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Abstract
Motivation: Proteins are essential macromolecules of life and thus understanding their function is of great importance. The 
number of functionally unclassifi ed proteins is large even for simple and well studied organisms such as baker’s yeast. 
Methods for determining protein function have shifted their focus from targeting specifi c proteins based solely on sequence 
homology to analyses of the entire proteome based on protein-protein interaction (PPI) networks. Since proteins interact to 
perform a certain function, analyzing structural properties of PPI networks may provide useful clues about the biological 
function of individual proteins, protein complexes they participate in, and even larger subcellular machines.

Results: We design a sensitive graph theoretic method for comparing local structures of node neighborhoods that demon-
strates that in PPI networks, biological function of a node and its local network structure are closely related. The method 
summarizes a protein’s local topology in a PPI network into the vector of graphlet degrees called the signature of the protein 
and computes the signature similarities between all protein pairs. We group topologically similar proteins under this measure 
in a PPI network and show that these protein groups belong to the same protein complexes, perform the same biological 
functions, are localized in the same subcellular compartments, and have the same tissue expressions. Moreover, we apply 
our technique on a proteome-scale network data and infer biological function of yet unclassifi ed proteins demonstrating that 
our method can provide valuable guidelines for future experimental research such as disease protein prediction.

Availability: Data is available upon request.

Introduction
The recent technological advances in experimental biology have yielded large amounts of biological 
network data. One such example is protein-protein interaction (PPI) networks (or graphs), in which 
nodes correspond to proteins and undirected edges represent physical interactions between them. Since 
a protein almost never acts in isolation, but rather interacts with other proteins in order to perform a 
certain function, PPI networks by defi nition refl ect the interconnected nature of biological processes. 
Analyses of PPI networks may give valuable insight into biological mechanisms and provide deeper 
understanding of complex diseases. Defi ning the relationship between the PPI network topology and 
biological function and inferring protein function from it is one of the major challenges in the post-
genomic era (Schwikowski and Fields, 2000; Hishigaki et al. 2001; Vazquez et al. 2003; Letovsky and 
Kasif, 2003; Deng et al. 2003, 2004; Brun et al. 2004; Nabieva et al. 2005).

Background
Various approaches for determining protein function from PPI networks have been proposed. 
“Neighborhood-oriented” approaches observe the neighborhood of a protein to predict its function by 
fi nding the most common function(s) among its neighbors. The “majority rule” approach considers only 
nodes directly connected to the protein of interest (Schwikowski and Fields, 2000). An improvement 
is made by also observing indirectly connected level-2 neighbors of a node (Chua et al. 2006). Further-
more, the function with the highest χ2 value amongst the functions of all “n-neighboring proteins” is 
assigned to the protein of interest (Hishigaki et al. 2001). Other approaches use the idea of shared 
neighbors (Samanta and Liang, 2003) or the network fl ow-based idea (Nabieva et al. 2005) to determine 
protein function.

http://creativecommons.org/licenses/by/3.0/
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Several global optimization-based function 
prediction strategies have also been proposed. Any 
given assignment of functions to the whole set of 
unclassifi ed proteins in a network is given a score, 
counting the number of interacting pairs of nodes 
with no common function; the functional assign-
ment with the lowest score maximizes the presence 
of the same function among interacting proteins 
(Vazquez et al. 2003). An approach that reduces 
the computation requirements of this method has 
been proposed (Sun et al. 2006).

Cluster-based approaches are exploiting the 
existence of regions in PPI networks that contain 
a large number of connections between the con-
stituent proteins. These dense regions are a sign of 
the common involvement of those proteins in cer-
tain biological processes and therefore are feasible 
candidates for biological complexes. The restricted-
neighborhood-search clustering algorithm effi -
ciently partitions a PPI network into clusters 
identifying known and predicting unknown protein 
complexes (King et al. 2004). Similarly, highly 
connected subgraphs are used to identify clusters 
in networks (Hartuv and Shamir, 2000), defi ning 
the relationship between the PPI network size and 
the number and complexity of the identifi ed clus-
ters, and identifying known protein complexes 
from these clusters (Prz ˇulj et al. 2004). Moreover, 
Czekanowski-Dice distance is used for protein 
function prediction by forming clusters of proteins 
sharing a high percentage of interactions (Brun 
et al. 2004).

In addition to protein function prediction, several 
studies have investigated associations between 
diseases and PPI network topology. Radivojac et al. 
(Radivojac et al. 2008) have tried to identify 
candidate disease genes from a human PPI network 
by encoding each gene in the network based on the 
distribution of shortest path lengths to all genes 
associated with disease or having known functional 
annotation. Additionally, Jonsson and Bates (Jonsson 
and Bates, 2006) analyzed network properties of 
cancer genes and demonstrated greater connectivity 
and centrality of cancer genes compared to non-
cancer genes indicating an increased central role of 
cancer genes within the interactome.

Approach
We address the above mentioned challenge as fol-
lows. First, we verify that in PPI networks of yeast 
and human, local network structure and biological 

function are closely related. We do this by designing 
a method that clusters together nodes of a PPI 
network with similar topological surroundings and 
by demonstrating that it successfully uncovers 
groups of proteins belonging to the same protein 
complexes, carrying out the same biological func-
tions, being localized in the same subcellular 
compartments, and having the same tissue expres-
sions. Since we verify this for PPI networks of a 
unicellular and a multicellular eukaryotic organism 
(yeast and human, respectively), we hypothesize 
that PPI network structure and biological function 
are related in other eukaryotic organisms as well. 
Next, since the number of functionally unclassifi ed 
proteins is large even for simple and well studied 
organisms such as baker’s yeast Saccharomyces 
cerevisiae (Peña-Castillo and Hughes, 2007), we 
describe how to apply our technique to predict 
membership in protein complexes, biological 
functional groups, and subcellular compartments 
of yet unclassifi ed yeast proteins. Additionally, we 
show how the method can be used for identifi cation 
of potential disease genes.

Our method belongs to the group of clustering-
based approaches. However, compared to other 
methods that defi ne a cluster as a dense intercon-
nected region of a network, our method defi nes it 
as a set of nodes with similar topological signatures 
(defi ned below). Thus, nodes belonging to the same 
cluster do not need to be connected or belong to 
the same part of the network.

Methods
Our new measure of node similarity generalizes 
the degree of a node, which counts the number of 
edges that the node touches, into the vector of 
graphlet degrees, counting the number of graph-
lets that the node touches; graphlets are small 
connected non-isomorphic induced subgraphs of 
a large network (Prz ̌ulj et al. 2004) (see Fig. 1). 
As opposed to partial subgraphs (e.g. network 
motifs (Milo et al. 2002)), graphlets must be 
induced, i.e. they must contain all edges between 
the nodes of the subgraph that are present in the 
large network. We count the number of graphlets 
touching a node for all 2–5-node graphlets, 
denoted by G0, G1, ..., G29 in Figure 1; counts 
involving larger graphlets become computation-
ally infeasible for large networks. Clearly, the 
degree of a node is the fi rst coordinate in this vec-
tor, since an edge (graphlet G0) is the only 2-node 
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graphlet. We call this vector the signature of a 
node. For example, an outer (black) node in 
graphlet G9 touches graphlets G0, G1, G3, and G9 
once, and it touches no other graphlets. It is topo-
logically relevant to distinguish between nodes 
touching a 3-node linear path (graphlet G1) at an 
end, or at the middle node; we provide a mathe-
matical formulation of this phenomenon for all 
graphlets with 2–5 nodes. This is summarized by 
automorphism orbits (or just orbits, for brevity): 
by taking into account the “symmetries” between 
nodes of a graphlet, there are 73 different orbits 
for 2–5-node graphlets, numerated from 0 to 72 
in Figure 1 (see (Prz ˇulj, 2006) for details). Thus, 
the signature vector of a node has 73 coordinates. 
For example, a node at orbit 15 in graphlet G9 
touches orbits 0, 1, 4, and 15 once, and all other 
orbits zero times. Thus, its signature will have 1s 
in the 0th, 1st, 4th, and 15th coordinate, and 0s in 
the remaining 69 coordinates.

We compute node signature similarities as fol-
lows. We defi ne a 73-dimensional vector W con-
taining the weights wi corresponding to orbits 
i ∈ {0, ..., 72}. We assign different weights to dif-
ferent orbits for the reasons illustrated below. For 
example, the differences in orbit 0 (i.e. in the 
degree) of two nodes will automatically imply the 
differences in all other orbits for these nodes, since 

all orbits contain, i.e. “depend on”, orbit 0. 
Similarly, the differences in orbit 3 (the triangle) 
of two nodes will automatically imply the differ-
ences in all other orbits of the two nodes that 
contain orbit 3, such as orbits 14 and 72. We 
generalize this to all orbits. Thus, we need to assign 
higher weights to “important” orbits, those that are 
not affected by many other orbits, and lower 
weights to “less important” orbits, those that 
depend on many other orbits. By doing so, we 
remove the redundancy of an orbit contained in 
other orbits. To compute weights wis, each orbit i 
is assigned an integer oi that is obtained simply by 
counting the number of orbits that affect orbit i. 
We consider that each orbit affects itself. For 
example, for orbit 15, o15 = 4, since it is affected 
by orbits 0, 1, 4, and itself; similarly, o44 = 5, since 
orbit 44 is affected by orbits 0, 2, 3, 11, and itself. 
We compute wi as a function of oi as follows:

 w log o
logi

i= −1
73
( )
( )

.  

We apply a logarithm function to ois to assign 
higher weights wis to the more “important” orbits 
(those that are not affected by many other orbits). 
Also, since the maximum value that an oi can take 
is 73 (for 2–5-node graphlets), we divide log(oi) 

Figure 1. The thirty 2-, 3-, 4-, and 5-node graphlets G0, G1, …, G29 and their automorphism orbits 0, 1, 2, ..., 72. In a graphlet Gi, i ∈ {0, 1, ..., 29}, 
nodes belonging to the same orbit are of the same shade (Prz ˇulj, 2006).
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by log(73) to scale it to [0, 1]. Since an orbit 
dependency count oi of 1 indicates that no other 
orbits affect orbit i (i.e. this orbit is of the highest 
importance), we invert this scaled value of orbit 
dependencies to assign the highest weight wi of 1 
to orbit i with oi = 1. Clearly, wi ∈ [0, 1] for all i ∈ 
{0, ... , 72} and the formula correctly assigns lower 
weights to less important orbits.

For a node u, we denote by ui the ith coordinate 
of its signature vector, i.e. ui is the number of times 
node u touches orbit i. We defi ne the distance Di(u, v) 
between the ith orbits of nodes u and v as:

 D u v w
u v

u vi i
i i

i i

( , ) ×
,

=
+( ) − +( )

{ } +( )
log log

log max
1 1

2
. 

We use log in the numerator because the ith coor-
dinates of signature vectors of two nodes can differ 
by several orders of magnitude and the distance 
measure should not be entirely dominated by these 
large values. Also, by using these logarithms, we 
take into account the relative difference between 
ui and vi instead of the absolute difference. We add 
1 to ui and vi in the numerator of the formula for 
Di(u, v) to prevent the logarithm function to go to 
infi nity. We scale Di to be in (0, 1) by dividing with 
the value of the denominator in the formula for 
Di(u, v). We add 2 in the denominator of the for-
mula for Di(u, v) to prevent it from being infi nite 
or 0. We defi ne the total distance D(u, v) between 
nodes u and v as:

 D u v
wii

( , ) .= =

=

∑
∑

Dii 0

72

0

72
 

Clearly, the distance D(u, v) is in [0, 1), where 
distance 0 means the identity of signatures of nodes 
u and v. Finally, the signature similarity, S(u, v), 
between nodes u and v is:

S(u, v) = 1 – D(u, v).

For example, the two outer (black) nodes at orbit 
15 in graphlet G9 have the same signatures, and 
thus, their total distance is 0 and their signature 
similarity is 1.

We form clusters in a PPI network as follows. 
For a node of interest, we construct a cluster con-
taining that node and all nodes in a network that 
are similar to it; we repeat this for each node in the 
PPI network. According to the signature similarity 
metric, nodes u and v will be in the same cluster if 
their signature similarity S(u, v) is above a chosen 
threshold. We choose an experimentally deter-
mined thresholds of 0.9–0.95. For thresholds above 
these values, only a few small clusters are obtained, 
especially for smaller PPI networks, indicating too 
high stringency in signature similarities. For 
thresholds bellow 0.9, the clusters are very large, 
especially for larger PPI networks, indicating a loss 
of signature similarity. To illustrate signature 
similarities and our choices of signature similarity 
thresholds, in Figure 2 we present the signature 
vectors of yeast proteins in the PPI network of 
(Krogan et al. 2006) with signature similarities 
above 0.90 (Fig. 2A) and below 0.40 (Fig. 2B). 
Signature vectors of proteins with high signature 
similarities follow the same pattern, while those 
of proteins with low signature similarities have 
very different patterns.

(A) (B)

Figure 2. Signature vectors of proteins with signature similarities: (A) above 0.90; and (B) below 0.40. The 73 orbits are presented on the 
abscissa and the numbers of times that nodes touch a particular orbit are presented on the ordinate in log scale. In the interest of the 
aesthetics of the plot, we added 1 to all orbit frequencies to avoid the log-function to go to infi nity in the case of orbit frequencies of 0.
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Results and Discussion

Results
We apply our method to six S. cerevisiae PPI 
networks and three human PPI networks. The 
S. cerevisiae PPI networks are henceforth denoted 
by “vonMering-core” (von Mering et al. 2002), 
“vonMering” (von Mering et al. 2002), “Krogan” 
(Krogan et al. 2006), “DIP-core” (Deane et al. 
2002), “DIP” (Xenarios et al. 2002), and “MIPS” 
(Mewes et al. 2002). “vonMering-core” contains 
only high-confi dence interactions described by von 
Mering et al. (von Mering et al. 2002); it contains 
2,455 interactions amongst 988 proteins obtained 
mainly by tandem affinity purification (TAP) 
(Rigaut et al. 1999; Gavin et al. 2002) and High-
Throughput Mass Spectromic Protein Complex 
Identifi cation (HMS-PCI) (Ho et al. 2002). “von-
Mering” is the PPI network containing the top 
11,000 high-, medium-, and low-confi dence inter-
actions amongst 2,401 proteins described by von 
Mering et al. (von Mering et al. 2002); the domi-
nant techniques used to identify PPIs in this net-
work are TAP, HMS-PCI, gene neighborhood, and 
yeast-two-hybrid (Y2H). “Krogan” is the “core” 
PPI data set containing 7,123 interactions amongst 
2,708 proteins obtained by TAP experiments as 
described by Krogan et al. (Krogan et al. 2006). 
“DIP-core” is the more reliable subset of the yeast 
PPI network from DIP (Xenarios et al. 2002) as 
described by Deane et al. (Deane et al. 2002); it 
contains 5,174 interactions amongst 2,210 proteins. 
“DIP” and “MIPS” are the yeast PPI networks 
downloaded in November 2007 from DIP (Xenarios 
et al. 2002) and MIPS (Mewes et al. 2002) data-
bases, respectively; they contain 17,201 and 12,525 
interactions amongst 4,932 and 4,786 proteins, 
respectively. The three human PPI networks that 
we analyze are henceforth denoted by “BIO-
GRID” (Stark et al. 2006), “HPRD” (Peri et al. 
2004), and “Rual” (Rual et al. 2005). “BIOGRID” 
and “HPRD” are the human PPI networks down-
loaded in November 2007 from “BIOGRID” (Stark 
et al. 2006) and “HPRD” (Peri et al. 2004) data-
bases, respectively; they contain 23,555 and 34,119 
interactions amongst 7,941 and 9,182 proteins, 
respectively. “Rual” is the human PPI network 
containing 3,463 interactions amongst 1,873 pro-
teins, as described by Rual et al. (Rual et al. 2005). 
We removed all self-loops and multiple edges from 
each of the PPI networks that we analyzed.

The entire PPI network is taken into account 
when computing signature similarities between 
pairs of nodes (i.e. proteins) and forming clusters 
(see Methods). However, here we only report the 
results of analyzing proteins involved in more than 
four interactions. We discard poorly connected 
proteins from our clusters because they are more 
likely to be involved in noisy interactions. Similar 
was done by Brun et al. (Brun et al. 2004). Also, 
we discard very small clusters containing less than 
three proteins. For the remaining clusters, we 
search for common protein properties: in yeast PPI 
networks, we look for the common protein com-
plexes, functional groups, and subcellular localiza-
tions (described in MIPS (Mewes et al. 2002)) of 
proteins belonging to the same cluster; in human 
PPI networks, we look for the common biological 
processes, cellular components, and tissue expres-
sions (described in HPRD (Peri et al. 2004)) of 
proteins in the same cluster.

Classifi cation schemes and the data for the three 
protein properties that we analyzed in yeast PPI 
networks were downloaded from MIPS database 
(Mewes et al. 2002) in November 2007. For each 
of these three classifi cation schemes (correspond-
ing to protein complexes, biological functions, and 
subcellular localizations), we defi ne two levels of 
strictness: the strict scheme uses the most specifi c 
MIPS annotations, and the fl exible one uses the 
least specifi c ones. For example, for a protein 
complex “category” annotated by 510.190.900 in 
MIPS, the strict scheme returns 510.190.900, and 
the fl exible one returns 510. Classifi cation schemes 
and the data for the three protein properties that 
we analyzed in human PPI networks (correspond-
ing to biological processes, cellular components, 
and tissue expressions) were downloaded from 
HPRD database (Peri et al. 2004) in November 
2007. In order to test if our method clusters together 
proteins having the same protein properties, we 
refi ne our clusters by removing the nodes that are 
not contained in any of the yeast MIPS protein 
complex, biological function, or subcellular local-
ization categories, or in any of the human HPRD 
biological process, cellular component, or tissue 
expression categories, respectively.

In our clusters, we measure the size of the larg-
est common category for a given protein property 
as the percentage of the cluster size; we refer to it 
as the hit-rate. That is, we compute the hit-rate of 
a cluster C as Hit(C ) = max N

N
p , where Np is the 

number of nodes in C having a given protein prop-
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erty p, and N is the total number of nodes in C. 
Clearly, a yeast protein can belong to more than 
one protein complex, be involved in more than one 
biological function, or belong to more than one 
subcellular compartment (and similar holds for 
human proteins). Thus, it is possible to have an 
overlap between categories, as well as more than 
one largest category in a cluster for a given protein 
property. We illustrate this for biological functions 
in the cluster presented in Figure 3, consisting of 
yeast proteins RPO26, SMD1, and SMB1. Accord-
ing to the strict scheme, protein SMD1 is in the 
common biological function category with protein 
RPO26 (16.03), as well as with protein SMB1 
(11.04.03.01). Thus, there are two largest common 
biological function categories. The size of the larg-
est common biological function category in the 
cluster is two and the hit-rate is 2/3 = 67%. For the 
flexible scheme, all three proteins are in one 
common biological function category (11) and thus, 
the size of the largest common biological function 
category is three and the hit-rate is 3/3 = 100%.

We also defi ne the miss-rate as the percentage of 
the nodes in a cluster that are not in any common 
category with other nodes in the cluster, for a given 
protein property. That is, we compute the miss-rate 
of a cluster C as Miss(C) = UN

p , where UP is the num-
ber of nodes in C not sharing any of their protein 
properties p with any other node in C, and N is the 
total number of nodes in C. For example, in Figure 3, 
according to the strict scheme, proteins RPO26 and 
SMB1 are in a common biological function category 
with SMD1, but they themselves are not in any com-
mon biological function category. Although not all 
three proteins are in the same biological function 
category and the hit-rate is only 67%, the miss-rate 
is 0/3 = 0%, since every node is in at least one com-
mon biological function category with another node 
in the cluster. Clearly, the miss-rate for the fl exible 
scheme is also 0/3 = 0%, since the three proteins are 
in the same biological function category (11) with 

respect to this scheme. Thus, if a protein belongs to 
several different categories for a given protein prop-
erty (which is expected), the hit-rate in the cluster 
might be lower than 100% (as illustrated in Fig. 3). 
Therefore, miss-rates are additional indicators of the 
accuracy of our approach.

For each of the six yeast PPI networks, the three 
yeast protein properties, and the two schemes, we 
measure the number of clusters (out of the total 
number of clusters in a network) having given hit-
and miss-rates. We bin the hit- and miss-rates in 
increments of 10%. The results for the fl exible 
scheme are presented in Figure 4. For subcellular 
localizations, in vonMering-core network, 86% of 
the clusters have hit-rate above 90%; for the 
remaining fi ve networks, 65% of clusters have 
hit-rates above 60% (Fig. 4A). For all networks, 
miss-rates for 72% of clusters are bellow 10% 
(Fig. 4B). Similarly, for biological functions, the 
miss-rates in all six networks are under 10% for 
81% of the clusters (Fig. 4D). The hit-rates for 
biological functions are above 60% for 79% of the 
clusters in both von Mering networks; in the 
remaining four networks, 57% of the clusters have 
hit-rates above 50% (Fig. 4C). Finally, for protein 
complexes, 47% clusters in vonMering-core, von-
Mering, and DIP-core networks have hit-rates 
above 60%, 36% of clusters in Krogan and MIPS 
networks have hit-rates above 50%, and 30% of 
clusters in DIP network have hit-rates above 40% 
(Fig. 4E). Miss-rates for protein complexes are 
bellow 10% for 39% of the clusters in both von 
Mering networks and in DIP-core network; in the 
remaining three networks, 33% of the clusters have 
miss-rates bellow 39% (Fig. 4F).

Similarly, for each of the three human PPI net-
works and their three protein properties that we 
analyzed, we measure the number of clusters (out 
of the total number of clusters in a network) having 
given hit- and miss-rates. The results are presented 
in Figure 5. For cellular components, in all three 
human PPI networks, 86% of the clusters have 
hit-rates above 50% (Fig. 5A). Miss-rates for 68% 
of clusters in BIOGRID and HPRD networks are 
bellow 10%, while in Rual network 76% of clusters 
have miss-rates bellow 29% (Fig. 5B). Similarly, 
for tissue expressions, hit-rates are above 50% for 
74% of clusters in BIOGRID and HPRD networks, 
and for 98% of clusters in Rual network, respec-
tively (Fig. 5C). Miss-rates are lower than 10% for 
61% of clusters in BIOGRID and HPRD networks, 
and for 48% of clusters in Rual network, respectively 

Figure 3. An example of a three-node cluster, consisting of proteins 
RPO26, SMD1, and SMB1. The categories of biological functions 
that the proteins belong to are presented bellow the protein 
names.
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(Fig. 5D). Finally, for biological processes, hit-rates 
are above 50% for 55% of clusters in BIOGRID 
network, for 45% of clusters in HPRD network, 
and for 33% of clusters in Rual network, respectively. 
(Fig. 5E). Miss-rates are bellow 29% for 58% of 
the clusters in BIOGRID network and for 71% of 
the clusters in HPRD network; in Rual network, 
44% of the clusters have miss-rates bellow 39% 
(Fig. 5F).

To evaluate the effect of noise in PPI networks 
to the accuracy of our method, we compare the 
results for the high-confi dence vonMering-core 
network and the lower-confidence vonMering 
network (Fig. 4). As expected, clusters in the more 
noisy network have lower hit-rates compared to 
the high-confi dence network. However, low miss-
rates are still preserved in clusters of both networks 
for all three protein properties, indicating the 

(A) (B)

(C) (D)

(E) (F)

Figure 4. The results of applying our method to the six yeast PPI networks (vonMering-core, vonMering, Krogan, DIP-core, DIP, and MIPS) 
and the three protein properties (subcellular localizations, biological functions, and protein complexes) in accordance with the fl exible scheme: 
(A) hit-rates for subcellular localizations; (B) miss-rates for subcellular localizations; (C) hit-rates for biological functions; (D) miss-rates for 
biological functions; (E) hit-rates for protein complexes; (F) miss-rates for protein complexes.
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robustness of our method to noise present in PPI 
networks.

Thus far, we demonstrated that our method 
identifi es groups of nodes in PPI networks having 
common protein properties. Our technique can also 
be applied to predict protein properties of yet 
unclassifi ed proteins by forming a cluster of pro-
teins that are similar to the unclassifi ed protein of 
interest and assigning it the most common 
properties of the classifi ed proteins in the cluster. 

We do this for all 115 functionally unclassifi ed 
yeast proteins from MIPS that have degrees higher 
than four in any of the six yeast PPI networks that 
we analyzed. In Tables 1 and 2, we present the 
predicted functions for proteins with prediction 
hit-rates of 50% or higher according to the strict 
and the fl exible scheme, respectively. The full data 
set with functional prediction hit-rates lower than 
50% is available upon request. Note that a yeast 
protein can belong to more than one yeast PPI 

(A) (B)

(C) (D)

(E) (F)

Figure 5. The results of applying our method to the three human PPI networks (BIOGRID, HPRD, and Rual) and the three protein properties 
(cellular components, tissue expressions, and biological processes): (A) hit-rates for cellular components; (B) miss-rates for cellular com-
ponents; (C) hit-rates for tissue expressions; (D) miss-rates for tissue expressions; (E) hit-rates for biological processes; (F) miss-rates for 
biological processes.
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network that we analyzed. Thus, biological 
functions that such proteins perform can be 
predicted from clusters derived from different 
yeast PPI networks. We observed an overlap of 
the predicted protein functions obtained from 
multiple PPI networks for the same organism, 
additionally verifying the correctness of our 
method. Furthermore, there exists overlap between 
our protein function predictions and those of others 
(Vazquez et al. 2003).

Finally, we survey the literature and verify that 
our method successfully predicts biological func-
tions of the following nine proteins from Tables 1 
and 2. Our method predicts that protein PWP1 is 
involved in rRNA processing; this is confi rmed by 
SGD (Cherry et al. 1998) and (Zhang et al. 2004). 
We also predict that protein IES2 is involved in 
transcriptional control; this function is verifi ed by 
(Xu et al. 2007; Svaren et al. 1994; Karnitz et al. 
1990). Human OLA1 has been shown to defi ne an 
ATPase subfamily in the Obg family of GTP-
binding proteins (Koller-Eichhorn et al. 2007) 
indicating that yeast OLA1 might also be involved 
in protein binding, as predicted by our method. Our 
method predicts two functions for protein STO1: 
protein fate (folding), the confi rmation of which is 
indicated by (Grishchuk and McIntosh, 1999), and 
binding function, the confi rmation of which is 
indicated in SGD (Cherry et al. 1998). Our method 
correctly predicts that YFR016c is involved in 
biogenesis of cellular components, since protein 
encoded by YFR016c interacts with Spa2p that is 
involved in cytokinesis and cell wall morphogen-
esis (Shih et al. 2005). It also predicts that YPT35 
is involved in cellular transport, transport facilities 
and transport routes; SGD confi rms that YPT35 
binds to proteins involved in ER-Golgi or vesicu-
lar transport. For protein ILM1, our method pre-
dicts DNA repair function; SGD suggests that 
ILM1 may be involved in mitochondrial DNA 
maintenance and required for slowed DNA 
synthesis—induced fi lamentous growth. We pre-
dict that protein YET1 is involved in cellular 
transport; this function is also indicated in SGD 
where YET1 is described as an endoplasmic 
reticulum transmembrane protein and a homolog 
of human BAP31 protein that is involved in 
vesicular transport pathways (Wakana et al. 2008). 
Finally, our method predicts that protein PRM1 is 
involved in biogenesis of cellular components and 
SGD suggests that it is involved in membrane 
fusion during mating.

Discussion
To our knowledge, this is the fi rst study that relates 
the PPI network structure to all of the following: 
protein complexes, biological functions, and subcel-
lular localizations for yeast, and cellular compo-
nents, tissue expressions, and biological processes 
for human. Starting with the topology of PPI net-
works of different organisms that are of different 
sizes and are originating from a wide spectrum of 
small-scale and high-throughput PPI detection 
techniques, our method identifi es clusters of nodes 
sharing common protein properties. Our method 
accurately uncovers groups of nodes belonging to 
the same protein complexes in the vonMering-core 
network: 44% of clusters have 100% hit-rate accord-
ing to the fl exible scheme. This additionally vali-
dates our method, since PPIs in this network are 
obtained mainly by TAP (Rigaut et al. 1999; Gavin 
et al. 2002) and HMS-PCI (Ho et al. 2002), which 
are known to favor protein complexes.

Our node similarity measure is highly constrain-
ing, since we take into account not only a node’s 
degree, but also additional 72 “graphlet degrees” (see 
Methods). Since the number of graphlets on n nodes 
increases exponentially with n, we use 2–5-node 
graphlets (see Fig. 1). However, our method is easily 
extendible to include larger graphlets, but this 
would increase the computational complexity; the 
complexity is currently O(|V |5) for a graph G(V, E ), 
since we search for graphlets with up to 5 nodes. 
Nonetheless, since our algorithm is “embarrassingly 
parallel” (i.e. can easily be distributed over a cluster 
of machines), extending it to larger graphlets is fea-
sible. In addition to the design of the signature 
similarity measure as a number in (0, 1], this makes 
our technique usable for larger networks.

Future directions
Our method can also be applied to disease genes. We 
consider the set of genes implicated in genetic dis-
eases available from HPRD (Peri et al. 2004). To 
increase coverage of PPIs, the human PPI network 
that we analyze is the union of the human PPI net-
works from HPRD, BIOGRID, and Rual, which 
consists of 41,755 unique interactions amongst 
10,488 different proteins. There are 1,491 disease 
genes in this PPI network out of which 71 are cancer 
genes. If graph topology is related to function, then 
we might expect that genes connected to cancer 
might have similar graphlet degree signatures. To 
test this hypothesis, we looked for all proteins with 
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a signature similarity of 0.95 or better when com-
pared to protein TP53. The resulting cluster contains 
10 proteins, eight of which are disease genes; six of 
these eight disease genes are cancer genes (TP53, 
EP300, SRC, BRCA1, EGFR, and AR). The remain-
ing two proteins in the cluster are SMAD2 and 
SMAD3 which are members of TGF-beta signaling 
pathway whose deregulation contributes to the 
pathogenesis of many diseases including cancer 
(Gambichler et al. 2007). The striking signature 
similarity of this 10-node cluster is depicted in 
Figure 6. To further increase our confi dence that local 
graph topology is related to function, we verifi ed that 
decreasing the similarity threshold increases the 
number of nodes in the cluster but decreases the 
proportion of those nodes that are disease-related. 
For example, at similarity 0.90, the cluster consists 
of 39 genes but more than half (21) are non-disease 
related. Of the 18 disease-related genes, only 8 are 
cancer genes. In other words, decreasing the thresh-
old from 0.95 to 0.90 barely increases the number 
of cancer genes but quadruples the total number of 
matching genes, thus decreasing the specifi city by 
about a factor of 3. A more complete analysis of how 
topological clustering relates to diseases will be 
published in a forthcoming paper.

Conclusions
We present a new graph theoretic method for detect-
ing the relationship between local topology and 
function in real-world networks. We apply it to 
proteome-scale PPI networks and demonstrate the 
link between the topology of a protein’s neighborhood 
in the network and its membership in protein 

complexes, functional groups, and subcellular 
compartments for yeast, and in cellular components, 
tissue expressions, and biological processes for 
human. Additionally, we demonstrate that our method 
can be used to predict biological function of 
uncharacterized proteins and possibly to identify 
candidate cancer genes. Thus, this study provides 
evidence that the graphlet representation of a PPI 
network has important implications for protein 
function prediction and gene disease association. 
Moreover, the method can be applied to different 
types of biological and other real-world networks, 
give insight into complex biological mechanisms 
and provide guidelines for future experimental 
research.
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