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ABSTRACT
Metastatic castration-resistant prostate cancer (mCRPC) is the lethal stage and the
leading cause of death in prostate cancer patients, among which bone metastasis is
the most common site. Here in this article, we downloaded the gene expression data
and clinical information from online dataset. We found that prostate cancer metastasis
in bone is prone to have higher prostate-specific antigen (PSA) and longer time on
first-line androgen receptor signaling inhibitors (ARSI). A total of 1,263 differentially
expressed genes (DEGs) were identified and results of functional enrichment analysis
indicated the enrichment in categories related to cell migration, cancer related pathways
andmetabolism.We identified the top 20 hub genes from the PPI network and analyzed
the clinical characteristics correlated with these hub genes. Finally, we analyzed the
immune cell abundance ratio of each sample in different groups. Our results reveal the
different clinical characteristics, the immune cell infiltration pattern in different sites
of mCRPC, and identify multiple critical related genes and pathways, which provides
basis for individualized treatment.

Subjects Bioinformatics, Andrology, Oncology, Orthopedics, Urology
Keywords Metastatic castration-resistant prostate cancer (mCRPC), Bone metastasis, RNA
sequencing, Bioinformatics analysis

INTRODUCTION
Prostate cancer (PCa) is one of the most common malignant tumors of male genitourinary
system, which is the sixth most common cause of cancer-related deaths. It is estimated
that there are 914,000 new cases and 255,000 deaths each year (Siegel, Miller & Jemal, 2016;
Torre et al., 2016). The onset of prostate cancer not only causes severe health damage to
patients, but also brings a serious economic and psychological burden to the family and
society. Endocrine therapy-castration treatment (surgery or drugs) or combined androgen
blockade is an effective treatment for patients who cannot be cured radically at present.
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However, drug resistance appears after 12 to 18 months of treatment and develops into
castration-resistant prostate cancer (CRPC) or mCRPC with higher severity and mortality
(Shen & Abate-Shen, 2010). Therefore, in-depth exploration of the pathogenesis of CRPC
and development of new strategies for the prevention and treatment of diseases have
become urgent and arduous tasks.

Bone is the most common metastatic site for prostate cancer (Logothetis & Lin, 2005).
The metastases are mainly in the pelvis, spine and proximal femur. Orthopedic treatment
is often required to deal with the severe pain caused by bone metastases and bone fracture
resulted from pathological fractures (Barlev et al., 2010; Shahinian et al., 2005). Even in
some patients, bone pain caused by bone metastasis has become the first symptom due to
the insidious onset of prostate cancer, which finally can be confirmed by the pathological
examination after surgery. In addition to bone, prostate cancer can alsometastasize to other
organs, like lung, liver, pleura, and adrenals. Different tumor genomic characteristics result
in different metastatic sites, while different metastatic sites determine the different tumor
microenvironment, especially the local immune status (Binnewies et al., 2018; Choi et al.,
2020). All the features above affect the treatment effect and disease prognosis. However,
the differences of clinical characteristics, molecular features, and immune status between
bone metastatic tumors and other distant metastatic tumors have not been elaborated
and studied in depth. Many recent studies have focused on the feature of CRPC especially
mCRPC. These researches could help us better understand themechanisms of this advanced
prostate cancer (Abida et al., 2019).

Here in this study, we downloaded the gene expression data and corresponding clinical
information of a latest research on mCRPC to compare the clinically specific differences,
molecular phenotypes and expression differences, and immune cell infiltration status in
prostate lesions at different metastatic sites comprehensively. Our results could help to find
out the critical pathways and related genes to provide candidate targets and strategies for
individualized treatment.

MATERIALS AND METHODS
RNA-seq data information
RNA-seq expression data with corresponding clinical information of a published
dataset (Abida et al., 2019) were download from online dataset cBioPortal for Cancer
Genomics website (Websties: http://www.cbioportal.org/index.do) and GitHub website.
(https://github.com/cBioPortal/datahub/tree/master/public/prad_su2c_2019) (Cerami et
al., 2012).

Cell lines and cell culture
DU145 and PC-3 cells (ATCC) were maintained in RPMI1640 supplemented with 10%
FBS. All cells were added with antibiotic-antifungal solution (100 units / ml penicillin, 0.1
mg / ml streptomycin and 0.25 mg / ml amphotericin B), and under standard cell culture
conditions (5% CO2, 95% humidity) Grow at 37 ◦C as described previously (Wang et al.,
2018). All human cell lines have been authenticated using STR profiling within the last
three years.
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Real-time RT-PCR
Total RNAs were extracted from cells using TRIzol reagent (Invitrogen). Quantitative
real-time PCR was performed using the Bio-Rad CFX96 system, and the relative gene
expression was normalized to internal control as gapdh.

Gene set enrichment analysis (GSEA)
We figured out the biological function gene sets in prostate lesions at different metastatic
sites using software GSEA 4.0.3. Gene mRNA expression matrix was imported and
enrichment results satisfying P < 0.05 with a false discovery rate (FDR q-val) <0.25
were considered statistically significant.

Analysis of DEGs
We analyzed the differential expression of RNA-Seq data using EdgeR (an R package)
as previously described (McCarthy, Chen & Smyth, 2012; Robinson, McCarthy & Smyth,
2010). Fold change (FC) ≥ 2 or ≤ 0.5; FDR adjusted P value <0.05 were the criteria to
determine DEGs.

Functional annotation and pathway enrichment analysis
We divided the DEGs into upregulated and downregulated groups, and did enrichment
analysis inGeneOntology (GO) andKyoto Encyclopedia ofGenes andGenomes (KEGG) to
annotate the related genes’ functions. Database for annotation, visualization and integrated
discovery (DAVID) website was used to calculate (DAVID version 6.8) (Dennis Jr et al.,
2003).

Integration of protein–protein interaction (PPI) network and module
analysis
STRING is an online tool for functional interaction network, which provides a critical
assessment and integration of PPI. In this study, we uploaded all the DEGs to the STRING
database online for PPI evaluation and integration (Szklarczyk et al., 2015). The cutoff
of PPI network was combined score 0.4. Cytoscape was then used to complete module
screening by Molecular Complex Detection (MCODE) (Bader & Hogue, 2003).

Identification of infiltrated immune cells
We identified the infiltrated immune cells using the online analysis tool CIBERSORT,
which could estimate the abundance ratio of member cell types in a mixed cell population
from gene expression data (Newman et al., 2015). We uploaded the RNA-Seq expression
matrix online to obtain an abundance ratiomatrix of 22 immune cells. CIBERSORT derives
a p-value for the deconvolution of each sample. Such p-value could provide a measure of
confidence in the results, and p< 0.05 was considered accurate. Then, only the samples
with P < 0.05 were selected for the next analysis. Correlation analysis was then performed
on the content of 22 immune cells in the selected samples.

Statistical analysis
The t -test was used to compare the data which are normally distributed. One-way ANOVA
test with Bonferroni’s multiple comparison tests was used to compare data from multiple
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groups.Mann–WhitneyU test was used to compare the clinical data which are not normally
distributed. The Kaplan–Meier method with log-rank test was used for calculating the
clinical outcome by Graphpad. A value of P 0.05 was considered statistically significant. All
the statistical analyses were conducted with Graphpad and R 3.3.0.

RESULTS
Data source and identifying differences in clinical characteristics
To compare the characteristics of mCRPC in bone metastasis with other sites, we
downloaded the RNA-seq data of mCRPC tissues and clinical information of the patients.
We obtained the clinical information of 423 mCRPC patients in total, of which only 212
had corresponding gene expression data. According to the metastatic site, we divided all
the patients into bone metastasis group and other sites group. In the following analyses,
we used the clinical information of all 423 patients because of the integrity of the data in
clinical aspect. All samples for RNA-seq were from themetastatic lesions as the information
indicated.We summarized all the clinical data of the 423 patients in Table 1 and the available
clinical data of 212 with RNA-seq data in Table 2.

We then compared the clinical characteristics in the two groups. We did the analysis in
three aspects: PSA level, Gleason score and clinical outcome. Results showed that PSA level
in bone metastasis group was higher (Fig. 1A). There was no difference in Gleason score in
both groups (Fig. 1B). In terms of clinical outcome, we analyzed the treatment time and
overall survival data after first line ARSI treatment. Results indicated that metastatic site
was related to treatment time: patients with bone metastasis had a longer time on treatment
with a first-line ARSI (Fig. 1C), but no difference was found in overall survival in both
groups (Fig. 1D). Our results indicated that different metastatic sites of mCRPC may have
different disease outcome and clinical features.

Differences in molecular aspects
GSEA analysis and identification of DEGs
After analyzing the clinical characteristics, we focused on the molecular aspects. After
reviewing the clinical data of all patients, we found that some of the patients have ARSI
or Taxane exposure. To exclude the influence of treatment, in the parts of molecular and
immune cell infiltration analyses below, we only used data of 84 naive mCRPC patients
(34 in bone and 50 in other sites, patients without using second-line ARSI (Abiraterone
and Enzalutamide) or Taxane) with gene expression data.

To further investigate the molecular difference and find out some evidence, we first
analyzed various functional gene sets by the GSEA approach. Results showed that epithelial
mesenchymal transition (EMT), heme metabolism, and angiogenesis were significantly
enriched in bone metastasis group (Figs. 2A–2C). In further analysis of the molecular
difference, we identified the DEGs in the different groups to find out the specific genes
upregulated or downregulated in bone metastatic mCRPC samples. Based on the in silico
analysis, 1263 genes were identified as DEGs in total. Among all the DEGs, we found 913
upregulated and 350 downregulated in bone metastasis group. The volcano plot of the
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Table 1 Summary of the clinical characteristics of patients with mCRPC.

Characteristics Case, N (%)

Age at diagnosis, years
≤60 157 (37%)
>60 216 (51%)
Not available 50 (12%)
Sample Type
Adrenal 2 (0.4%)
Bone 155 (36.6%)
Brain 1 (0.2%)
Liver 63 (14.9%)
LN 164 (38.8%)
Lung 7 (1.6%)
Other Soft tissue 29 (6.8%)
Unknown 2 (0.4%)
Gleason Score
≤7 130 (30.7%)
>7 210 (49.6%)
Not available 83 (19.7%)
PSA at diagnosis
<10 135 (31.9%)
10–20 63 (14.9%)
>20 143 (33.8%)
Not available 82 (19.4%)
Pathology Classification
Adenocarcinoma 323 (76.3%)
Small cell 27 (6.4%)
Inadequate for diagnosis or not available 73 (17.2%)
Abiraterone (ABI) and Enzalutamide (ENZA) Exposure
Status
Naive 199 (47%)
Exposed 193 (45.6%)
On treatment 19 (4.5%)
Not available 12 (2.9)
Taxane exposure status
Naive 260 (61.5%)
Exposed 142 (33.6%)
Not available 21 (4.9%)

DEGs is shown in Fig. 2D and the DEGs expression heat map of top 100 genes is shown in
Fig. 3.

GO and KEGG analyses of DEGs
To analyze DEGs at the functional level, we submitted all the upregulated and
downregulated DEGs above respectively to DAVID online analysis website. In the
upregulated group, the GO analysis of DEGs (Fig. 4A) suggested significant enrichment in
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Table 2 Summary of the clinical characteristics of patients with mCRPCwho had RNA profiles.

Characteristics Case, N (%)

Age at diagnosis, years
≤60 81 (38.2%)
>60 103 (48.6%)
Not available 28(13.2%)
Sample type
Adrenal 2 (0.95%)
Bone 83 (39.15%)
Liver 27 (12.74%)
Lymph nodes 81 (38.2%)
Other Soft tissue 19 (8.96%)
Gleason score
≤7 64(30.19%)
>7 104 (49.06%)
Not available 44(20.75%)
PSA at diagnosis
<10 49 (23.11%)
10–20 29 (13.68%)
>20 88 (41.51%)
Not available 46(21.7%)
Abiraterone (ABI) and Enzalutamide (ENZA) exposure
status
Naive 106 (50%)
Exposed 89 (41.98%)
On treatment 6 (2.83%)
Not available 11(5.19%)
Taxane exposure status
Naive 124 (58.49%)
Exposed 79 (37.26%)
Not available 9(4.25%)

collagen catabolic process, extracellular matrix organization, ossification, skeletal system
development, cell adhesion, collagen fibril organization, oxygen transport, proteolysis,
multicellular organism development, osteoblast differentiation, extracellular matrix
disassembly, biomineral tissue development, regulation of bone mineralization, bone
mineralization and endochondral ossification. While KEGG pathway analysis showed
enrichment mainly in ECM-receptor interaction, PI3K-Akt signaling pathway, platelet
activation, protein digestion and absorption, hematopoietic cell lineage, osteoclast
differentiation, amoebiasis, focal adhesion, Rap1 signaling pathway, asthma, neuroactive
ligand–receptor interaction, malaria, axon guidance, phagosome, Ras signaling pathway
(Fig. 4B).

Furthermore, in downregulation group, inGOanalysis, DEGswere significantly enriched
in chemokine-mediated signaling pathway, inflammatory response, immune response,
chemotaxis, positive regulation of cAMPmetabolic process, positive regulation of apoptotic
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Figure 1 Differences in clinical characteristics between different metastatic sites of prostate cancer.
(A) PSA levels in bone metastasis group and other site group. (B) Gleason score in bone metastasis group
and other site group. (C) The time on treatment with a first-line ARSI in patients with different metastatic
sites. (D) OS time from first-line ARSI in patients with different metastatic sites.

Full-size DOI: 10.7717/peerj.11133/fig-1

cell clearance, cellular response to interleukin-1, cell surface receptor signaling pathway,
response to lipopolysaccharide, lymphocyte chemotaxis, cell chemotaxis, regulation of
complement activation, cellular response to tumor necrosis factor, complement activation
and aging (Fig. 4C). KEGG pathway analysis showed enrichment mainly in complement
and coagulation cascades, Staphylococcus aureus infection, chemokine signaling pathway,
cytokine-cytokine receptor interaction, cell adhesionmolecules (CAMs), Pertussis, Primary
immunodeficiency, glycolysis/ gluconeogenesis, PPAR signaling pathway, systemic lupus
erythematosus, and hematopoietic cell lineage (Fig. 4D).

Identification of hub genes and modules from the PPI network
In previous steps, we found that the clinical affairs of bone metastasis were different
from tumors in other sites, and then we tried to further explore the interrelationships of
DEGs above and to figure out some critical genes. We uploaded all the DEGs online to
the STRING database. Ranked by degree, we identified the top 20 genes as hub genes.
These genes were ALB, ITGAM, MMP9, COL1A1, C3, IL4, MMP2, COL1A2, SPP1, CCR5,
NCAM1, MPO, CCL2, GNG11, CXCL10, SOX9, CCR7, AGT, RUNX2 and TNFSF11. ALB
was identified as the top hub gene with the degree of 164 (Table 3).
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Figure 2 Functional enrichment in different metastatic sites of prostate cancer. (A, B, C) GSEA results
of mCRPC bone metastasis, including EMT (A), angiogenesis (B) and heme metabolism (C). (D) Volcano
plot for differentially expressed genes. Red and blue symbols classify genes that are up- or down-regulated,
respectively. The critical genes NCAM1, C3 and CXCL10 are also indicated.

Full-size DOI: 10.7717/peerj.11133/fig-2

We then tried to find out whether the 20 hub genes above correlated prostate cancer
disease progress or outcome. In this part of the research, we hoped to identify some key
genes that might play critical roles in disease progression and could be used as potential
research targets in the future. In this part, to deal with the analysis of clinical characteristics
comprehensively, we used the samples with both clinical information and gene expression
data (166 for PSA and 168 for Gleason score). Results indicated that high PSA level
correlated with low mRNA expression levels of NCAM1 (Fig. 5A) and CXCL10 (Fig. 5B).
Only high expression level of C3 was associated with higher Gleason score (Fig. 5C). We
finally identified these genes above, including NCAM1, CXCL10 and C3, as the critical
hub genes. Among these genes, NCAM1 expressed higher in bone metastasis group, while
CXCL10 and C3 expressed lower in bone metastasis group (Figs. 5D–5F).

To confirm the expression levels of the critical hub genes in bone metastasis group and
the other sites group, we used PC-3 and DU145 cell lines to do in vitro experiment. PC-3 is
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Figure 3 Heat map of the top 100 differentially expressed genes (50 up-regulated genes and 50 down-
regulated genes). Red: up-regulation; purple: down-regulation.

Full-size DOI: 10.7717/peerj.11133/fig-3

an epithelial cell line from a human prostatic adenocarcinoma metastatic to bone (Kaighn
et al., 1979), while DU145 is derived from a central nervous system metastasis (Stone et al.,
1978). Our results confirmed that NCAM1 was upregulated in PC-3 cell, while CXCL10
and C3 were downregulated in PC-3 cell (Figs. 5G–5I).
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Figure 4 DAVID enrichment results of the differentially expressed genes. (A) The GO enrichment
terms of upregulated genes in the bone metastasis group. (B) The KEGG enrichment terms of upregulated
genes in the bone metastasis group. (C) The GO enrichment terms of downregulated genes in the bone
metastasis group. (D) The KEGG enrichment terms of downregulated genes in the bone metastasis group.

Full-size DOI: 10.7717/peerj.11133/fig-4

At last, we imported the PPI network above into Cytoscape software to identify modules
of genes byMCODEplate, and found out the top 3modules. To further analyze themodules
at the functional level, we did enrichment analysis on the top three significant modules
(Fig. 6, respectively). Results showed that functional annotation in module 1 was primarily
enriched in G-protein coupled receptor signaling pathway, chemokine-mediated signaling
pathway, inflammatory response, chemokine signaling pathway, cytokine-cytokine receptor
interaction, and neuroactive ligand–receptor interaction. In Module 2, the analysis showed
that the enrichment was mainly related to collagen catabolic process, extracellular matrix
organization, collagen fibril organization, protein digestion and absorption, ECM-receptor
interaction, and amoebiasis. In module 3, genes were enriched in immune response,
extracellular matrix disassembly, and inflammatory response.

Differences in immune status
Identifying immune cell infiltration pattern
After analyzing the difference in clinial and molecular characteristics, we then analyzed the
immune status in the last step. At first, we uploaded the RNA-seq matrix of the 84 patients
above online to CIBERSORT website to identify the immune cell infiltration pattern in all
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Table 3 Functional roles of the 20 hub genes.

No. Gene Full name Function

1 ALB Serum albumin Its main function is the regulation of the colloidal osmotic
pressure of blood.

2 ITGAM Integrin alpha-M Integrin ITGAM/ITGB2 is implicated in various adhesive
interactions of monocytes, macrophages and granulocytes
as well as in mediating the uptake of complement-coated
particles.

3 MMP9 Matrix metalloproteinase-9 May play an essential role in local proteolysis of the
extracellular matrix and in leukocyte migration.

4 COL1A1 Collagen alpha-1(I) chain Type I collagen is a member of group I collagen (fibrillar
forming collagen).

5 C3 Complement C3 C3 plays a central role in the activation of the complement
system.

6 IL4 Interleukin-4 Participates in at least several B-cell activation processes as
well as of other cell types.

7 MMP2 72 kDa type IV collagenase Ubiquitinous metalloproteinase that is involved in
diverse functions such as remodeling of the vasculature,
angiogenesis, tissue repair, tumor invasion, inflammation,
and atherosclerotic plaque rupture.

8 COL1A2 Collagen alpha-2(I) chain Type I collagen is a member of group I collagen (fibrillar
forming collagen)

9 SPP1 Osteopontin Binds tightly to hydroxyapatite. Appears to form an integral
part of the mineralized matrix.

10 CCR5 C-C chemokine receptor type 5 Receptor for a number of inflammatory CC-chemokines
including MIP-1-alpha, MIP-1-beta and RANTES
and subsequently transduces a signal by increasing the
intracellular calcium ion level.

11 NCAM1 Neural cell adhesion molecule 1 This protein is a cell adhesion molecule involved in neuron-
neuron adhesion, neurite fasciculation, outgrowth of
neurites, etc.

12 MPO Myeloperoxidase Part of the host defense system of polymorphonuclear
leukocytes.

13 CCL2 C-C motif chemokine 2 Chemotactic factor that attracts monocytes and basophils
but not neutrophils or eosinophils.

14 GNG11 Guanine nucleotide-binding protein G(I)/G(S)/G(O)
subunit gamma-11

Guanine nucleotide-binding proteins (G proteins)
are involved as a modulator or transducer in various
transmembrane signaling systems.

15 CXCL10 C-X-C motif chemokine 10 Chemotactic for monocytes and T-lymphocytes. Binds to
CXCR3

16 SOX9 Transcription factor SOX-9 Transcriptional regulator.
17 CCR7 C-C chemokine receptor type 7 Receptor for the MIP-3-beta chemokine.
18 AGT Angiotensinogen Essential component of the renin-angiotensin system

(RAS), a potent regulator of blood pressure, body fluid and
electrolyte homeostasis

19 RUNX2 Runt-related transcription factor 2 Transcription factor involved in osteoblastic differentiation
and skeletal morphogenesis.

20 TNFSF11 Tumor necrosis factor ligand superfamily member 11 Cytokine that binds to TNFRSF11B/OPG and to
TNFRSF11A/RANK. Osteoclast differentiation and
activation factor.
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Figure 5 Clinical characteristics analyses of the hub genes. (A) NCAM1 expression level in different
PSA level groups (166 samples with both PSA information and gene expression data, one-way ANOVA
test with Bonferroni’s multiple comparison test). (B) CXCL10 expression level in different PSA level
groups (166 samples with both PSA information and gene expression data, one-way ANOVA test with
Bonferroni’s multiple comparison test). (C) C3 expression level in different Gleason score groups (168
samples with both Gleason score information and gene expression data, Mann–Whitney U test). (D–F)
The mRNA expression levels of NCAM1 (D), CXCL10 (E) and C3 (F) in the mCRPC dataset. G-I. The
mRNA expression levels of NCAM1 (G), CXCL10 (H) and C3 (I) in PC-3 and DU145 cell lines (t -test,
n= 5).

Full-size DOI: 10.7717/peerj.11133/fig-5

these mCRPC tissues. The abundance ratios of 22 immune cells and their correlations were
analyzed in the 37 patients with CIBERSORT p< 0.05 (Figs. 7A, 7B). T cell CD4 memory
activated and mast cells activated, dendritic cells resting were significantly correlated, while
macrophage M0 was negatively correlated with T cell CD8. Moreover, we analyzed the OS
time from first-line ARSI start and the time on treatment with a first-line ARSI in patients
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Figure 6 Top three modules from the PPI network and related functional analysis. (A) Results of PPI
network of module 1. (B) Results of GO and KEGG analyses of module 1. (C) Results of PPI network of
module 2. (D) Results of GO and KEGG analyses of module 2. (E) Results of PPI network of module 3. (F)
Results of GO analyses of module 3.

Full-size DOI: 10.7717/peerj.11133/fig-6

with the abundance ratio of the 22 types of immune cells. Then we divided all the patients
into high group and low group according to the abundance ratio of 22 immune cells whose
cut-off level was set at the median value, respectively. However, we found no cell type were
associated with the clinical outcome significantly (data not shown).

Next, we compared whether the distribution of these 22 immune cells was different
in the bone metastasis group and the other sites group. As shown in Fig. 8A, violin plots
of immune cells indicated that B cells naïve, T cells CD8, T cells CD4 memory resting, T
cells follicular helper, NK cells activated, Macrophages M1, and dendritic cells resting were
higher in other sites group, while NK cells resting and Macrophages M0 were distributed
higher in bonemetastasis group. In further review of the distribution of the metastatic sites,
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Figure 7 The immune cell infiltration pattern in mCRPC samples. (A) Histogram of the proportion of
22 immune cells in samples P 0.05. (B) The relationship between the abundance ratios of various immune
cells. Red represents a positive correlation, and blue represents a negative correlation.

Full-size DOI: 10.7717/peerj.11133/fig-7

we found some of the ‘other site’ samples are lymph node metastases, which could induce
potential bias. To eliminate these potential biases, we also showed the results of immune
analysis from bone sites vs other sites (without lymph node) in Fig. 8B. Only T cells CD4
memory activated, Macrophages M1, dendritic cells activated and mast cells activated
were distributed higher in other sites group (without lymph node). These results suggest
the different immune status in mCRPC bone metastasis group and the other sites group,
indicating the potential mechanism underlying the different treatment effect. However,
due to the small sample size in the dataset, our results still need further research to confirm
in the future.
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Figure 8 Violin plots of immune cells in bone metastasis tumors and tumors in other locations. (A)
Violin plots of immune cells in bone metastasis tumors and tumors in other locations. (B) Violin plots of
immune cells in bone metastasis tumors and tumors in other locations without lymph node.

Full-size DOI: 10.7717/peerj.11133/fig-8

DISCUSSION
Metastatic castration-resistant prostate cancer (mCRPC), the fatal stage of prostate cancer,
is still the leading cause of cancer related patient death in male (Siegel, Miller & Jemal,
2016). Patients with mCRPC often have lost chance of surgery, and the treatment mostly
relies on endocrine therapy and chemotherapy. In recent years, breakthroughs have been
made in the research of mCRPC drugs, and a number of second-line ARSI drugs such as
abiraterone and enzalutamide have appeared, bringing hope to mCRPC patients. (Scher et
al., 2010; Scher et al., 2012). Besides, immunotherapy has become a promising treatment
for such advanced malignancies (Inthagard, Edwards & Roseweir, 2019). Because bone
metastasis is the major type of prostate cancer metastasis, studying the characteristics
of bone metastasis and the differences with other metastatic tumors can help us better
understand the pathogenesis of mCRPC and promote individualized treatment strategies.
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Here in this study, we comprehensively analyzed the differences betweenmCRPC in bone
and other tissues in clinical, molecular and immune aspects using an RNA-Seq dataset of
mCRPC downloaded from GitHub and cBioportal by bioinformatics analysis approaches.
In clinical aspect, we found that PSA level in bone metastasis group was higher and that
patients with bone metastasis had a longer time on treatment with a first-line ARSI. This
indicated that mCRPC in bone metastasis tends to be more malignant but with relatively
favorable prognosis, although there was no association with overall survival. Patients with
higher PSA level and progression to CRPC may be benefited from early screening for
bone metastases, such as radionuclide bone scans. Early detection and treatment of bone
metastatic lesions will play a positive role in improving the quality of life of patients and
preventing complications such as fractures.

As for molecular aspect, GSEA results showed that EMT, angiogenesis and heme
metabolism were enriched in mCRPC bone metastasis. EMT is a crucial step in the
progression of prostate cancer, drugs that could reverse or inhibit EMT might be more
efficient to the patients with bone metastasis, such as Silibinin (Gazak, Walterova & Kren,
2007; Wu et al., 2010). Accumulated evidence from previous studies has confirmed the
importance of angiogenesis in prostate cancer metastasis, especially in bone metastasis,
and has validated that inhibition of neovascularization is a promising therapeutic strategy
(Lara Jr, Twardowski & Quinn, 2004). Our results add more evidence that angiogenic may
be more active in mCRPC bone metastases, indicating that drugs targeted angiogenesis
may be more suitable for such patients.

In PPI network analysis, we first analyzed the protein-protein interaction of the DEGs
we identified previously. Enrichment analysis results of the top 3 modules revealed that the
development of mCRPC bone metastasis was associated with G-protein coupled receptor
signaling pathway, chemokine-mediated signaling pathway, inflammatory response,
cytokine-cytokine receptor interaction, neuroactive ligand–receptor interaction, collagen
catabolic process, extracellular matrix organization, protein digestion and absorption,
ECM-receptor interaction, amoebiasis, immune response, and inflammatory response.
Some critical pathways and cellular progresses, such as G-protein coupled receptor
signaling pathway and collagen metabolism, have been shown to contribute to tumor
metastasis or bone metastasis (Costa et al., 2002; Xi et al., 2014). Our results also indicated
that other critical pathways and cellular progresses might contribute to the bonemetastasis.
Drugs or treatment targeted such programs may have specific effects on the inhibition of
CRPC bone metastases. Moreover, we also identified 20 hub genes with the highest degree
of interaction. ALB (Albumin), which plays a role in regulating plasma osmotic pressure
and acts as a carrier protein for a variety of endogenous molecules (including hormones,
fatty acids and metabolites) as well as exogenous drugs. Some anti-cancer drugs such as
doxorubicin might bind albumin to reach the target organ and play a therapeutic role in
prostate cancer (Elsadek et al., 2011). Deep research found that high PSA level correlated
with low mRNA expression levels of NCAM1 and CXCL10. In addition, high expression
level of C3 correlated with higher Gleason score. These results indicate that the three
genes above could be promising candidate oncogenes or tumor suppressors in mCRPC
progression in further research.
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In immune aspect, we found that the immune cell infiltration pattern in patients with
bone metastasis is quite different from those in other locations, which indicated that the
different metastatic sites might have different immune cell infiltration pattern. This may
result from the different microenvironment, which will affect tumor progression and drug
sensitivity in turn. Previous studies have shown that certain inflammatory factors (such as
CCL2) can promote prostate tumor growth and bonemetastasis by recruitingmacrophages
(Mizutani et al., 2009). In-depth study of the characteristics of immune cell infiltration in
prostate cancer metastases at different locations will help us better understand the local
immune characteristics, which also could help us understand its disease progression, and
help formulate individualized treatment strategies.

Our study contained some limitations. Our research is a preliminary exploration using
RNA-seq data by bioinformatics analysis with some in vitro confirmation. We still need
further researches in clinical and molecular biology experiments to confirm our results.
The roles of hub genes identified in this study in mCRPC also need to explore. Moreover,
sampling adjacent bone healthy tissue will affect the results of RNA-seq, which could be
improved by increasing the sample size in the future.

CONCLUSIONS
In conclusion, this study comprehensively compared the clinical features, molecular
phenotypes, and immune cell infiltration status of prostate lesions at different metastatic
sites. Our results could help to find out the critical pathways and genes related to provide
candidate targets and strategies for individualized treatment. However, more clinical and
basic researches still are needed in the future.
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