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Higher eukaryotic development is a complex and tightly regulated process, whereby
transcription factors (TFs) play a key role in controlling the gene regulatory networks.
Dysregulation of these regulatory networks has also been associated with carcinogenesis.
Transcription factors are key enablers of cancer stemness, which support the
maintenance and function of cancer stem cells that are believed to act as seeds for
cancer initiation, progression and metastasis, and treatment resistance. One key area of
research is to understand how these factors interact and collaborate to define cellular fate
during embryogenesis as well as during tumor development. This review focuses on
understanding the role of TFs in cell development and cancer. The molecular mechanisms
of cell fate decision are of key importance in efforts towards developing better protocols for
directed differentiation of cells in research and medicine. We also discuss the
dysregulation of TFs and their role in cancer progression and metastasis, exploring TF
networks as direct or indirect targets for therapeutic intervention, as well as specific TFs’
potential as biomarkers for predicting and monitoring treatment responses.
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INTRODUCTION

To establish and maintain specific cell lineage during development, a complex and tightly regulated
gene expression network is active under the control of both intrinsic and extrinsic signaling pathways
that culminate in the activation of transcription factors (1). Transcription factors (TFs) play a major
role in regulating gene expression by recognizing and directly binding to specific DNA sequences.
This binding then results in direct and/or indirect transcription activation of downstream genes,
bringing RNA polymerase and other transcriptional machinery to the promoter sequence (2–4). TFs
can also regulate expression through the recruitment of corepressors or by interfering with the
binding of other TFs (5, 6).

During the early stages of embryo development, asymmetrical cell divisions along a basolateral
cleavage plane create inner cell mass (ICM) and outer cell mass of trophectoderm (TE) lineage
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(7, 8). This hallmark event in early mammalian development is
mainly dictated by two transcription factors; the POU-family
transcription factor octamer-binding transcription factor 3/4
(Oct3/4) and the caudal-type homeobox protein 2 (Cdx2).
Oct3/4 and Cdx2 establish a mutually exclusive expression
pattern and form a complex for reciprocal repression of their
target genes, suggesting reciprocal inhibition between lineage
specific TFs during early stages of mammalian differentiation
and development where Cdx2 drives lineage towards
trophectoderm (9, 10). In addition, the Tea-domain family
member 4 (Tead4) transcription factor regulates TE lineage
specification (11, 12) through differential subcellular regulation
(11). Furthermore, the early ICM contains a cell subpopulation
that leads to the formation of two lineages, the epiblast (EPI) and
primitive endoderm (PE), which are differentially regulated by
Nanog (a homeobox TF in EPI) or Gata6 (Gata binding factor 6
in PE). Nanog and Gata6 are expressed in the ICM in an
apparently random and mutually exclusive manner (13, 14).
Nanog, together with Sall4, is vital to maintain the self-renewal
capability of the ICM and of embryonic stem (ES) cells, derived
from the inner cell mass (ICM) (15–18). Sall4 regulates Oct4 by
binding to its conserved region, thus availing it for maintenance
of ES cell pluripotency (18, 19) while Sall1 is implicated in the
development of kidney, heart, and other systems (20). ES cells
can maintain pluripotency and generate somatic and germ cell
lineages of the developing embryo (17), and ESC pluripotency is
governed by the core transcription factors Nanog, Oct4, Klf4,
and Sox2 among others (17). Other key developmental
transcription factors include the FoxA, Pax, and Pparg families.
FoxA family proteins are well known early developmental
transcription factors (21) and are hence also known as
“pioneer factors”. The Pax family TFs are involved in
maintenance of progenitor cells across a wide variety of tissues
including the thymus, pancreas and eye (20). Pparg proteins are
involved in many functions including cell proliferation and
development of several tissues, and gliomas (20).

Given the vital role of TFs in determining cell fate, the
extrapolation to tumor development and progression is easily
made. Epithelial to mesenchymal transition (EMT) is not only an
essential embryonic process during which apical-basal polarized
epithelial cells convert into motile front-back polarized
mesenchymal cells, but it is also crucial for ‘tissue invasion and
metastasis’, a hallmark of cancer. The plasticity of cancer cells to
switch between an epithelial and mesenchymal phenotype bestows
them with the ability to survive the hostile tumor
microenvironment and to colonize distant organs. Multiple
theories exist on the identity of cancer cells with such abilities,
supporting either the presence of a specific subpopulation of cancer
stem cells (CSCs) within the bulk tumor or a subset of cancer cells
with high plasticity, or a combination of both theories. Irrespective
of the theories on CSC origin, cancer cells with stemness features
are associated with the ability to self-renew and propagate
unlimited. Less-differentiated tumors contain higher amount of
CSCs as compared to well-differentiated tumors (22). Moreover,
CSCs have been involved in tumor initiation, metastasis, and
resistance to chemotherapy and radiotherapy (22, 23). The
Frontiers in Oncology | www.frontiersin.org 2
expression profiles of TFs involved in CSCs maintenance are
similar to what is found in ESCs as compared to what is
observed in adult stem cells (24, 25). The aim of this review is to
summarize the current knowledge and highlight differences in the
role of transcription factors that are involved in cell fate control
during normal tissue as well as tumor development. Transcription
factors involved in early as well as key developmental stages and
those with strong cancer links were specifically chosen for this
review. This review also tries to give a wider breadth of different
types of TFs to better capture the diversity of involved TFs rather
than focus on any single family of TFs or type of cancer.
FORKHEAD BOX A

The Fox family encompasses more than 170 transcription factors
with a conserved winged-helix DNA-binding domain (DBD)
(26–28). These proteins participate in cellular processes ranging
from development to immunity and metabolism (26, 27, 29–31).
The Fox family can be stratified into 19 subfamilies, FoxA to
FoxS, based on protein sequence homology (32). Fox proteins
share a signature 80–100 amino acid DNA-binding domain
known as forkhead box but significantly differ in other regions,
allowing for differential expression, regulation, and functional
diversification (29, 33).

The FoxA subfamily, known as hepatocyte nuclear factor 3
(Hnf3), comprises three members, FoxA1, FoxA2, and FoxA3,
that can remodel nucleosomes and facilitate DNA binding of
other TFs (21, 34). FOXAmembers have been depicted as pioneer
factors because of their ability to bind transcription factor binding
sites (Tfbs) located in condensed, inactive chromatin in order to
initiate chromatin remodeling and support other TFs in accessing
chromatin to prompt their tissue-specific functions such as
estrogen and androgen modulation (21, 34–36).

Increased expression of Fox proteins has been observed in a wide
range of cancers and is commonly associated with advanced cancer
stages and poor survival via increased proliferation (37). Several
studies have demonstrated a role for FoxA1 and FoxA2 in the
regulation of cell cycle progression, proliferation and differentiation,
genomic instability and DNA damage repair, metabolism,
angiogenesis, invasion, and senescence (Figure 1). In comparison,
sparse data is available on the role of FoxA3 in cancer. One recent
study demonstrated an increase in FoxA3 expression in esophageal
cancer, which was associated with increased invasion, distant
metastasis, disease stage, and a shorter overall survival (38).
However, these TFs are correlated with oncogenic but also
conversely tumor-suppressive functions (inhibiting metastasis)
depending on how they interact with the transcriptional networks
of tissue-specific cancers (29, 39, 40). Table 1 summarizes the
expression patterns of FoxA protein in various cancers.
OCT4

Oct4, also known as Pou5f1, is one of the core transcription
factors that regulates ESC pluripotency (80). It contains three
June 2021 | Volume 11 | Article 681377
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domains; the DNA binding POU domain, C-terminal
transactivation domain, and variable N-terminal domain and
binds an octamer sequence motif (ATGCAAAT) to regulate the
expression of its target genes (Figure 2A) (81, 82). The
expression level of Oct4 is critical for ESCs’ fate determination
whereby an intermediary level maintains the self-renewal
capacity of ESCs, a decrease in the expression level supports
differentiation into trophectoderm lineage, and a subsequent
increase induces differentiation into primitive endoderm or
mesoderm (83).
Frontiers in Oncology | www.frontiersin.org 3
Oct4 expression has been observed in numerous cancers, with
increased expression in more aggressive tumors and decreased
expression being associated with regression of tumor potential
(84). For instance, high expression of Oct4 in combination with
other core pluripotency factors has been linked with pancreatic
carcinogenesis, whereas silencing of Oct4 results in decreased
proliferation, migration, invasion, and chemoresistance (85).
Accordingly, multiple studies have demonstrated a correlation
between Oct4 expression and treatment resistance and poor
survival. For example, Oct4 expression is increased in
FIGURE 1 | The role of FoxA1 and FoxA2 in cell fate decision or tumor induction. Both TFs impact the cell’s development toward normal cycle and differentiation or
toward cancer and tumorigenesis. FOXA1 and FOXA2 overexpression, mutation, or down-regulation is associated with different cancers such as, lung, liver, breast,
and prostate cancers.
June 2021 | Volume 11 | Article 681377
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docetaxel and mitoxantrone-resistant prostate cancer, cisplatin-
resistant lung and ovarian cancer, radiation-resistant cervical
cancer and chemo-resistant oral squamous carcinoma cancers
(82, 86, 87). Conversely, Oct4-knockdown has been shown to
increase the sensitivity to cisplatin treatment and radiotherapy in
lung and ovarian cancers and to temozolomide in glioma-
initiating cells (88–91). In contrast, testicular germ cell tumors
display an inverse relation between Oct4 expression and
resistance to cisplatin, although the exact mechanism is not yet
clear (92, 93). Although increased Oct4 is generally associated
with better outcome, in these tumors Oct4 expression was
correlated with worse survival, similar to what has been
observed in hypopharyngeal squamous cell carcinoma (94).
This discrepancy in prognostic connotation underlines the
biological complexity of this TF in cancer biology. In analogy
Frontiers in Oncology | www.frontiersin.org 4
with most stem cell factors, the level of Oct4 expression appears
to be critical in cancer whereby either increased or decreased
expression can perturb distinct cancer-related pathways.
SOX2

Sox2 is well established as a key transcription factor for self-
renewal and pluripotency of neural stem cells and
undifferentiated ESCs and is an integral part of embryogenesis,
organogenesis, and overall animal development (95–98). It is a
member of the Sox family of proteins that contain a DNA-
binding high mobility group (HMG) domain that forms a
concave surface enabling binding to DNA in a sequence-
specific manner (99–101). The subsequent conformational
A B

FIGURE 2 | Domain organization and structural arrangement of Oct4, Sox2, and Nanog. (A) Oct4 has DNA-binding domains (a POU-specific DNA-binding domain
(POUS) and a POU-homeodomain (POUHD)) interacting independently with DNA as well as transactivation domains located N-terminal (N-TAD) and C-terminal (C-
TAD). Sox2 is a High mobility group (HMG) family member and has a single HMG DNA-binding domain and a transactivation domain (TAD). Nanog has N-terminal
containing a DNA-binding homeodomain (HD) and an N-terminal domain (ND), C-terminal containing a dimerization domain (blue) referred to as the tryptophan repeat
(WR), that separates C-terminal domain 1 (CD1) from C-terminal domain 2 (CD2). (B) Ternary structure of Oct–Sox–DNA (PDBID: 1O4X). Sox2 binding to DNA and
Oct4 is enabled by the HMG domain (orange) that cooperates in binding of Oct4 POU domain (blue) onto the DNA (golden).
TABLE 1 | The association between each member of FoxA family and different cancers.

FoxA member Expression Cancer type Reference

FoxA 1 Increased Lung cancer (41, 42)
Breast cancer (41, 43–48)
Prostate cancer (45, 49–56) (57) (58)
Liver cancer (59)
Breast cancer (57)
Gastric cancer (60)
Ovarian cancer (61)
Esophageal cancer (41)
Thyroid cancer (62)

Mutation Invasive lobular carcinoma (ILC) (63)
FoxA 2 Increased Liver cancer (59)

Prostate Cancer (64, 65)
Hepatocarcinoma (66)
Breast cancer (47)

Decreased Pancreatic cancer (67)
“Pancreatic ductal adenocarcinoma
(PDAC)”
Bladder cancer (68, 69)
“Muscle-invasive bladder cancer”
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change then unwinds the DNA, which helps to recruit other TFs,
coactivators, or repressors (Figure 2B). The differential
partnership of a functional Sox2 DNA binding site in
combination with a second binding site for a partner protein
determines the overall transcriptional activation or repression
(102). Furthermore, Sox2 and Oct4 co-binding is required for
gene activation at several loci providing more support that Sox2
and its partner factors are recruited to unique target sequences in
specific conformations for transcriptional regulation (102). As
such, partner switching plays an important role in differential
gene expression. For example , during endodermal
differentiation, the Sox2–Oct4 complex switches into a Sox17–
Oct4 complex (103) as a result of Sox2 and Sox17 competing for
binding to Oct4 and forming stable complexes on specific
regions to determine the cell fate (104).

Of note, Sox2 is considered a proto-oncogene whereby Sox2
gene amplification, mutation, and overexpression can lead to
multiple malignant conditions with metastasis (105–109). Sox2
amplification is positively correlated with increased proliferation,
tumor burden metastasis, and poor prognosis (110–114). In
tongue squamous cell carcinoma, Sox2 overexpression was
associated with EMT progression, suggesting its involvement
in regulation of cancer cell motility (115). Furthermore, Sox2 has
been associated with tumorigenicity, illustrating its role in cancer
stemness. For example, overexpression of Sox2 speeds up
tumorigenicity in I-type neuroblastoma cells (116). Conversely,
Sox2 silencing reduced tumorigenicity of glioblastoma and lung
cancer tumor initiating cells (117, 118) and of epithelial ovarian
cancer (EOC) cells (115). Downregulation of Sox2 reduces the
tumorigenicity of cancer stem cells and regulates the expression
of various cancer genes in lung cancer, including c-MYC, WNT1,
WNT2, and NOTCH1 (119). In addition, Sox2 downregulation
in breast cancer and glioma cells results in decreased
proliferation by cell cycle arrest (120).
NANOG

Nanog is a homeodomain protein that is critical for mammalian
development and specification of the ICM in the early embryo
(16, 121). It forms dimers through its tryptophan-rich (WR)
domain that is essential for ESCs’ self-renewal and pluripotency
(122, 123). In addition, the dimer interacts with Kruppel-like
zinc finger transcription factor Zfp281 (122) that functions as a
transcriptional repressor for Nanog (124) while Patz1 (also a
Kruppel-like zinc finger transcription factor) has the opposite
effect as a transcriptional activator of Nanog (125). Nanog
contains several phosphorylation sites at Ser/Thr-Pro motifs,
which enable Nanog to be recognized and bound by the prolyl
isomerase Pin1, leading to Nanog protein stabilization by
preventing proteasome-mediated degradation (126).
Phosphorylation and stabilization of Nanog by focal adhesion
kinase (Fak) and protein kinase Cϵ (PKCϵ) has also been
associated with tumor development (127). More specifically,
PKCϵ-mediated phosphorylation translocates Nanog to the
nucleus and activates miR-21 to promote breast tumor
Frontiers in Oncology | www.frontiersin.org 5
development and progression (128). Nanog is specifically
expressed in ESCs, germ fibroblasts, and several tumor cell
lines (129, 130). Knockdown of Nanog in gastric cancer cells
reduced their proliferative and metastatic capacity, possibly as a
result of increased apoptosis and cell cycle arrest (131). Similarly,
Nanog was shown to exhibit anti-tumorigenic effects in
glioblastoma (132), breast (133), and prostate (134) carcinoma
cells. Furthermore, Nanog was found to promote chemoresistance
and to increase cell migration and EMT (135, 136).
KRÜPPEL-LIKE FACTOR 4

Klf4 is a three-zinc finger TF with two nuclear localization
signals (NLSs) discovered in 1996 and also known as gut-
enriched krüppel-like factor (GKLF). KLF4 is highly expressed
in skin and intestinal epithelial cells and is involved in the
regulation of cellular proliferation and terminal differentiation
of several different tissues such as intestinal, eye, and skin tissues.
Moreover, Klf4 is a well-known key factor required to produce
induced pluripotent stem cells (iPSCs) (137, 138), first
discovered by Takahashi and Yamanaka (139). Dhaliwal et al.
highlighted Klf4’s role to maintain pluripotency and prevent
embryonic stem cell differentiation. It is maintained post-
transcriptionally by Nanog and Sox2 where Sox2 co-expression
enables KLF4 stability.

Klf4 is an important regulator of adipogenesis and together
with Krox20 (early growth response protein 2) induces
expression of C/EBPb through binding to C/EBPb promoter
regions in conjunction with histone acetyltransferase p300. Prior
induction of Klf4 via cAMP regulates C/EBPb expression,
indicating a synergistic interaction. Conversely, knockdown of
C/EBPb results in overexpression of Klf4 and Krox20 identifying
C/EBPb as a downstream target (140). Klf4 knockdown is
directly correlated with dysregulation of adipogenesis
characterized by differentiation fat markers including
peroxisome proliferator-activated receptor (PPARg) as it is
mediated through C/EBPb (140). Pparg, in turn, regulates Klf4
expression via binding of the PPAR response element (PPRE) in
its promoter making it a key transcription regulator of lipid
metabolism (70). Pparg binding to Klf4 promoter induces the
tumor suppression activity by affecting the complex pathways
involving Klf4 in tumorigenesis as well as adipogenesis.

In cancer, particularly non-small cell lung cancer (NSCLC),
Klf4 expression is downregulated in comparison to the
surrounding normal tissues, indicative of a tumor suppressive
function. Likewise, Klf4 has been found to act as a tumor
suppressor in gastrointestinal cancer where it is associated with
growth arrest through inhibition of G1/S cell cycle progression
(71, 141). Klf4 has been reported to be a downstream target of
methyltransferase like 3 (METTL3) using METTL3-depleted
T24 bladder cancer cells. The cooperation of METTL3 with the
reader protein YTH N6-Methyladenosine RNA Binding Protein
2 (YTHDF2) leads to the degradation of Klf4, which diminishes
the tumor suppression activity of Klf4 and consequently induces
cancer progression (72). Further, Klf4 negatively regulates serine/
June 2021 | Volume 11 | Article 681377
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threonine kinase 33 (Stk33) by direct binding to its promoter,
resulting in the inhibition of Stk33-induced EMT, a pivotal step
in metastasis (73). In line with this, Klf4 expression has been
correlated with inhibition of c-Jun N-terminal kinase (Jnk)
which reportedly triggers EMT during cancer metastasis. In
hepatocellular carcinoma (HCC), Klf4 was shown to regulate
the expression of CD9/CD81, exosomal tetraspanin surface
proteins that mediate cellular interaction and have been found
to be involved in cancer (142). More specifically, CD9/CD81
were identified as transcriptional targets for Klf4 with a Klf4
binding site in their promoter regions. The expression of Klf4
was positively associated with the expression of CD9/CD81, and
negatively affected downstream MAPK/JNK signaling,
suggesting targeting Klf4-CD9/CD81-Jnk for future therapy.
Table 2 shows the expression levels of KLF4 involved in
cancer processes.

It is important to note that few studies have reported Klf4 to
be a tumor promoting factor. For instance, Klf4 has been shown
to mediate estrogen-induced mitogenic effects as it accumulates
upon estrogen-induced downregulation of the ubiquitin protein
ligase Von Hippel-Lindau (VHL) (74). Overexpression of KLF4
was shown to promote osteosarcoma cancer stem cells (143) and
act as a tumor promoting gene in nasopharyngeal carcinoma
(144). Finally, Klf4 promotes breast tumor development and is
upregulated in 70% of breast tumors (71).
SPALT-LIKE TRANSCRIPTION FACTOR 1

Sall1, together with Sall2, Sall3, and Sall4, forms the Sall family of
zinc finger proteins containing cysteine–histidine residues
(C2H2) (CX2–4CX12HX2–6H). Sall proteins are involved in
organ development. Sall1 and Sall4 are specifically found to
have an association with the rare human congenital Townes–
Brocks syndrome that affects multiple organs (78, 79). Sall1 likely
manifests this syndrome due to its role in kidney, heart, limbs,
and central nervous system development (78). In this review, we
focus on Sall1 as it is has been more frequently studied in the
context of cancer as compared to the other Sall proteins.
Frontiers in Oncology | www.frontiersin.org 6
The role of Sall1 in cell reprogramming was demonstrated
through a Genome-Scale CRISPRa Screen (145), in which the
expression of Sall1 was monitored individually and
synergistically with Nanog. This study confirmed the capacity
of Sall1 to reprogram primed epiblast stem cells (EpiSCs) and
embryonic fibroblasts (MEFs) to iPSC, resulting in
reprogramming the cell to ground state. In addition, Sall1
combined with Nanog maintained ESC state and regulated
ESC reprogramming and differentiation. Concurrent
overexpression of Nanog and Sall1 bestowed cells with the
ability to form ESC colonies, whereas Sall1 alone was incapable
of maintaining the ground state relative to Nanog’s ability. This
work also showed that Sall1 and Nanog can delay differentiation
of ESCs into EpiSCs via delayed upregulation of the
differentiation markers Fgf5 (fibroblast growth factor 5) and
Otx2 (orthodenticle homeobox 2).

In cancer, Sall1 has been found to be downregulated in breast
cancer, glioblastoma (77), and myeloid leukemia, supporting its
role as a tumor suppressor (76). In support of such a tumor
suppressor role, Sall1 has been found to be a target of oncogenic
miRNAs. For instance, Sall1 was found to be a potential target of
the oncogenic miR-4286 in prostate cancer whereby miR-4286
knockdown abrogated Sall1’s ability to induce apoptosis and
inhibit proliferation. Another study reported an inverse
correlation, although not significant, between Sall1 and the
oncogenic miR-181a-2 that is involved in microsatellite
instability (146). Table 2 highlights SAL1 expression in
cancer modulation.

In addition to the zinc finger domains which are important
for DNA binding, Sall1 is characterized by a rich glutamine
domain responsible for dimerization. This domain comprises an
N-terminal region with tumor-suppression and transcription
repression activity, enabled by interaction with nucleosome-
remodeling deacetylase complex (NuRD) (78), resulting in
decreased tumor growth and proliferation, cell cycle arrest, and
metastasis regression. Furthermore, overexpression of Sall1
negatively impacts cell cycle progression and proliferation
through the suppression of b-catenin, antagonizing the Wnt/b-
catenin signaling pathway accordingly by targeting Wnt
TABLE 2 | Expression of KLF4 and SALL1 in cancer suppression and carcinogenesis.

Klf4 Expression Cancer Type Reference

Decreased Colorectal cancer (70)
Gastrointestinal cancer (71)
Bladder cancer (72)
Hepatocellular carcinoma (HCC) (72)

Decreased Gastric cancer (73)
Increased Breast cancer (74)
Decreased Non-small-cell lung cancer (NSCLC) tissues (75)

Sall1 Activity Cancer Type Reference
Decreased Breast cancer (76)

Myeloid leukemia (ML)
Cerebral glioma (77)

Decreased Breast cancer (76)
Myeloid leukemia (ML)

Mutation Rare human congenitalTownes–Brocks syndrome (78, 79)
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downstream targets Cyclin D1 (Ccnd1) and c-Myc oncogene. In
addition, Sall1 is affecting the progression of cancer through the
upregulation of the epithelial marker E-cadherin and
downregulation of the mesenchymal markers vimentin and N-
cadherin, driving mesenchymal-to-epithelial transition (77).
GATA TFS

The Gata family of TFs comprises zinc-finger DNA-binding
proteins that control the development of diverse tissues,
especially during hematopoiesis. They share conserved C2H2-
type zinc-finger motifs (Cys-X2-C-X17-Cys-X2-Cys) that are
involved in DNA-binding by recognizing the Gata element (A/
TGATAA/G) (147). Based on expression pattern, they can be
subdivided into two groups: Gata1, Gata2, and Gata3 forming
the group of hematopoietic Gata factors, and Gata4, Gata5, and
Gata6 grouped as endodermal Gata factors (148, 149). X-linked
congenital anemia and thrombocytopenia have been linked to a
point mutation within the N-terminal zinc finger of Gata1 that
abolishes the interaction of Gata1 with the hematopoietic
expressed transcription co-factor Fog1 (150). Gata3 plays an
essential role in development and mammary gland function by
maintaining the luminal cell lineage, and is expressed in
differentiated luminal epithelial cells lining the breast ductal
structures (151, 152). Gata3 gene deletion affects the mammary
gland morphogenesis and in adults results in loss of luminal
lineage (151, 153).

Since Gata proteins are heavily involved in regulating cell
proliferation and survival of non-cancerous cells, it is evident
how they can play a role in cancer. Altered expression or
mutations of Gata factors are associated with a broad range of
tumors including leukemia, colorectal, lung, breast, and brain
tumors [Zhang et al., Rodriguez et al., Gao et al., Usary et al.,
Frontiers in Oncology | www.frontiersin.org 7
Akiyama et al., Gong et al.]. Two mutations in the coding region
(zinc finger domain) of Gata2 have been identified in a subset of
human chronic myelogenous leukemia (CML). These mutations
altered transactivation activity of Gata2 and its inhibitory effects
on the activity of PU.1, a major regulator of myelopoiesis (154). In
breast cancer, Gata3 expression is associated with invasive growth
and poor prognosis (155). Its expression is maintained between
primary and metastatic breast carcinoma and could potentially be
used as a marker for metastatic breast carcinoma (156). Gata3 has
also been suggested as a specific marker for urothelial carcinoma
(157). Association of Gata3 with favorable clinicopathological
parameters may indicate prognostic significance for Gata3
through its ability to promote luminal progenitor cells
differentiation (158). Genomic analysis of breast cancer reveals
high-frequency mutation in Gata3; however, most mutations were
limited to a single allele, and expression of both mutated and wild-
type alleles is approximately equivalent (159–161).
PAX TFS

Pax TFs are involved in multiple lineages to regulate cell fate
during development and differentiation (162). They are sequence-
specific DNA-binding proteins that are essential during early
development and organogenesis (163). In general, Pax proteins
are characterized by the presence of three conservative elements:
two DNA-binding domains, the paired domain (PD) and
homeodomain (HD), and the short octopeptide sequence (OP)
located between PD and HD (Figure 3A). The paired domain,
named after its first identification in the Drosophila gene paired
(164), is the defining feature of this class of genes, while the OP
and HD domains may be dispensable (Figure 3B).

The Pax family comprises nine members (Pax1–Pax9) in
humans, subdivided into subgroups I–IV based on the
A B

FIGURE 3 | Structural architecture of Pax family and its binding to DNA. (A) Schematic drawing of conserved structural domains of Pax family members. The
domains include the conserved paired domain (PD, green), the defining domain for this family. The Pax family members selectively contain other domains such as the
homeodomain (HD, blue) and the octapeptide (OP, pink). (B) Ribbon diagram of Pax6 paired domain (PD)–DNA complex (PDBID: 6PAX). Crystal structure of the
human Pax6 PD (primarily helix-turn-helix motif)-DNA complex reveals the region/subdomain involved in DNA binding.
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presence, absence, or truncation of domains. Pax1 is expressed in
cortical cells of the embryonic and adult thymus, where it
participates in the maturation of thymocytes (165). It is often
hypermethylated in cervical cancer and is a potential novel
diagnostic biomarker (166). Pax2 binds to the promoter of a
disintegrin and metalloproteinase domain-containing protein 10
(ADAM10), a metalloprotease that plays a crucial role in cancer
progression and metastasis (167). It has been shown to regulate
ADAM10 protein expression in renal cancer where it is expressed
in 73% of cancer cells (168). Pax2 downregulation has been
shown to lead to growth inhibition of cancer cells, and
reactivation of Pax2 is also observed in clear cell renal cell
carcinoma, a tumor type characterized by loss of VHL tumor
suppressor function (169). Pax2 is also involved in cell
proliferation and carcinogenesis in the endometrium, where it
is activated by estrogen and tamoxifen, possibly due to cancer-
linked hypomethylation of the Pax2 promoter (170). To date, very
little information is available on Pax3 expression and function in
cancer. In alveolar rhabdomyosarcoma, a pediatric soft tissue
cancer related to the striated muscle lineage and characterized by
the chromosomal translocations, chromosomal translocation
events result in rearrangement of Pax3 and Pax7, juxtaposing
these TFs with members of the fork head transcription factor
family, and resulting in altered function from the chimeric gene
product (171). Pax4 is involved in the differentiation and
development of pancreatic islets. The high expression of Pax4
and the alternative splice variant Pax4v are critical in
development of insulinoma through the upregulation of the
anti-apoptotic gene bcl-xl (172, 173). Pax5 plays a vital role in
all stages of B lymphocyte development (174). Reprogramming of
mature B cells into pluripotent stem cells requires either ectopic
expression of the myeloid transcription factor CCAAT/enhancer-
binding-protein-alpha (C/EBPalpha) or Pax5 (175), in addition to
core pluripotency TFs. Pax5 also mediates enhancer–promoter
interactions and is able to alter genome topology, even in
untranscribed regions (176). Pax6 regulates the neuroectoderm
formation from ESCs, neural stem cell proliferation, neural stem
cell self-renewal, neurogenesis and is critical for the development
of the central nervous system (177, 178). Pax6 forms a complex
with Sox2 on the lens-specific enhancer elements known as delta-
crystallin minimal enhancer (DC5). Pax6 alone shows a poor
binding on DC5; however, it cooperatively forms a stable ternary
complex with Sox2 to the DC5 cis element, correlating with the
enhancer activation required for eye development (95, 179). Pax6
is overexpressed in pancreatic carcinoma cell lines and promotes
cancer progression by directly binding and activating the MET
tyrosine kinase receptor (180). In contrast, Pax6 suppresses
glioblastoma cell growth by downregulating the expression of
the gene encoding vascular endothelial growth factor A (VEGFA)
(181). Pax7 plays an important role in skeletal muscle formation
(182). PAX8 is abundantly expressed in renal tissues and is a
nephric-lineage TF required for the formation of the kidney
(183). Pax8 expression is also frequently observed in renal,
bladder, ovarian, and thyroid cancer cells. Silencing of Pax8
leads to a reduction in the expression of E2F1 and proteasome-
dependent destabilization of the tumor suppressor retinoblastoma
Frontiers in Oncology | www.frontiersin.org 8
protein (RB) (184). Pax8 is also involved in telomerase regulation,
telomerase reverse transcriptase and telomerase RNA component,
in glioma (185). In thyroid carcinoma, Pax8 exists as a gene fusion
with peroxisome proliferator activated receptor gamma (Pax8/
PPARG gene fusion), resulting in an oncogenic Pax8–PPARg
fusion protein (186). Similar to Pax1, Pax9 is expressed in
embryonic and adult thymus (165). In lung cancer, amplification
of Pax9 promotes cell proliferation of lung cancer cells (187).
Conversely, inhibition of Pax9 in oral squamous cell carcinoma
triggers the induction of apoptosis corroborating its critical role in
cell growth and survival, and thus disrupting the function could be
a potential avenue for cancer treatment (188).
PPARg TFS

Pparg TFs, together with C/EBPs and the basic helix–loop–helix
family (ADD1/SREBP1c), play a crucial role in adipogenesis, a
process that involves cellular differentiation and morphological
changes in cell size and lipid content (189–191). Pparg is amember
of the nuclear hormone receptor superfamily and requires
heterodimerization with retinoid X receptor or Rxr to bind DNA
and be transcriptionally active (192, 193). It can be present as two
protein isoforms through alternate promoters and splicing
whereby Pparg 2 the dominant isoform is in fat cells with an
extra 30 amino acids at theN-terminus compared to Pparg1 (192).

Given its prominent role in adipogenesis, it is not surprising
that increased expression of Pparg/Rxr has been found in
liposarcomas that were triggered to undergo terminal
differentiation in vitro by thiazolidinediones or TZDs (class of
antidiabetic drugs) and Rxr-specific retinoids (194). These results
suggest that these compounds may be useful drugs to
differentiate liposarcomas through maximal activation of the
Pparg pathway (194). Additionally, thiazolidinedione could be
used as a non-toxic alternative to conventional chemotherapy for
the treatment of locally advanced liposarcoma (194).
Nevertheless, TZDs have shown only modest therapeutic
benefit in clinical trials over the past 15 years (195). Factors
affecting drug efficacy could include compound-specific effects,
the necessity of Pparg activation or other targets, the tumor stage
at the time of drug exposure, the age of the patient, and finally the
influence of TZDs on cancer cell paracrine activity (195–197). In
addition, Pparg can inhibit b-catenin that activates Pdk1 and
Cyclin D1 (198) and upregulates Myc (199).

On the other hand, several studies revealed a pro-tumorigenic
role for Pparg in urinary bladder cancer, promoting
tumorigenesis, metastasis, and angiogenesis (200–202) through
several pathways including adipose differentiation and cell cycle
arrest. The pro-tumorigenic function of Pparg can be induced by
increased inflammation through the upregulation of IL-6/STAT3
(203), Cox2, and PGE2 (204). Other pathways also give rise to
cancers due to Pparg mutations with partial loss of function or
chimeric mutations such as in colon cancer (205), prostate
cancer (206), and thyroid tumors (207, 208) where Pparg levels
were associated with tumor grade and invasive ability. Figure 4
illustrates the dual role of Pparg within the cell.
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Thus, Pparg exhibits a context-dependent pro- or anti-
tumorigenic behavior, which needs to be carefully considered
prior to therapeutic intervention.
POK FAMILY

The POK transcription repressors (also named POZ-ZF
transcription factors) are a major family of transcription
Frontiers in Oncology | www.frontiersin.org 9
factors which have a dual role in development and cancer.
Apart from their involvement in several fundamental biological
processes, they also participate in hematopoiesis, adipogenesis,
chondrogenesis, DNA repair, development of oligodendrocytes,
osteoclast, and unfolded protein response (209). The POK family
(present in approximately 43 human genes) is composed of one
or more C-terminal C2H2 Krüppel-type zinc finger domains,
which are DNA binding domains, coupled with an N-terminal
POZ/BTB (broad-complex, tramtrack, and Bric a brac) domain
FIGURE 4 | The dual role of Pparg in the cell. Cell signals in parallel with other transcription factors (TFs) trigger Pparg binding to DNA to initiate either tumor
suppressive promoting functions.
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used for protein–protein interactions, allowing recruitment of
corepressor complexes. The hinge region between the POZ/BTB
and ZF domains and the C-terminal end of the ZF domain are
often targeted for post-translational modification and regulation
(210). The members of this family enable their regulation by
binding of the zing finger domain in their target genes followed
by recruitment of various cofactors (NCoR, SMRT, Sin3a)
through the N-terminal domain for chromatin remodeling and
transcriptional silencing or activation (211).

This family includes Bcl-6, PLZF, PATZ1 (also named
MAZR), Kaiso, and many others (212, 213). Members include
PLZF (promyelocytic leukemia zinc finger), which is involved in
limb and skeleton development (214), regulates spermatogenesis
(215) as well as natural killer T-cell (NKT) development (216).
PLZF is linked to tumor suppression via its transcriptional
repression of the c-myc oncogene (217). PATZ1/MAZR
(AT-hook containing zinger finger protein 1) is similar and
has been implicated in spermatogenesis (218), pluripotency
maintenance (125), and in different developmental processes,
including neural development (219) and T cell differentiation
(220). However PATZ1/MAZR has also been described to act as
an oncogene or tumor suppressor in experimental tumors and
human cancer (221). Bcl-6 (B cell lymphoma 6) is critical in B
cell development and is also dysregulated in B cell lymphoma
(222, 223). Kaiso is involved in intestinal cell fate by regulating
Notch signaling (224) and promotes EMT in prostate cancer by
regulating miR-200c (225).

Thus this family of proteins carries out key steps in
developmental pathways, and dysfunction can lead to
carcinogenesis through several pathways involved in cell fate
decisions, cell cycle control and apoptosis.
TARGETING TRANSCRIPTION
FACTORS IN CANCER: POTENTIAL
AND CHALLENGES
A plethora of evidence has identified CSC transcription factors
that can drive tumorigenesis. CSCs additionally display
resistance to chemotherapy (226) and radiotherapy (227, 228),
thus rendering them capable of repopulating tumors in pre-
treated relapsing patients. As such, strategies to target CSCs are
lucrative to improve treatment response and disease-free
survival. However, until recently, this class of proteins were
considered “undruggable” (229). Firstly, transcription factors’
function broadly as master regulators in an immense repertoire
of signaling pathways regulating normal tissue homeostasis, thus
highlighting a need for targeted inhibition in cancer cells.
Secondly, the lack of enzymatic activity and hence binding
sites has rendered designing small molecule inhibitors
challenging. In addition, the redundancy and functional
compensation of transcription factors may limit the efficacy of
single agent therapy. Consequently, the majority of currently
available CSC TF modulators are non-selective or target
upstream molecules (Table 3). For example, fursultiamine
(thiamine tetrahydrofurfuryl disulfide, TTFD), a derivative of
Frontiers in Oncology | www.frontiersin.org 10
vitamin B, has been reported to suppress the expression of
several CSC TFs including Oct4, Sox2, and Nanog resulting in
reduced stem cell properties in esophageal carcinoma spheroids
and mice xenografts (237). In addition, TTFD treatment also
improved the response to concurrent chemoradiotherapy in the
same mouse model. This combination modality has been
investigated in a phase II clinical trial (NCT02423811) of
esophageal squamous cell carcinoma, and the results are still
pending. Similarly, a synthetic compound PT‐262 (7‐chloro‐6‐
piperidin‐1‐yl‐quinoline‐5, 8‐dione) has been shown to inhibit
the expression of Oct4 and Nanog, concurrent to suppressing the
growth of lung tumor xenografts in mice (238). Furthermore, few
drugs have been identified that affect upstream regulators of CSC
TFs (Table 3). MLN4924, also known as pevonedistat, is a
neddylation inhibitor that induces the accumulation of MSX2,
a known transcription repressor of Sox2. MLN4924-mediated
Sox2 downregulation has been shown to suppress stem cell
properties and to exert broad anti-cancer effects both in in
vitro and in vivo models (239, 240). Several phase I/II clinical
trials are investigating single agent pevonedistat and its
combination with standard chemotherapy in mesothelioma
(NCT03319537 ) , a cu t e mye lo id l eukemia (AML)
(NCT03009240, NCT00911066, NCT03330821, NCT03009240,
NCT03459859, NCT03772925), acute lymphoblastic leukemia
(NCT03349281 ) , c h r on i c l ymphoc y t i c l e u k em i a
(NCT03479268), relapsed or refractory lymphoma or multiple
myeloma (NCT00722488, NCT03323034, NCT03770260),
melanoma (NCT01011530) and non-hematologic malignancies
(NCT00677170, NCT01862328) such as advanced non-small cell
lung cancer (NSCLC, NCT03965689, NCT03228186) and
intrahepatic cholangiocarcinoma (NCT04175912). In line with
promising observations from pre-clinical studies (241),
numerous phase I/II clinical trials are assessing the
combination of pevonedistat with 5-azacytadine in newly
diagnosed or relapsed/refractory AML or myelodysplastic
syndrome (NCT03813147, NCT02782468, NCT04172844,
NCT03238248, NCT02610777). This combination has now
progressed into phase III trials in newly diagnosed AML not
eligible for intensive chemotherapy (NCT04090736) and higher-
risk myelodysplastic syndromes, chronic myelomonocytic
leukemia, or low-blast AML (NCT03268954). Although single
agent pevonedistat indicated modest clinical benefit (242–246), a
combination of pevonedistat treatment with carboplatin and
paclitaxel in advanced solid tumors (NCT01862328, 35%
objective response rate) (247) or with 5-azacytadine in
treatment-naïve AML patients (NCT01814826, >50% ORR)
(248) showed promising anti-tumor activity. Both these studies
did not indicate any additional toxicity to those elicited by
chemotherapy or 5-azacytadine treatment alone. However,
transient elevations in liver function tests were dose limiting
for pevonedistat treatment. Likewise, modulators of calcium
signaling such as thapsigargin, a Sarco/Endoplasmic Reticulum
Ca(2+)-ATPases (SERCA) inhibitor induce a rise in cytosolic
Ca2+ levels, which activates Akt-mediated phosphorylation and
subsequently inhibits the oncogenic fusion transcription factor
Pax3-FoxO1 (249). Accordingly, thapsigargin treatment
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suppresses the growth of Pax3-FoxO1 expressing alveolar
rhabdomyosarcoma cell lines and xenografts.

Due to challenges in designing selective inhibitors for
transcription factors, potential strategies have focused on
disrupting their binding to DNA (Table 3). In this regard, a
compound termed EG1 was reported to target the DNA binding
Frontiers in Oncology | www.frontiersin.org 11
domain of Pax2, thereby blocking its transcriptional activity.
EG1 treatment has demonstrated anti-proliferative effects in
Pax2 expressing renal and ovarian cancer cell lines; however,
its efficacy in vivo has not yet been reported (250). Similarly,
pyrrothiogatain has been identified as a DNA-binding
inhibitor of the Gata family, particularly of Gata2–Gata5, in
TABLE 3 | Inhibitors of cancer stem cell transcription factors.

Candidate drug Target Pre-clinical studies Clinical studies Reference

Cancer type Effect Cancer types Effect

Fursultiamine
(thiamine
tetrahydrofurfuryl
disulfide, TTFD)

Non-
selective

Esophageal
squamous cell
carcinoma

• Suppressed OCT-
4, SOX-2, NANOG
expression in spheroids
• Reduced CSC
phenotype in spheroids
• Improved xenograft
response to CCRT

• Esophageal squamous cell carcinoma
(NCT02423811)

Results pending (230)

PT‐262 (7-
chloro‐6‐
piperidin‐1‐yl‐
quinoline‐5, 8‐
dione)

Non-
selective

Lung cancer • Inhibited OCT-4
and NANOG
expression
• Inhibited
anchorage-
independent ability and
tumor growth in mice

NA NA (231)

MLN4924/
Pevonedistat

NAE
inhibitor

Breast cancer
AML

• Depleted SOX-2 via
targeting the FBXW2-
MSX2 axis
• Suppressed CSC
properties
• Sensitized breast
cancer cells to
tamoxifen
• Combination with
5-AZA increased DNA-
damage, cell death and
complete xenograft
tumor regression

• Mesothelioma (NCT03319537)
• AML and MDS (NCT03009240, NCT00911066,
NCT03330821, NCT03009240, NCT03459859,
NCT03772925, NCT03813147, NCT02782468,
NCT04172844, NCT03238248, NCT02610777,
NCT04090736, NCT03268954)
• ALL (NCT03349281), CLL (NCT03479268)
• Lymphoma or multiple myeloma
(NCT00722488, NCT03323034, NCT03770260)
• Melanoma (NCT01011530)
• Non-hematologic malignancies (NCT00677170,
NCT01862328, NCT03965689, NCT03228186,
NCT04175912)

• Combination with
carboplatin and
paclitaxel
(NCT01862328) shows
35% ORR in advanced
solid tumors
• Combination with 5-
AZA (NCT01814826)
shows >50% ORR in
treatment-naïve AML
patients

(41–45,
232–236)

Thapsigargin SERCA
inhibitor

Alveolar
rhabdomyosarcoma

• Inhibits the fusion
PAX3-FOXO1 TF
Suppressed cell line

and xenograft growth

NA NA (46)

EG1 PAX2
DNA
binding
domain

Renal and Ovarian
cancer

• Inhibits PAX2
activity
• Anti-proliferative
effects in cell lines

NA NA (47)

NSC140905 (2-
(1,3-
benzodioxol-5-
ylmethyl)
butanedioic acid)

GATA4
DNA
binding
domain

Meningioma cancer • Inhibits GATA4
activity
• Decreased cancer
cell viability
• No effect on normal
meningeal cells

NA NA (48, 49)

Efatutazone/CS-
7017

PPAR-g
agonist

Anaplastic thyroid
carcinoma

• Increased cancer
cell death
• Inhibited
proliferation
• Suppressed cancer
cell motility

• Metastatic or locally advanced NSCLC
(NCT01199068, NCT01101334, NCT01199055,
NCT00806286)
• Metastatic colorectal cancer (NCT00986440
NCT00967616)
• Anaplastic thyroid cancer (NCT02152137)

• Partial responses
and stable disease in
various solid tumors

(22, 50–
56)

EGFR-TKI-resistant
lung
adenocarcinoma

Pyrrothiogatain GATA
DNA
binding
domain

Th2 cells • Inhibits GATA3
activity
• Inhibits GATA3/SOX-
4 interaction

NA NA (57)
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addition to inhibiting the interaction of Sox4 and Gata3 (251).
However, its effect on cancer cells remains to be investigated.
Furthermore, the synthetic derivative of succinic acid
NSC140905 [2-(1,3-benzodioxol-5-ylmethyl)butanedioic acid]
was reported to bind to the DNA-binding domain of Gata4,
thus blocking its transcriptional activity (252). Of note,
treatment of meningioma cancer cells with NSC140905
decreased cancer cell viability but did not affect normal human
meningeal cells in vitro (253). The potential of Sox decoy
molecules, which target their DNA binding activity, has also
been demonstrated to inhibit Sox18-induced genes in the
COS-7 cell line (254). These decoys have been designed
to resist nuclease digestion, degradation, and thermal
denaturation in vitro but remain to be investigated in pre-
clinical cancer models.

As transcriptions factors typically interact with numerous
proteins downstream of signaling cascades, targeting such
partner proteins may potentially affect their transcriptional
activity. For instance, FoxA1 interacts with the cyclin-
dependent kinase 1 (Cdk1) cell cycle regulator in certain types
of breast cancer cells (255). Additionally, in silico analyses has
indicated that Cdk-mediated phosphorylation of FoxA1 may
potentially regulate FoxA1 binding to DNA. Consequently,
treating these cell lines with Cdk inhibitors suppresses FoxA1
binding to DNA (255). Theoretically, this may also negatively
affect cancer cell proliferation and hence, requires further
investigation. In contrast, strategies targeting the CSC TF
Pparg focus on activating this tumor suppressor to mitigate
oncogenesis (256). Pparg agonists , particularly the
thiazolidinedione class of ligands (troglitazone, rosiglitazone,
and pioglitazone), have been commonly used as anti-diabetic
drugs. Although these drugs have shown pre-clinical anti-
proliferative effects in numerous cancer types (257–259), their
administration in clinical trials has indicated limited efficacy
(260, 261). A novel, third generation thiazolidinedione,
efatutazone or CS-7017, is significantly more potent than its
predecessors in inducing Ppar response element activation and
anti-tumor activity, and thus might exhibit a higher efficacy in
clinical setting (262, 263). Pre-clinical studies have shown that
efatutazone in combination with chemotherapy can increase
cancer cell death, inhibit proliferation, and suppress cancer
cell motility of particularly epidermal growth factor receptor-
tyros ine kinase inhibitor (Egfr-Tki)-res is tant lung
adenocarcinoma cells (230–232, 264). Clinically, single agent
efatutazone therapy and efatutazone therapy in combination
with chemotherapy have induced partial responses and stable
disease in various solid tumors (20, 233–235). Although
efatutazone treatment demonstrated acceptable tolerability,
peripheral edema was commonly observed as an adverse
effect, with patients often requiring diuretics. Furthermore,
numerous ongoing phase I and II clinical trials are assessing
the synergistic efficacy of efatutazone with the Egfr-Tki Erlotinib
(NCT01199068, NCT01101334) or carboplatin/paclitaxel
(NCT01199055, NCT00806286) in metastatic or locally
advanced NSCLC, with irinotecan, leucovorin, and 5-
fluorouracil chemotherapy in metastatic colorectal cancer
Frontiers in Oncology | www.frontiersin.org 12
(NCT00986440 NCT00967616) and with paclitaxel in
anaplastic thyroid cancer (NCT02152137).

Emerging technologies in high-throughput screening are
shifting the “undruggable” paradigm towards identifying
selective modulators of cancer-associated transcription factor
activity (236). Moreover, efforts towards designing targeted
delivery of small molecules, including synthetic compounds,
short-interfering RNA or Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR) genome editing tools,
could transform cancer treatment to specifically target
transcription factors and their mutant alleles in tumor cells
with minimal off-target effects. Finally, the functional
redundancy of CSC TFs could be overcome by combining TF
modulators with or without standard cancer treatment, which
has already been indicated by the improved efficacy of clinical
trials combining CSC TF modulators with chemotherapy.
CONCLUSION

This review attempts to summarize the choices of regulated cell
fate decisions versus dysfunction leading to cancer meted out by
several transcription factors. Key TFs were chosen which are
known to have important cell fate roles as well as dysfunction
during carcinogenesis. This review covers early players in stem
cell development such as Oct4 and Sox2 as well as other TFs in
early differentiation events such as Gata, Pax, and Pparg.
Different criteria including expression levels and mutations in
critical functional domains are described and how they exert
their effects for several different cancers. Finally, this review
describes the potential for drugging different cancers using
various compounds which specifically could mitigate the
“stemness” of cancers. Understanding how the TFs conspire
for normal cellular development versus malignant outcomes will
be critical in developing better selective ligands that can target
cancer with fewer side effects in the future.
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