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Abstract
The heterogeneity of tumor is considered as a major difficulty to victorious personalized cancer medicine. There is an
extremeneed of consistent response evaluation for in vivo tumor heterogeneity anditscoupledconflict mechanisms. In this
occasion researchers will be able to keep pace withpredictive, preventive, personalized, and Participatory (P4) medicine for
cancer managements. In fact tumor heterogeneity is a central part of cancer evolution,soin order to progress in understanding of
the dynamics within a tumor some diagnostic apparatus should be improved. Latest molecular techniques like Next generation
Sequencing (NGS) and ultra-deep sequencing could disclose some clones within a liquid tumor biopsy which mainly responsible
of treatment resistance. Circulating tumor DNA (ctDNA) as a main component of liquid biopsy is agifted biomarker for cancer
mutation tracking as well as profiling. Personalized medicine facilitate learning regarding to genetic pools of tumor and their
possible respond to treatment which could be much easier by using of ctDNA.With this information, cliniciansarelooking
forward to find the best strategies for prevention, screening, and treatment in the way of precision medicine. Currently, numerous
clinical efficacy of such informative improved treatment are in hand. Here we represent the review of plasma-derived ctDNA
studies use in personalized cancer managements.
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Introduction

Cancer is one of the problematic issue of human health
and the second main reason of death all over the word [1,
2]. Circulating tumor DNAs (ctDNA) are short tumor-
derived fragments of DNA (≅166 base pairs) which are
not associated with cells and freely are circulating in
serum and plasma [3]. The precise mechanism of ctDNA
release has not been cleared yet, but they are some suggesting
role for tissue necrosis and apoptosis as well as dynamic
secretion from tumor cells [4–8]. In the honor of ctDNA it
can be said easily that it is a real time representative of tumor,

so it can be checked for genetic and epigenetic changes
of tumor in order to define the accurate treatment plan
as well as monitoring the tumor progression during the
therapy [9–11]. In reality using of ctDNA as a diagnos-
tic or prognostic tool outweighs the other common
biopsy methods like tissue biopsy [12, 13]. The
ctDNA collection characteristics as a non-invasive biopsy
method in addition to several sampling at different time after
treatment will be possible and consequently keeping an eye on
tumor progression and response to treatment will be much
feasible [14].

One of the problematic issues of cancer therapy is drug-
resistant tumors due to intra- and inter-tumor heterogeneity
[15, 16]. Unfortunately even a minor genetic clone within
the tumor if carries a drug-resistant mutation can be developed
after treatment [17]. ctDNA is a repeatable non-invasive biop-
sy method and contrary to tissue biopsy as a ‘snapshot’,
ctDNA is a ‘screenshot’ of the primary and metastatic tumor
[18]. At the cutting-edge of targeted treatment approach, se-
quencing of ctDNA can be really informative for find-
ing genetic hotspots of targeted tumor [19]. This is
mainly significant for informing treatment specially
when mutations are critical as drug targets [20, 21].
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Consequently in each patient, personalizing targeted
analysis of ctDNA can be promising by incorporating
the liquid biopsies and common tissue biopsies [22].

Targeted approaches have the benefit of amplifying ctDNA
in the course of polymerase chain reactions (PCR) or digital
PCR (dPCR) [23]. It is above all essential because there are
quite small amount of ctDNA circulating in the blood [23]. For
that reason, amplification of interested region can considerably
recover the weak points of ctDNA detection methods [24].
Unfortunately, PCR a an amplification tool can launch some
known errors which will pass to the sequencing step [25].

The latest advances in whole genome and targeted next
generation sequencing (NGS) techniques are breakthroughs
for detection of genetic abnormalities of a patient’s tumor
[26]. Moreover the Cancer Personalized Profiling by deep
Sequencing (CAPP-Seq) is an insightful and sensitive method
in order to quantify DNA in cancer because It measures
ctDNA which is originated from tumor cells into the blood-
stream [27]. This method can be widespread for any cancer
type and is able to identify onemolecule of mutant DNA in ten
thousands molecules of normal DNA [28].

In the current review we are presenting the importance and
value of ctDNA in the place of precision cancer medicine in
both era of cancer diagnosis and cancer prognosis. The study
was based on searching the PUBMED, Scopus, Web of
Science, and EMBASE from 1990 to 2017.The search syntax
were Bcancer^ or Bneoplasm^ or Btumor^ and BcfDNA^ or
"circulationg tumor DNA" or BctDNA^ or "cell free DNA" or
BCTC^ or" circulating tumor DNA" and Bpersonalized
medicine^ or BPrecision medicine^ or BP4 medicine^ and
Btreatments^ or Btherapy^ or BDiagnosis^. All final selected
articles should be written in English (19 articles).

ctDNA as a liquid biopsy component

In spite of the fact that the cfDNA presence in the plasma was
first accounted in 1948 byMandel and Metais [29], it was just
recent years that tumor-derived cfDNAwas revealed that can-
cer patients had greater levels of plasma cfDNA than normal
controls [30–32]. Actually the exact biological mechanism by
which DNA is releasing into the peripheral blood has not been
well understood; nonetheless, it is thinking to come about
through multiple mechanisms, including extracellular vesicle
secretion, tumor cell apoptosis, and necrosis [6, 33, 34]. The
fact that dissimilar to genomic DNA, ctDNA is extremely
fragmented around nucleosomes (approximately 150 base
pairs in length) (Fig. 1), supports the hypothesis that ctDNA
originates through cell necrosis or apoptosis [35, 36]. The
DNA of eukaryotic cells is coiling around histone protein
complexes, shaping nucleosomes as the basic form of chro-
matin [37]. Judge against to the naked DNA, DNA of nucle-
osome is fewer reachable to the transcription factors and

regulatory elements [38, 39]. The precise physical situations
of nucleosomes can affect vital process of cells including rep-
lication, DNA repair, and transcription [40]. Actually, depend-
ing on the cell type, nucleosome positioning is completely
different so ctDNA deep sequencing, isolated from circulating
blood plasma haven path of transcription factors [41]. It could
be said that ctDNA nucleosome positioning is directly con-
nected to the nuclear architecture and gene expression profile
so it could be the exact representative of the origin of tumor
[41–43].

More than the origin of tumor the concentration of ctDNA
can be an informative substances. Peripheral ctDNA isasmall
proportion of DNA in bloodsteam, fewer than 100 ng/mL [44]
and no more than a fraction of this whole ctDNA (< 1% of
total ctDNA) is in certainty tumor-derived [45]. The
quantityof released DNA into the peripheral blood is in coin-
cide with the concentration of evident ctDNA sincectDNA
shedding to the bloodis associatedwith the cell death,cell di-
vision rate, and tumor vascularization [30]. As a result the
degree of metastatic tumor is joined to thevolume of ctDNA
[33, 46–48]. By way of illustration, the direct existence of
metastasis to the liver or bone has been straightattachedto
thegreater levels of ctDNA [49].

Long beforepersonalized medicine, patients had the
identical treatment, but next off it became clear that
dependent to genetic profile of patients, certain treat-
ments are much better for some patients than for others.
This explained the dissimilar responses to cancer
managementapproaches. Nowadays, personalized cancer
treatment is an active branch of the treatment plan or
even an essential part of a clinical trial. A few, but not
all, of the cancers where targeted treatments are used
consist of; breast cancer (BC), Lung cancer (LC),
Gastrointestinal (GI) Cancer, and endocrine related
tumors.

Breast Cancer

There is a long-standing hope of precision medicine to
find a genetic markers to guess reaction of a solid tu-
mor to treatment, approximate patient prognosis and
early prediction of tumor relapse [50]. Primary research
were mainly paying attention to circulating tumor pro-
tein biomarkers in the glycosylated form, while it is
now speedily altered to novel prospect like circulating
tumor cells (CTCs), extracellular vesicles (exosomes),
micro-RNAs and circulating tumor DNA (ctDNA) [50,
51]. In early-stagebreast cancer there are some appreci-
ated indications for ctDNA quantifications [52]. In fact
raised plasma ctDNA levels using specific digital drop-
let PCR (dd-PCR) assays in plasma samplesheaded clin-
ical detection of tumor recurrence in patients [52].
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Severalpreceding studies had focused on metastatic dis-
ease, in order to state the ctDNA amount and response
to surgery, treatments or as a measurement tool of over-
all survival [53], such as colorectal [54], breast [55],
ovarian and lung cancer [56]. The justification of this
is that released tumor cells are typically phagocytosed
by macrophages which engulf necrotic cells that release
digested DNA fragments into the cell environment with
a half-life in the circulation ranging from some minutes
to several hours [57, 58]. Through tumor growth and
turnover both wild-type and tumor-derived ctDNA can
be shed into the blood, soaccording to the state and size
of the tumor, the percentage of ctDNA that originates
from tumor cells fluctuates [59]. It was shown by
Sarah-Jane Dawson et al. that circulating tumor DNA
was a permanent time-dependent inconsistent in the
way that its levels were a signature of substandard over-
all survival of breast cancer patients [55]. The quantity
of ctDNA was predictive of poor survival and ctDNA
evaluating has worth as a observing component for ear-
ly metastasis detection, therapy adjustment, and to sup-
port in overtreatment avoidance in the way of precision
medicine [52].

More than ctDNA quantity the genetic and epigenetic
alterations of ctDNA can be used for breast cancer per-
sonalized therapy. The level of plasma samples muta-
tions imitate the clonal hierarchy concluded from se-
quencing of tumor biopsies [18]. The evaluation of bi-
opsy and plasma samples in one metastatic breast cancer
patient displays that ctDNA form a concurrent sampling
of multifocal clonal evolution [18, 60]. Hopefully a
study confirmed that ctDNA analysis via eTAm-Seq
and digital PCR have high clinical validity in mutation
detection [61]. Detection of Estrogen receptor alpha
(ESR1) D538G mutation in circulating tumor cells
(CTCs) and ctDNA can be used in for assessing

response to endocrine therapies in breast cancer [62].
For resistance to subsequent aromatase inhibitor therapy
ESR1 mutations can be strongly recognized with ctDNA
analysis, and predict [63, 64]. ESR1 mutations are in-
frequently developed during adjuvant aromatase inhibi-
tor (AI) therapy, but are frequently designated by ther-
apy for metastatic disease, supporting that the mecha-
nisms of resistance to targeted therapy possibly will be
considerably dissimilar between the treatment of micro-
metastatic and overt metastatic cancer [63]. Monitoring
of ctDNA is extremely essential for preliminary security
and efficacy checking of HER2-negative metastatic
breast cancer treatment withPhosphatidylinositol-4,5-
bisphosphate 3-kinase (PI3K) inhibitor Taselisib (GDC-
0032) together with Tamoxifen in hormone receptor
(HR) positive [65]. During a phase III clinical trial in
postmenopausal women with endocrine-resistant HR+/
HER2– advanced breast cancer, it was shown that
checking the Phosphatidylinositol-4,5-Bisphosphate 3-
Kinase Catalytic Subunit Alpha (PIK3C) of ctDNA can
guesses efficacy of Buparlisib (BUP) plus fulvestrant
(FULV) [66].

In estrogen receptor (ER)–positive breast cancer, mu-
tations of Phosphatidylinositol-4, 5-Bisphosphate 3-
Kinase Catalytic Subunit Alpha (PIK3CA) are common
genomic alterations and a self-governing analytical fea-
ture in breast cancer patients [67, 68]. Analysis of
ctDNA in plasma could be used for minimal residual
disease (MRD) monitoring in breast cancer [69]. It
was verified that mutation tracking of ctDNA through
sequencing could outline the genetic events of MRD in
order to projected the genetic background of the subse-
quent metastatic relapse extra precisely than sequencing
of the primary tumor [69]. Following adjuvant therapeu-
tic interventions possibly will be personalized with the
genetic profile existing in the MRD, a therapeutic

Fig. 1 The Bbeads-on-a-string^
structure taken from slide share
(http://slideplayer.com/slide/
5675348/). It is composed of eight
specific histones come together
(octamer). The linker DNA length
is about 150 base pairs which are
next to the ctDNA length
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approach that could solve the problem of intra-tumor
genetic heterogeneity [69, 70].

Lung cancer

The breathtaking advances in lung cancer therapy is the appli-
cation of personalized chemotherapy planning according to
the individual’s genetic profile [71]. It has been suggested that
ctDNA Bspill over^ into an immediate outflow tract pulmo-
nary venous blood (Pul.V) and peripheral blood (Peri.B), and
after scattering to the whole body [72]. Thus, it can be inferred
that ctDNA reflects the cancer progression and could function
as a prognostic marker. It has been accepted that epidermal
growth factor receptor EGFR mutation status is a delicate
biomarker for the epidermal growth factor receptor tyrosine
kinase inhibitors (EGFR-TKIs) therapy [73, 74]. In fact, pa-
tients with the L858R point mutation in exon 21 or deletion
mutation in exon 19 display respectable response to EGFR-
TKIs [74]. The problematic issue is that after chemotherapy
EGFR mutation status might exchange from positive to neg-
ative [75]. For that reason, tracking theEGFR mutations is
important to control an applicable treatment approach, mainly
designed for the supervision of EGFR-TKIs to identify ac-
quired resistance at early time [9, 76–78[. Indeed, ctDNA
can be a potential source of tumor DNA alteration pursuing
for the documentation of tumor-associated genetic changes in
order to real-time tumor monitoring [4, 53, 78, 79]. For Non-
Small Cell Lung Cancer Research (NSCLC), numerous clin-
ical centers have investigated the diagnostic precision of
ctDNA for EGFR mutation detection [80–83]. In 2016 the
U.S. Food and Drug Administration (FDA) agreed to the
EGFRMutation Test v2, a blood-based companion diagnostic
for the cancer drug Tarceva (Erlotinib) [84].

More than EGFR some other genetic and epigenetic
changes has been considered for personalized lung can-
cer target therapy. By way of illustration, the existence
of Kirsten Rat Sarcoma Viral Oncogene Homolog
(KRAS) mutations in plasma might be an indicator of
deprived prognosis and may also embrace predictive
value [85, 86]. The clinical trial phase I, combination
study of a kinase inhibitors in patients with RAS mutat-
ed cancers, indicated that increasing dose levels resulted
in more consistent decreases in KRAS mutation in
ctDNA, so the potential value of serial plasma ddPCR
as a pharmacodynamic (PD) biomarker in early phase
clinical trials was marked [87]. A promising step on
the way to precision medicine is that genomic analysis
of lung-tumor growth has been practiced to make per-
sonalized blood tests that allow successful clinical ob-
serving for early signs of cancer relapse [88]. Multiplex
ctDNA Gene analysis in lung cancer revealed promising

treatment options to guide clinicians to choice the accu-
rate therapy plan for the right person [89].

Additional analysis of ctDNA through CAPP-Seqand
resistance mechanisms in NSCLC patients cured with
Rociletinib highlighted frequent intra-patient heterogene-
ity [90]. In fact, Met Proto-Oncogene copy number in-
creasing involves in resistance recurrently [90]. Those
results emphasized the position of tumor heterogeneity
in NSCLC and the utility of ctDNA-based resistance
mechanism calculation [90, 91]. Apart from genetic mu-
tation some epigenetic changes of ctDNA can be re-
cruited for prognosis and diagnosis [92]. By far the
most important epigenetic alteration is DNA methylation
that occurs by adding the methyl (CH3) group to DNA,
in that way often modifying the function of the genes
and affecting gene expression without changing the
DNA sequences. Very recently the improvement of a
highly sensitive blood-based non-invasive diagnostic as-
say for documentation of primary lung cancer stages,
which can aid clinical decisions for patients with a CT
scan positive for lung nodules, has been suggested [93].
This method can similarly be stretched to non-invasive
early screening for various cancer types [93].

Gastrointestinal Cancer

Regarding to the liquid biopsy components it can be
said easily that in patients with cancer of the gastroin-
testinal cancer (GI), major advances have been complet-
ed in the use of circulating tumor cells (CTCs) and
ctDNAs for monitoring tumor evolution [94]. This is
principally right in the case that in the peripheral blood
circulation of GI cancers patients, the mutant form of
Bdriver^ genes and Bdrug-resistant^ alleles of tumor are
represented in the circulating cell-free tumor DNA
(cfDNA) [95–97]. The discriminative accuracy of
ctDNA the amount for diagnosis of gastrointestinal can-
cer contrast to the benign inflammatory diseaseshas
been distinguished [98–102].In order to prove the com-
prehensive diagnostic value of ctDNA through diverse
gastrointestinal tumor types, ctDNA of 640 patients
evaluated by Bettegowda et al. [53]. The NGS method
used to find out target mutations of tumor tissue, and
then by using RT-PCR quantified in ctDNA [53].
Moreover, complete cfDNA and tumor-specific ctDNA
have been exposed in several researches to be higher in
patients with colorectal cancers (CRC) compared with
healthy controls [103–107]. Use of RAS mutations in
cfDNA of patients with metastatic colorectal cancer
brought a promising personalized dashboard for this
cancer [108, 109]. Clinical utility of ctDNA sequencing
in advanced CRC can provide appropriate information
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on potential mutations, in that way to ease clinical trial
enrollment and enlightening the supposed value of care
[110]. The quantitative relationship of cfDNA with tu-
mor specific mutations in plasma from metastatic colo-
rectal cancer (mCRC) patients was related to the effica-
cy of third line treatment with cetuximab and irinotecan
[111]. Checking the quantity of ctDNA levels within a
post-surgery surveillance study by Reinert and col-
leagues in and five no relapsing and six relapsing pa-
tients with colorectal cancer showed that relapses could
be detected months in advance compared to convention-
al follow-up [112]. Moreover, ctDNA analysis can be
used for tumor burden and standard chemotherapy reac-
tion estimation in patients with early-stage colorectal
cancer [113]. Gastric cancer is a leading cause of cancer
deaths in the world with highly heterogeneous etiology
and clinical characteristics [114]. The Cancer Genome
Atlas (TCGA) network shed light on the heterogeneity
and possible targeted therapeutics for various subtypes
of gastric cancer according to comprehensive genomic
platforms [95, 115]. The most usual mesenchymal tu-
mors of the gastrointestinal tract are gastrointestinal
stromal tumors (GISTs) [116, 117]. GISTs are described
by mutations in a receptor tyrosine family (mainly KIT
gene) which are linked to the mast cell growth factor
receptor or in the platelet-derived growth factor receptor
alpha(PDGFRA) coding gene [118–121]. The relation-
ship between tumor genotype and positive effect of ad-
juvant imatinib stated that GIST with a KIT exon 11-
deletion beneficially respond to treatment, with a con-
siderably extended progression free survival (PFS) com-
pared with placebo [122–124]. It was shown that muta-
tion detection in cfDNA of GIST patients with metasta-
tic disease can be recruited for personalized usage of
imatinib and monitoring of early treatment adaptations
[125, 126]. A panel called (‘SiRe’) with 568 mutations
in six genes (EGFR, KRAS, NRAS, BRAF, cKIT and
PDGFRα) evaluated in different cancers including
GIST and can be optimized for its precision medicine
in the near future [19]. A comparison of cfDNA levels
after the six months after surgery and at the time of
recurrence were considered in 18 gastric cancer patients
who did not receive adjuvant chemotherapy, indicated to
the fact that this patients had high pre- and postopera-
tive cfDNA [127].

Thyroid tumors

The increasing prevalence of thyroid nodules and tumors had
been resulted in a higher demand for the accurate diagnosis of
thyroid nodules, and the best treatment strategies for this ag-
gressive disease. A usual diagnostic tool is fine needle

aspiration (FNA) samples from thyroid nodules with a muta-
tions profiles that typically includes BRAF, RAS, RET/PTC,
and PAX8/PPARg [128–132]. Combining the use of these mo-
lecular markers of ctDNA and new high-throughput molecu-
lar techniques will improve significantly the accuracy of can-
cer diagnosis in thyroid nodules [133]. By way of illustration,
Anaplastic Thyroid Carcinoma (ATC) is an aggressive type of
thyroid cancers that requires rapid diagnosis and
multimodality management approaches. At the MD
Anderson Cancer Center of University of Texas the NGS plat-
forms over 70 genes of 23 patients ctDNA suggested that both
tumor-based and ctDNA examination in the setting of clinical-
trial application is beneficial for ATC patients [134]. Further
innovative, realistically designed therapeutic strategies are un-
der active expansion both for patients with Differentiated
Thyroid Tumors (DTC) and for patients with ATC, within
several phase II and phase III randomized clinical trials
currently continuing [135] (Table 1).

In advanced Medullary Thyroid Carcinoma (MTC),
ctDNA RET M918 T mutations of circulating tumor DNA
can be predictive for overall survival (OS) and could take part
in a role in monitoring response to treatment [136]. Moreover,
in thyroid tumors the published result related to a phase II
clinical study in Philadelphia demonstrated treating metastatic
thyroid cancer patients with the targeted therapy of
Vemurafenib to launch the activity of Vemurafenib in the only
patients with BRAFV600E-positive papillary thyroid [137].
In fact it was shown that Vemurafenib had antitumor activity
in patients with progressive, BRAFV600E-positive papillary
thyroid cancer refractory to radioactive iodine who had never
been cured with a multi-kinase inhibitor [137, 138].More than
that it has been revealed that detectable levels of
BRAF(V600E) ctDNA pre-operatively, thus BRAF(V600E)
ctDNA can be a discriminative tool between benign and ma-
lignant thyroid nodules [139, 140].

In fact personalized ctDNA biomarkers dynamically can be
a good predictor of treatment response and survival in a wide
range of cancer types including gynecologic cancers [141,
142]. It was shown that ctDNA level increased in advanced
stage of ovarian cancers compared to controls, so ctDNA
quantity can be useful for noninvasive screening and this dis-
ease surveillance [143]. Although point mutations have been
extensively studied, chromosomal rearrangements have
confirmedsuperior tumor specificity [144, 145]. A panel of
individualized junctions consequent from tumor DNA possi-
bly will be an useful way tomonitor cancer patients for relapse
and therapeutic efficacy using ctDNA [144]. ctDNA as non-
invasive biomarkers of gynecological cancers, ovarian, endo-
metrial. For example ctDNA can detect more mutations than
DNA extracted from solid tumor and when performing genet-
ic profiling in order to precision medicine programs should
consider cfDNA to optimize finding of the molecular diversity
of ovarian cancer [146].
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Conclusion

Both ctDNA quantity and genetic hallmarks of ctDNA can be
taken into consideration for personalized cancer manage-
ments. There is a big hope that by utilizing of ctDNAmutation
the problem of resistance to drug in some patients will be
overcome specially in breast, lung and colorectal cancers.
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