malized for a 70 kg patient at 2.09 1/h/70 kg, with age and
weight being significant co-variates for individual Cl val-
ues. Vd of the peripheral compartment was fixed at 3.78 1
and the volume of the central compartment was 0.35 1/kg.
Target attainment was defined as Cmax > 16 mg/l and was
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determined for different daily doses up to 8 mg/kg of gen-
tamicin. This target was reached in all non-neonates using a
dose of 7-8 mg/kg, but the authors stated that dosing inter-
vals should be extended in younger infants due to age-related
changes in renal CI and the risk of toxicity in the case of
gentamicin accumulation.

3.3.2 Amikacin

One randomized controlled trial (RCT) and 2 cohort
studies on the PK of amikacin were found [63—-65]. The
RCT, performed by Marik et al. included 60 pediatric
patients < 1 year of age that were treated with amikacin
20 mg/kg/day [63]. Patients were randomized to either
a once daily dosing scheme, including a loading dose of
20-25 mg/kg, or a twice daily dosing scheme without a
loading dose. Data was analyzed using a 2-compartment PK
model using NONLIN. The pediatric patients under 1 year
were split into 2 groups of 30 patients based on age, a group
of patients aged < 6 months (median age 8 weeks) and a
group of children 6-12 months (median age 28 weeks). Chil-
dren older than 1 year were included in a group also includ-
ing adults (median age 34 years). Vd in patients < 1 year
was larger (0.58 and 0.50 1/kg for patients < 6 months and
6—12 months, respectively) than older patients (0.33 1/kg).
In addition, Cl was higher in younger patients 0.063 and
0.068 1/kg/h vs. 0.051 I/kg/h in older patients. Elimination
Y2 was longest in children < 6 months (5.02 h) and short-
est in children 6-12 months (2.86 h). Target-attainment,
defined as Cmax > 20 mg/l and Cmin <5 mg/l, was 100% in
the group with once daily dosing and 79% (Cmax target) and
44% (Cmin target) for twice daily dosing. Children required
higher daily doses in mg/kg to reach these targets: 21 mg/kg/
day for 6-12 months, 18.6-20.5 mg/kg/day for < 6 months
and 13.8-15.5 mg/kg/day for older patients.

The 2 other studies used a cohort of patients treated with
amikacin, with Bressolle et al. including both children and
adults in their 2-compartment model [64]. Patients received
doses ranging from 70 to 1500 mg, however the dose in mg/
kg/day the pediatric patients received is not reported. The
only PK-data that was separately presented for the pediatric
population were Cmax and Cmin values. Mean Cmax and
Cmin values in the pediatric study population were 40.7 and
0.97 mg/l, respectively. These values were validated in a
test-population of 8 additional children, which showed lower
Cmax of 16.0 mg/l and higher Cmin, 1.40 mg/1. After Bayes-
ian estimation for children, predicted concentrations for
Cmax and Cmin were 16.2 mg/l and 1.45 mg/l, respectively.

Sherwin et al. only included patients with burns in their
study, with a median burned surface area of 43% [65]. Both
studies by Bressolle and Sherwin used a wide pediatric
age range from 6 months to 15 and 17 years, respectively,
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and both studies included patients with renal dysfunction
[64, 65]. Studied covariates included weight and height,
and Sherwin et al. also tested age, gender, percentage of
burned surface area and serum creatinine as covariates,
but none improved the model significantly [65]. Popula-
tion parameters for Cl and Vd were normalized for a typical
70 kg patient. Amikacin CI was 5.98 1/h/70 kg and Vd was
16.7 1/70 kg for the central compartment and 40.1 1/70 kg for
the peripheral compartment. These values are higher than
the Cl and Vd of the previously discussed study by Marik
et al. [63], indicating altered PK in burn patients.

3.3.3 Netilmicin

Only 1 study on netilmicin PK in pediatric patients was
available [66]. This study by Wagner et al. mainly included
neonatal patients; only 9 of the total of 66 patients, with a
mean age of 4.6 years were admitted to the pediatric ICU.
Patients were treated with a once daily dose of 6 mg/kg.
The authors mentioned a reduced dose and prolonged dosing
interval for patients with renal insufficiency, but no patients
with renal dysfunction were included in the pediatric cohort.
The only PK-data that are presented are Cmax and Cmin val-
ues for pediatric patients. Mean Cmax values were 33 mg/l
(range 23—41 mg/l) and Cmin values were 1.3 mg/I (range
0.2-3.2 mg/1). The authors concluded that once daily dosing
of netilmicin is sufficient to reach adequate targets.

3.4 Other Antibiotics Agents with Eligible Studies
in Our Search

3.4.1 Daptomycin

2 case-reports and 1 pharmacometric model were available
for daptomycin that included PK parameters [67-69]. Both
patients in the case reports suffered from cardiac problems,
a 13 year old boy with endocarditis [67] and a 8 year old
girl with multi-organ failure (including renal insufficiency)
awaiting heart transplantation [68]. Similar doses were used
in both studies (6—8 mg/kg every 24 h). The dose interval
was prolonged to 48 h for the patient with renal insufficiency
[68].

Morris et al. only presented steady state Cmax and Cmin
values, which were 68 mg/l and 14.6 mg/1, respectively [68].
These values were within the desired target of Cmin below
20 mg/l. Akins et al. provided Cmax and Cmin concentra-
tions after a single dose and in steady state [67]. In addition,
Vd, Cl, 4, k and AUC values were presented for both the
first dose and in steady state. Cmax were higher and Cmin
concentrations were lower than the values reported by Mor-
ris et al., both after the first dose as in steady state. Values
in steady state for Vd and CI were 0.089 1/kg and 0.0137 I/

kg/h, respectively. %2 in steady state was 4.58 h, with an
AUC of 594 mg/l/h.

The pharmacometric model by Antachopoulos included
data of 4 patients aged from 8 to 14 years old with mixed
disease conditions in their one compartment model [69].
On the first day of treatment, 3 of the 4 patients met pedi-
atric criteria for sepsis. The patients with sepsis had a sig-
nificantly higher Cl (median CI 0.0423 1/kg/h) compared
to the patient without sepsis (0.0151 I/kg/h). Vd was also
higher in patients that met sepsis criteria (0.26 I/kg, com-
pared to 0.16 I/kg for the non-sepsis patient). This resulted
in a lower AUC,,__, and lower Cmax values of daptomycin
in sepsis patients compared to non-sepsis patients (AUC
0-co 236.5 mg/h/l vs. 663.9 mg/h/l and Cmax 35.4 mg/l vs.
59.8 mg/l, respectively). PK parameters on the 5th day were
comparable with the first day, with a higher Cl, larger Vd,
lower AUC_,4, and Cmax in the 2 patients meeting sepsis
criteria.

3.4.2 Ciprofloxacin

Lipman et al. published the only study on ciprofloxacin in
20 patients between 3 months and 5 years with severe sep-
sis [70]. Patients received a daily dose of 20 mg/kg/day in
2 doses during 1-2 weeks of treatment. The authors used
non-compartmental analysis to determine PK-parameters
in 2 age groups, 3 months—1 year and 1-5 years of age. No
significant differences in PK-parameters between these 2 age
groups were seen. When using a target of Cmax/MIC =38, the
authors concluded that a dose of 20 mg/kg/day is sufficient
to cover pathogens with an MIC up to 0.8 mg/l. To reach
the target of AUC/MIC of 100-150 in PICU patients with
a normal renal function infected by more resistant micro-
organisms the authors advise a daily dose of 30 mg/kg/day
in 3 doses.

4 Discussion

Although antibiotic use in critically ill children is one of
the pillars of intensive care treatment, from our review we
can conclude that current knowledge on the PK and target
attainment of these drugs in critically ill children is rela-
tively scarce. Nevertheless, an important finding is that tar-
get attainment is often suboptimal in this patient population
using standard doses of different classes of antibiotics [19,
21,24-26, 28, 29, 41,43, 45, 46, 50, 55, 56, 59, 62, 63, 69].

Not unexpectedly, a large number of manuscripts focus
on agents where TDM is generally applied during routine
care, such as vancomycin and gentamicin, as data are rela-
tively readily available from medical records. In contrast,
to the best of our knowledge, other frequently used agents
(like ceftriaxone, ceftazidime, penicillin, flucloxacillin,
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metronidazole) completely lack PK data in the pediatric
ICU population [71, 72]. In addition, only the minority of
included articles (22/50) provide dosing guidance for clini-
cians, even though in most publications (38/50) the neces-
sary data on Vd and Cl was available to simulate optimal
dosing regimens.

When comparing the findings on these different antibiot-
ics in critically ill children to data in critically ill adults and/
or healthy children, it is apparent that PK alterations occur in
this patient population. For example, CI values of amoxicil-
lin are almost double in critically ill children (0.24 1/kg/h)
compared to critically ill adults (0.13 I/kg/h) but with a simi-
lar Vd (0.37-0.47 1/kg in children vs. 0.37 1/kg in adults)
[73]. For piperacillin, two studies in critically ill children
show slightly higher Cl values [24, 25] than in critically ill
adults with hyperfiltration [74], but this is not supported by
two other publications [23, 26]. Cefotaxime CI was almost
50% higher in critically ill children [28] while mean Vd was
markedly smaller than values reported in non-critically ill
children [75], resulting in a shorter 72 and higher recom-
mended doses to reach common PD targets. Median values
of vancomycin Cl and Vd in the studies in this review exceed
values of non-critically ill children, pediatric cancer patients
[76, 77] and critically ill adults [78, 79].

These altered PK parameters are most likely the result of
a combination of disease-related alterations and age-related
changes in PK [5]. Disease-related changes may impact PK
by a multitude of pathophysiological mechanisms. Firstly,
fluid resuscitation is a common therapy for hemodynami-
cally unstable critically ill patients, that may result in an
increase in total body water, larger Vd and therefore dilution
of hydrophilic compounds. Systemic inflammatory response
syndrome (SIRS), caused by inflammatory cytokines,
induces capillary leak and the shift of intravascular fluid to
the extravascular space [80]. This ‘third-spacing’ of fluid
may reduce drug concentrations, not only in plasma but also
at the site of infection. Furthermore, hypoalbuminaemia is
common among critically ill children, causing a relatively
large fraction of unbound drug that is available to distribute
to peripheral tissues, which mostly influences highly protein
bound drugs (> 80% protein binding) [42, 81, 82]. These
alterations in Vd mainly affect concentration-dependent anti-
biotics, such as aminoglycosides which require a high Cmax
value for optimized bacterial killing [83, 84]. Also, inflam-
mation and critical illness appear to downregulate drug
metabolism, such as seen with CYP3A-mediated midazolam
metabolism in critically ill children [85] and CYP2C9-medi-
ated warfarin metabolism in critically ill adults [86].

In addition to changes in Vd, protein binding and drug
metabolism, renal Cl of drugs can be altered during critical
illness. AKI in critically ill children is primarily caused by
reduced renal blood flow (e.g. due to volume depletion or
decreased arterial blood pressure) and glomerular or tubular
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damage due to cytokine release, disseminated intravascular
coagulation or nephrotoxic agents [87, 88]. AKI is common
with a prevalence of around 35% in critically ill children,
causing a reduced renal CI and potential supratherapeutic or
toxic concentrations of renally excreted drugs [89]. While a
general picture of reduced target-attainment in critically ill
children may arise from our review, several studies do report
supratherapeutic plasma concentrations for some of the toxic
antibiotics like aminoglycosides or glycopeptides in a small
proportion of patients [41, 43, 53, 63].

This counter-intuitive finding of reduced exposure in
critically ill children, may be explained by a high incidence
of ARC. Contrary to AKI, ARC has been identified in up
to 67% of both critically ill adults [8] and children [10].
This is in line with several studies in this review showing
extremely high drug Cl and/or eGFR in this patient popu-
lation [21, 26, 50, 52]. A recent review by Dhont et al. on
ARC in children shows that time-dependent antibiotics, like
B-lactam antibiotics, which require drug concentrations
above an MIC-threshold for a prolonged period of time,
could be at the highest risk for non-target attainment due to
this phenomenon [9]. However, a correlation between ARC
and subtherapeutic drug concentrations or clinical outcome
could not be made due to multiple confounding factors that
also contribute to subtherapeutic drug concentrations and
adverse outcome of critically ill children.

Furthermore, age-related changes in the processes
involved in disposition, metabolism and excretion of drugs
may impact both Vd and Cl. Changes in Vd in neonates and
young infants may results from a different body composi-
tion, with a higher proportion of body water compared to
adults [11], mainly influencing hydrophilic compounds like
the majority of antibiotic agents. Developmental changes
affecting drug Cl include a lower (absolute) GFR and tubular
excretion in neonates and children younger than 2 years of
age [11]. Interestingly, when Cl values are weight-corrected
the renal clearance reaches adult levels relatively quickly,
within the first month of life [90]. In addition, weight-cor-
rected GFR is almost 70% higher in 2-5 year old children
than in adults while renal blood flow and tubular secretion
stay relatively stable [91]. This relation between age and
GFR might be contributed to the relatively larger kidney size
in children compared to adults [90]. Since the majority of
studies in this review had a median age of included patients
between 1 and 5 years of age, this could be a possible expla-
nation of the higher weight-corrected CI compared to adult
populations.

Lastly, although PD targets for antibiotic agents are
partially drug-specific, determined by a drugs’ kill-charac-
teristic, and partially defined by pathogenic susceptibility,
defined as the MIC value, only the former is accounted for
in dosing recommendations. While MIC-based dosing would
seem to provide an improvement in the attainment of PD
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targets, there are numerous drawbacks to using MIC values
in dosing guidelines as outlined by Mouton et al. [92]. In
summary, the in vitro MIC assay is insufficiently accurate
and reproducible to adequately represent conditions in vivo
and therefore cannot be used as an exact concentration to
strife for during treatment. Doing so possibly leads to an
underestimation of the antibiotic effect in vivo [93, 94] or
missed treatment options [95]. Secondly, the MIC that is
used in the desired PD targets is regarded as static value
but should be seen more as a distribution of MICs within a
bacterial strain [92]. In addition, PD might also be affected
by alterations in PK [96]. In their semi-mechanistic PK/PD
model Nielsen et al. have simulated the effects of a wide
range of dosing regimens of six antibiotics from in vitro
time-kill curve experiments. The authors state that when
the PK-profile of benzylpenicillin, a hydrophilic p-lactam
antibiotic with a short 2, was used for other antibiotics,
fT > MIC was still the best predictor of effect, even for
antibiotics that are normally regarded as concentration-
dependent or exposure-dependent. Lastly, the susceptibility
of pathogens is heavily region-bound, making it difficult to
extrapolate dosing advices between regions with different
resistance patterns.

A logic next step seems to incorporate both age- and dis-
ease related co-variates in dosing guidelines using modelling
and simulation. Most of the PopPK modelling studies in this
review have incorporated (allometrically scaled) age and/or
weight covariates in their final models [21, 25, 26, 28, 51,
52,55, 57, 61, 65]. However, models incorporating (bio)
markers of organ failure (e.g. eGFR, serum creatinin, albu-
min, C-reactive protein, transaminases) as covariate were
limited [21, 25, 26, 28, 51, 52, 55, 57]. Of the 48 studies,
only 5 PK models have incorporated eGFR in their estima-
tions for drug Cl [21, 26, 51, 55, 57] and only 3 additional
studies found a significant relation between serum creati-
nine and drug concentration [29, 45, 60]. Other studies have
either not investigated this relationship or found the addi-
tion of creatinine clearance to be non-significant. This might
reflect that serum creatinine is a suboptimal marker for GFR
in this population and/or the impact of other factors than
GFR on the variability in drug clearance. The inability to
accurately estimate drug clearance using biomarkers is one
of the fundamental challenges regarding optimizing target
attainment in this patient population.

In order to overcome suboptimal target attainment of
antibiotics in critically ill children clinicians have several
options. Firstly, increasing the dose or dose frequency of an
antibiotic could provide an easy solution to increase expo-
sure and therefore increase target attainment. However, a
linear dose increase might introduce increased toxicity and
will not account for the extremely large within and between
subject variability in PK seen in critically ill patients caused
by pathophysiological changes, heterogeneity of underlying

diseases and extracorporeal circuits seen in PICU patients.
Secondly, continuous or extended infusion could be used
for time-dependent antibiotics, like B-lactam antibiotics, in
order to optimize dosing regimens to the established PK-PD
relationship. Continuous or extended infusion has been pro-
posed in almost all p-lactam modelling studies found in this
review [21, 23-26, 28, 32, 35, 61] and is recommended in a
recent guideline from the French Society of Anaesthesia and
Intensive Care Medicine (SFAR) [97]. Additionally, clini-
cians can be supported by PK-PD software using a combi-
nation of PopPK models, Bayesian forecasting and TDM,
to ensure optimal target attainment in special populations
or individual patients. In the previously mentioned SFAR
guideline the use of TDM is also recommend, including an
overview of suggested PD targets for several B-lactam anti-
biotics [97]. However, although several software packages
are available [5], successful clinical implementation requires
close collaboration between clinicians and pharmacists.
Additionally, it is still unknown whether optimizing target
attainment of antibiotics will result in a clinical benefit in
terms of survival or duration of ICU-stay. Although several
meta-analyses and large clinical studies show contradicting
evidence in adults [98—103], 1 smaller study showed a low
mortality of only 4.2% in a selective pediatric sepsis cohort
when TDM and non-standard dosing was applied, even after
initial subtherapeutic antibiotic concentrations [3]. Ideally,
large clinical trials aiming to identify whether this increased
target attainment of antibiotics leads to a reduced morbidity
and/or mortality should be conducted in both critically ill
adult and pediatric patients.

5 Conclusion

This systematic review shows that the PK of most antibiotics
is significantly altered during critical illness in children. For
most drugs both Vd and Cl are increased, putting this popu-
lation at increased risk for suboptimal target attainment. A
second main finding in this review is the lack of knowledge
of PK in critically ill children of several, frequently used
antibiotic agents such as ceftriaxone, ceftazidime, penicil-
lin, flucloxacillin and metronidazole. Finally, the majority
of articles do not provide any dosing guidance for PICU
patients, even if the necessary PK-parameters to simulate
dosing regimens are presented in the paper.

Adequate antibiotic dosing of critically ill children
is challenging, due to a wide range pathophysiological
changes, developmental differences between different age
groups and great within and between subject variability in
PK. This challenging landscape requires close collaboration
between clinicians, pharmacists and clinical pharmacolo-
gists, as expertise of all these parties is required for an accu-
rate assessment of this patient population. This literature
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overview hopes to inspire both researchers and clinicians in
this field to close these gaps, not only by presenting pharma-
cokinetic data, but also by providing guidance for implemen-
tation in the clinic, as this information is vital to optimize
antibiotic treatment in this vulnerable population.
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