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Guiding principle of reservoir 
computing based on “small‑world” 
network
Ken‑ichi Kitayama

Reservoir computing is a computational framework of recurrent neural networks and is gaining 
attentions because of its drastically simplified training process. For a given task to solve, however, 
the methodology has not yet been established how to construct an optimal reservoir. While, “small‑
world” network has been known to represent networks in real‑world such as biological systems and 
social community. This network is categorized amongst those that are completely regular and totally 
disordered, and it is characterized by highly‑clustered nodes with a short path length. This study aims 
at providing a guiding principle of systematic synthesis of desired reservoirs by taking advantage of 
controllable parameters of the small‑world network. We will validate the methodology using two 
different types of benchmark tests—classification task and prediction task.

Reservoir computing (RC) is a unified computational  framework1,2, independently proposed recurrent neural 
network (RNN) models of echo state networks (ESNs)3,4 and liquid state machines (LSMs)5,6. It is a special class 
of RNN models, consisting of three layers—an input layer and an output layers and a reservoir between the 
input and output layers (Fig. 1). The primary difference between the RC and deep learning or multi-layer neural 
networks is that only the connections between the reservoir and the output layer are trainable, and the training 
requires much less data than in the deep learning. Owing to an excellent memory capability of the recurrent 
nature, it can be used in speech recognition and temporal waveform forecast. It has been shown that the RC can 
be used for the prediction and recognition of temporal and sequential data such as spoken  word5, time series 
 signals4,6, and wireless and optical a channel  equalizations7,8. In addition, RC can also be used for handwritten 
digits recognition by transforming the images into temporal  signals9.

There have been several studies on various reservoir network topologies such as sparsely random  network1,2 
and topologies of  swirl10 and  waterfall11. However, for every given task, one has to empirically seek an optimum 
condition, and these topologies are not sufficiently flexible because there are few adjustable parameters. Hence, 
a variety of networks has been tested for the reservoir. In a conventional random reservoir, it is treated like a 
“black box”, which only allows one to specify the density or the sparseness of the weight matrix of the reservoir. 
The topologies of the swirl and the waterfall are fixed, and there is no variable except for the size, that is, the 
number of nodes. Therefore, a guiding principle to find an optimal reservoir for a given task is required. The 
forementioned factors have motivated us toward using “small-world”  network12 for the reservoir.

The reservoir state vector x(t) and the output vector y(t) at time t are given  by13

where α ∈ [0, 1] is the leaking rate, f (·) the activation function of node, and γ the input gain. When α is equal 
to zero, the states are totally governed by previous states, while for the case with α = 1 , the next state of the 
reservoir depends only on the current state and the external input. Their weights are uniquely determined using 
Woutxtr ∼= y by employing the regularized least squares method  as13

where xty is the training input vector, � the regularization parameter, and I the N × N identity matrix. Because 
the training is simple, the computation cost is low.

(1)x(t + 1) = (1− α)x(t)+ αf (Wresx(t)+ γWinu(t)),

(2)y(t + 1) = Woutx(t)

(3)Wout = yxTtr(xtrx
T
tr + �IN×N )
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Various hardware implementations of the RC based on electronic and photonic components have been 
reported. The hardware could serve as an accelerator at the frontend of digital  computers14, which is optimized 
to perform a specific function but does so faster with less power consumption compared to a general-purpose 
processor. The electronic RC implementations include analog  circuits15 and  VLSIs16, while the photonic hardware 
of RC exploits its parallelism and high-speed operations with a potentially low power  consumption10,11,17–24. How-
ever, a stumbling block is the absence of nonlinear devices on a large scale acting as the activation function of a 
reservoir node. To address this issue, two types of architecture of photonic RC have been proposed—delay-loop 
reservoir and spatial reservoir. The delay-loop RC can simplify a complicated network using a single nonlinear 
node in a loop-back configuration with the time-delayed feedback. The virtual nodes are distributed along the 
delay line, and the data injection is realized using time  multiplexing17,18. In the delay-loop reservoir, an electro-
optic  modulator19,20, a semiconductor optical  amplifier11,21, and a laser  diode22,23 can be used as the nonlinear 
node. The nonlinearity is yielded in the optical output against the applied input voltage of the electro-optic 
modulator, while it appears in the optical output against the optical input of both the semiconductor optical 
amplifier and the laser diode, subject to the optical feedback. On the other hand, the spatial implementation of 
RC is basically a spatially-distributed  network23. This model uses two key components; a spatial light modulator 
which consists of over a few tens of thousands of pixels that act as the reservoir nodes and a digital micro-mirror 
device realizing the reconfigurable output weights. Recently, an alternative approach to building larger reser-
voirs based on the combination of several blocks of small reservoir has been proposed; the model demonstrated 
enhanced computational  capability24. As the photonic integrated circuit (PIC) technology is recently making 
a rapid  progress25,26, PIC-based hardwares of the RC will be developed in the near future. This study will also 
serve as a design guideline of the PIC RC.

With regard to the forementioned factors, we will explore a guiding principle for optimizing the reservoir by 
shedding light on an article of small-world network in  199812. With the aim of achieving a better performance 
of the RC, we will refer to several preceding works relevant to small-world  network27–29. In Ref.27, a reservoir 
model, scale-free highly-clustered echo state network (SHESN) having characteristics of both networks of the 
small-world and the scale-free30 has been proposed. SHESN features a spatially hierarchical and distributed 
topology where the intradomain connections are much denser than those of interdomain ones. In each domain, 
the small-world network characteristics such as a short path length and a high clustering are preserved, while the 
power law degree distribution of the scale-free network is embedded. It is numerically shown that time-series 
prediction capability of the Mackey–Glass (MG) dynamic system is enhanced, compared with a conventional 
reservoir having random connections.  Reference28 analyzes three types of network, including the scale-free net-
work and small-work network as well as their mixture and demonstrates enhanced capability in the prediction 
of two types of time serial signals generated by NARMAX mode.  Reference29 investigates characteristics of the 
path length of three types of network for reservoir, including the small-world network, the scale-free network, 
and the conventional random one, in order to narrow down the search space of the parameter of the reservoir for 

Figure 1.  Reservoir computing architecture. Input weight matrix Win is a fixed N × L matrix where N is the 
number of nodes in the reservoir, and L is the dimension of the inputs at each time step. Reservoir weight matrix 
Wres is a fixed N × N matrix, which is typically sparse with nonzero elements having an either a symmetrical 
uniform, discrete bi-valued, or normal distribution centered around  zero13. Output weight matrix Wout is a 
learned M × N matrix where M is the number of classes of the output data.
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predicting chaotic signals. In our present work, the reservoir model is solely based on the small-world network. 
We examine that the dependence of the parameters such as the degree of nodes k and the rewiring probability 
p on the computing capability, which has not been studied in details in the preceding works, Refs.27–29. We also 
show that there is a sweet spot of the small-world network, which gives the optimum performance of the RC for 
two typical tasks of neural networks; classification and regression. For a classification task, we chose the clas-
sification of human activities which has not been tested in the preceding articles, while for a regression task, we 
conducted the prediction of the MG chaotic signals as Refs.27,29 did.

The term, small-world network, is derived by an analogy with the small-world  phenomenon31. It has been 
shown that the small-world network can well characterize the social and natural phenomena in a real world, 
including human behavior in social lives, power grid networks, and biological neural networks. We recall a state-
ment related to the ongoing pandemic, presented in the  article12, “infectious diseases are predicted to spread 
much more easily and quickly in a small world; the alarming and less obvious point is how few short cuts are 
needed to make the world small”. The small-world network is based upon the Watts–Strogatz graph, which 
explores a simple model of network with an arbitrarily-tuned magnitude of disorder by rewiring the links between 
the nodes. The small-world network is categorized between a regular network ( p = 0 ) and a completely disor-
dered one ( p = 1 ), where a small amount of the links between the nodes are rewired to introduce disorder. Here, 
p is the probability of rewiring the links at random. For the purpose of illustration, three examples of 10-node 
( N = 10 ) network with the node degree k = 2 are illustrated in Fig. 2, which indicates connections with 2k 
neighboring nodes, including the regularly connected ( p = 0 ), the modestly disordered ( p = 0.5 ), and the totally 
disordered ( p = 1 ). It is possible to exploit the high flexibility and build up a desired reservoir from scratch. The 
weight matrix of the reservoir Wres can be generated from the table of the link connections shown alongside of 
the graphs (Fig. 2) (see “Methods” section). The link may be either bidirectional or partially bidirectional, and in 
this study, it is assumed that all the links are bidirectional, thus resulting in a symmetric matrix Wres . There has 
been another network model referred to as the Erdős–Rényi  model32, the primary difference between this model 
and the Watts–Strogatz graph is in the number of parameters, wherein the former contains one parameter, the 
node degree, while the latter has two parameters, the node degree and the probability of rewiring.

Results
In the Watts–Strogatz graph, the clustering coefficient of node i with the node degree ki is defined  as33

Figure 2.  Architectures of 10-node ( N = 10 ) networks with the node degree k = 2 ; regularly connected 
( p = 0 ) on the l.h.s. on the top, modestly disordered ( p = 0.5 ) on the r.h.s. on the top, and totally disordered 
( p = 1 ) at the bottom. Each node is connected with four (= 2k) neighboring nodes. Each table represents the 
pairs of nodes for each p . For example, node#1 is connected with nodes#2, 3, 9, and 10 for the case with p = 0.
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and the total clustering coefficient of N-node network is expressed by

The density of the weight matrix Wres of the small-world network-based reservoir is calculated by

The characteristic path length L(p) is calculated as the mean value of distances of the shortest paths between 
all the nodes. The clustering coefficient C(p)/C(0) and the characteristic path lengths L(p)/L(0) as a function 
of the probability of rewiring p for the case with 1000-node and the node degrees, k = 4 and 6 are shown in 
Fig. 3a. As p increases, the clustering coefficient rapidly decreases beyond p > 0.01 , and the average path length 
also monotonically decreases. The small-world network is indicated by the shaded area of p = 0.01–0.7, which is 
characterized highly-clustered with the relatively short path length. As shown in Supple-Fig. 1, there are several 
clustering hubs for the case with the 1000-node network of 

(

k, p
)

= (4, 0.5) , which connect with up to 14 ~ 16 
nodes are indicated in orange and yellow of the color bar. When the degree k is greater than 20, the small-world 
characteristic of highly-clustered with the relatively short path length is almost lost (Fig. 3b). Based on this 
observation, the degree k up to around 20 preserves the characteristic of the small-world.

Hereafter, we will introduce the small-world network to the RC and synthesize the reservoir accordingly. We 
will investigate how the small-world network acts as the reservoir by comparing with a conventional sparsely 
random weight matrix Wres . We investigate the performance of the RC by processing temporal and serial data. 
The recognition of images such as handwritten digits and letters are beyond the scope of this study because they 
require a peculiar preprocessing of image deformation techniques such as reframing and  resizing9. We imple-
ment two benchmark tests; classification of human  activity34 and time series prediction of Mackey–Glass (MG) 
chaotic  signal35. We first study the dependence of the probability of rewiring p on both the performance of the 
classification of human activity and prediction of the MG chaotic signal shown in Fig. 4a,b, respectively. The 
human activity includes six motions—walking, walking upstairs, walking downstairs, sitting, standing, and lying 
down (Fig. 5a). The motions along x-, y-, and z-axes are captured by the accelerator of a smartphone as shown 
on the bottom of in Fig. 4a34. The 1000-node reservoir Wres is generated for the degree k = 4 . The impact of the 
degree k on the performance will be discussed later (Fig. 7). In all the benchmark tests, the reservoir network 
is generated for ten time, and each of ten test runs is conducted by using a different reservoir. The classification 
accuracy of the human 6-activity improves as p increases from 65.3% at p = 0.0001 and peaks out to 74.9% at 
p = 0.5 (Fig. 4a). While, in the mean square error (MSE) of the MG chaotic signal prediction (Fig. 4b), a 1000-
node reservoir Wres is also generated with the degree k = 4 . The prediction accuracy, which is represented by the 
MSE is minimized to be 4.98× 10−6 at p = 0.1 . From Fig. 4, it is observed that the sweet spot of the optimum 
performance of these tests is situated in the range of small-world network, the shaded area of p = 0.01–0.7. The 
hyperbolic tangent is used for the activation function f  in Eq. (1) throughout this study, and sets of parameters 
such the leaking rate α and input gain γ in Eq. (1) and the regularization parameter � in Eq. (3) are tuned for 

(4)Ci =
Number of triangles involving nodei

Number of links at mostki(ki − 1)/2
,

(5)C =

1

N

N
∑

i=1
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(6)Density =

nonzeroWres elements
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N
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Figure 3.  a Clustering coefficient C(p)/C(0) and average path length or hop count L(p)/L(0) vs. probability 
of rewiring p for the case with 1000-node ( N = 1000 ) and the node degrees k = 4 and 6. Range roughly p = 
0.01–0.7 of small-world is indicated by the shaded area. b Clustering coefficients C(p)/C(0) and average path 
lengths L(p)/L(0) vs. probability of rewiring p for the case with the node degrees k = 20 and 100.
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Figure 4.  (a) Classification accuracy of human 6-activity vs. probability of rewiring p for the case with 
N = 1000 and k = 4 . The accuracy is maximized to be 74.9% at p = 0.5 . For an example, the temporal 
waveforms of accelerations of walking on x-, y, and z-axes are also shown on the bottom. (b) Prediction accuracy 
represented by the mean square error (MSE) of MG chaotic signal vs. p for the case with N = 1000 and k = 4 . 
MSE is minimized to be 4.98× 10−6  at p = 0.1.

Figure 5.  Confusion matrices of human 6-activity classification are compared for 1000-node reservoir. (a) 
Reservoir weight matrix Wres of small-world network 

(

k, p
)

= (4, 0.5) . Accuracy (in green) is 75.2%. (b) 
Conventional sparsely random matrix Wres with the density of 0.008. Accuracy is 73.0%.
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the optimum performance. For the case with the node count N = 1000 , the typical values of the leaking rate α , 
the input gain γ , and the regularization parameter � are (α, γ , �) = (0.3, 1.0, 1.0× 10−8) for the human motion 
classification and (0.7, 1.0, 0.2× 10−8) for the MG signal prediction. The results of 2000-node will be discussed 
later in the manuscript.

We will present the results of the two benchmark tests in details. First, in the human activity classification 
the captured temporal waveforms along x-, y-, and z-axes for 2.56 s were sampled into 128-sample at a rate of 
20 ms as shown on the bottom of Fig. 4a. The data sets of the training and the testing include 7352 and 2947, 
respectively (see “Methods” section). The accuracy of the human activity classification in the confusion matrix 
is maximized to 75.2% when 

(

k, p
)

= (4, 0.5) (Fig. 5a), and it is slightly better than that of conventional random 
weight matrix (73.0%) with the same density of 0.008 as the 1000-node small-world network, which is calculated 
from Eq. (6) (Fig. 5b).

In the benchmark test of the MG temporal chaotic signal, a 10,000 timestep-long signal is used. The first 2000 
of data are used for the training, and the output weight matrix Wout is determined by Eq. (3) (see “Methods” 
section). Then, the next 2000 of the data are used for the prediction. The reservoir consists of 1000-node. The 
plots of waveforms provide a comparison of the RC results using small-world network as the reservoir with that 
of sparsely random weight matrix (Fig. 6a,b). The results are summarized in Table 1, including the minimum/
maximum mean square errors (MSEs) along with the mean values and the standard deviations for the 10-run. 
The best MSE of the 1000-node small-world is as low as 2.46× 10−6 (Fig. 6a), slightly larger compared to 
1.38× 10−6 of the random weight matrix with the density of 0.008, which is equal to the density of small-world 
reservoir (Fig. 6b). It can be confirmed that the optimum performance is obtained in the range of small-world as 
the classification of human activity does. It should be noted that the standard deviation was 1.42× 10−6 which 

Figure 6.  2000 timestep-long waveforms of predicted and that of target MG chaotic time series for 1000-node 
reservoir. (a) Result of reservoir weight matrix Wres of 1000-node small-world network 

(

k, p
)

= (4, 0.1) . Mean 
square error (MSE) is 2.46× 10−6 . (b) Conventional sparsely random matrix Wres with the density of 0.008. 
MSE is 1.38× 10−6 . Results of the two benchmark tests are summarized in Table 1.

Table 1.  Summary of two benchmark tests using reservoir of small-world and sparsely random Wres for the 
cases with N = 1000-node and 2000-node. N number of node, k  degree of node, p probability of rewiring.

N 
(k, p)
Density Small-world network Random weight matrix

Max/min accuracy
Mean
Standard dev (%)

1000 (4, 0.5)
0.008

75.2/74.2
74.9
0.25

73.0/71.6
72.8
0.58

2000 (4, 0.5)
0.004

79.2/75.3
77.4
1.80

75.9/73.2
75.4
0.85

Min/max MSE
Mean
Standard dev

1000 (4, 0.1)
0.008

2.46× 10−6/7.56× 10−6

4.98× 10−6

1.42× 10−6

1.38× 10−6/2.22× 10−6

1.82× 10−6

3.77× 10−7

2000 (4, 0.1)
0.004

6.01× 10−8/6.01× 10−8

6.01× 10−8

0

7.03× 10−8/1.38× 10−7

9.00× 10−8

2.80× 10−8
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amounts to 28.5% of the MSE value. The impact of the length of training data is examined using the 1000 and the 
3000 timestep-long training data, and it is confirmed that the 2000 timestep-long training data is sufficient. For 
instance, the prediction accuracy was 2.07× 10−6 when the 3000 training data are used, while it is 3.88× 10−5 
for the case with the 1000 training data.

The results of two benchmark tests with the case of the 2000-node are also summarized in Table 1. The confu-
sion matrix of the classification accuracy of human 6-activity and the waveforms of predicted MG chaotic time 
series are shown in Supple-Figs. 2 and 3, respectively. The performance is considerably improved compared to 
the results of N = 1000 . The mean value of classification accuracy is increased to 77.4% for the small-world of 
(

k, p
)

= (4, 0.5) , and it outperforms the sparsely random weight matrix, whose accuracy is 75.4%. The density 
of the weight matrix is 0.004, which is equal to the density of small-world reservoir. In the chaotic signal predic-
tion, the mean value of MSE of the small-world reservoir of 

(

k, p
)

= (4, 0.1) is 6.01× 10−8 , better than that of 
random weight matrix, whose mean MSE is 9.00× 10−8.

Finally, we investigate the RC performance against the parameters of the small-world network such as the 
number of nodes N and the degree of node k . We will focus on the small-world range p = 0.1–0.7, which is indi-
cated by the shaded area in Fig. 3a, and hence, we assume 

(

k, p
)

= (4, 0.5) . First, the dependence of the classifica-
tion accuracy of the human 6-activity on N is investigated (Fig. 7a). The classification accuracy monotonically 
improves as the network scales up. The mean value is 54.4% at N = 50 , and it continues to increase to 77.4% at 
N = 2000 . Next, we will observe the impact of the node degree k on the classification accuracy (Fig. 7b). The 
accuracy is maximized with relatively small number of degrees around 2 ≤ k ≤ 4 , and it monotonically degrades 
as the degree k is increased.

Discussion
We have conducted two benchmark tests—the classification of human activity and the time series prediction of 
the Mackey–Glass chaotic system. It has been demonstrated that the optimum performance is obtained from the 
reservoir in the range of small-world network bounded by  p =0.01–0.7 and k < 20 . Based on this observation, 
a guiding principle has been presented to systematically synthesize a reservoir of RC by exploring the small-
world network nature of highly-clustered with the short characteristic path length. We expect that this study 
will draw attention to the versatile capability of the small-world network in the research of neural networks and 
help understand architectures of the RC in-depth.

Methods
Generation of weight matrix of reservoir. The method of generating the weight matrix Wres of the 
reservoir of 10-node ( N = 10 ) network with the node degree k = 2 is illustrated (Fig. 8). The table on the l.h.s. 
represents the pairs of connected nodes for p = 0.5 . From this table, the weight matrix Wres of the reservoir for 
the bidirectional connection can be generated, as shown on the r.h.s. Throughout the simulation, the nonzero 
elements of Wres take a binary value, and it is assumed that all the connections are bidirectional, resulting in a 
symmetric weight matrix. Although, the nonzero elements can take an arbitrary positive value, and the asym-
metric matrix may be another option.

Figure 7.  Performance of human activity classification using reservoir weight matrix Wres generated from the 
Watts–Strogatz graph. (a) Classification accuracy versus the number of nodes N . Node degree k = 4 and the 
probability of rewiring p = 0.5 within the range of small-world network are assumed. (b) Classification accuracy 
against the degree of node k .  p = 0.5 of 1000-node small-world network is assumed. Horizontal axis on the top 
is density of matrix Wres calculated by Eq. (6).
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Generation algorithm of Watts–Strogatz  graph12. Creating the Watts–Strogatz graph through two 
basic steps:

1. Create a ring lattice with N-node of the mean degree 2 k (on the l.h.s. on the top of Fig. 2). Each node is 
connected to its nearest neighboring 2 k nodes.

2. For each edge or link in the graph, rewire the target node with probability p . The rewired edge cannot be a 
duplicate or self-loop. This results in a partially ( p = 0.5 ) or totally disordered ( p = 1 ) topologies (on the 
r.h.s. on the top and at the bottom of Fig. 2, respectively).

The basic Matlab code is available at: https:// jp. mathw orks. com/ help/ matlab/ math/ build- watts- strog atz- small- 
world- graph- model. html? lang= en. The clustering coefficient C(p) is calculated using Eqs. (4) and (5) by following 
the  aglgorithm33. The Matlab code of C(p) is available at https:// github. com/ mdhum phries/ Small World Ness.

Classification of human  activity34. The data set of the human activity is available at http:// archi ve. ics. uci. 
edu/ ml/ machi ne- learn ing- datab ases/ 00240/ UCI HAR Dataset.zip.

It includes six motions—walking, walking upstairs, walking downstairs, sitting, standing, and laying down. 
The captured temporal waveforms along x-, y-, and z-axes for 2.56 s were sampled into 128-sample at the rate 
of 20 ms. The data sets of the training and the testing are 7352 and 2947, respectively. For the training and clas-
sification of the human activity in RC (Fig. 1), the dimensions of weight matrices Win , Wres , and Wout of Eqs. (1), 
(2) and (3) are L = 1,M = 6 and N is specified, for instance 1000 etc.

Time series prediction of Mackey–Glass (MG) chaotic  signal35. The time series data and the basic 
Matlab code are available at:

Figure 8.  Method for generating the weight matrix Wres of the reservoir of 10-node ( N = 10 ) networks with 
(

k, p
)

= (2, 0.5) . Table of pairs of connected nodes on the l.h.s. and 10× 10 weight matrix Wres . For instance, 
connections of node 1, pairs of nodes, (1, 6) and (1, 8) reflect on the weight matrix Wres , as marked by circles.

https://jp.mathworks.com/help/matlab/math/build-watts-strogatz-small-world-graph-model.html?lang=en
https://jp.mathworks.com/help/matlab/math/build-watts-strogatz-small-world-graph-model.html?lang=en
https://github.com/mdhumphries/SmallWorldNess
http://archive.ics.uci.edu/ml/machine-learning-databases/00240/UCI
http://archive.ics.uci.edu/ml/machine-learning-databases/00240/UCI
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A minimalistic sparse Echo State Networks demo with Mackey–Glass (delay 17) data in "plain" Matlab/Octave 
from https:// mantas. info/ code/ simple_ esn (c) 2012–2020 Mantas Lukosevicius.

Distributed under MIT license https:// opens ource. org/ licen ses/ MIT.
For the training and prediction of MG chaotic time series, the dimensions of weight matrices Win , Wres , and 

Wout of Eqs. (1), (2) and (3) are L = 1,M = 1 and N is specified, for instance 1000 etc.

Data availability
The raw data sets used in the simulations are available (see “Methods”).

Code availability
The Matlab-based codes used for simulations are partly available (see “Methods”).

Received: 13 March 2022; Accepted: 26 September 2022
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