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Abstract

Myostatin is a negative regulator of skeletal muscle growth. Muscle tissue is the largest tissue in the body and influences body
growth. Commercial Avian broiler chickens are selected for high growth rate and muscularity. Daweishan mini chickens are
a slow growing small-sized chicken breed. We investigated the relations between muscle (breast and leg) myostatin mRNA
expression and body and muscle growth. Twenty chickens per breed were slaughtered at 0, 30, 60, 90, 120, and 150 days of
age. Body and muscle weights were higher at all times in Avian chickens. Breast muscle myostatin expression was higher in
Avian chickens than in Daweishan mini chickens at day 30. Myostatin expression peaked at day 60 in Daweishan mini chick-
ens and expression remained higher in breast muscle. Daweishan mini chickens myostatin expression correlated positively
with carcass weight, breast and leg muscle weight from day O to 60, and correlated negatively with body weight from day 90
to 150, while myostatin expression in Avian chickens was negatively correlated with carcass and muscle weight from day
90 to 150. The results suggest that myostatin expression is related to regulation of body growth and muscle development,
with two different regulatory mechanisms that switch between days 30 and 60.

Keywords Commercial broiler chicken - Daweishan mini chicken - Myostatin - mRNA expression - Muscle weight -
Growth rate

Introduction

Muscle tissue is the largest tissue in the body and may
directly influence whole body growth. Myostatin regulates
muscle fibre growth [1] and muscle development via reg-
ulating satellite cell activation and renewal [2]. In broiler
chicken myostatin haplotypes were reported to be associated
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with body weight [3]. The relationship between myostatin
mRNA expression, growth rate, muscle mass, and body
weight in chickens is poorly understood. We used com-
mercial Avian broiler (AB) and Daweishan mini chickens
(DMC) as a model system to investigate these relationships.
Broiler chickens are characterized by a high body weight at
slaughter and extremely fast growth rate from hatching to
slaughter [4, 5], while DMC are a slow growing low body
weight breed [6]. The combination of these two breeds pro-
vides a perfect model system to investigate the biological
mechanisms underlying growth rate and body weight in
chickens. The objective of this research was to investigate
the relationship between myostatin expression in breast and
leg muscle and whole body growth rate, muscle develop-
ment, and growth rate.

Materials and methods
Animals and experiments

This study was approved by the Animal care and use com-
mittee of the Yunnan Province of P. R. China and all the
experiments complied with the requirements of the direc-
tory of the Ethical Treatment of Experimental Animals of
China. DMC were purchased from the Chicken Farm of
Yunnan Agricultural University within the first day of life.
Commercial AB were purchased from the Chicken Farm
(Kunming Zhengda Group, a source from the American IVY
International Co., LTD). This study used 120 chickens per
breed. At each time point (0, 30, 60, 90, 120, and 150 days
of age) 20 animals per breed were sacrificed. The chicken
were reared under standard conditions on starter diets to

day 30, and then on adult chicken diets to day 150. Table 1
shows the diet compositions and some egg characteristics of
the two chicken breeds.

The chickens had free access to feed and water during the
entire rearing period. The chickens were reared in an envi-
ronmentally controlled room. The brooding temperature was
maintained at 35 °C for the first 2 days, and then decreased
gradually to 22 °C until 30 days. At 30 days of age, the
chickens were randomly allocated to individual metabolism
cages in an enclosed room, with ambient temperatures vary-
ing from 21 to 24 °C on a light:dark cycle of 12:12 h.

Measurement of growth performance and carcass
traits

Chickens were weighed on a tarred digital scale (Shang-
hai Yizhan weighing apparatus limited company, YZ
0.01-10 kg, China). Body weights were determined in the
morning following a 16 h fasting. The body weights were
determined until week 20 because the DMC reached sexual
maturity at approximately 20 weeks. The carcass weight was
measured after the blood and feathers had been removed.
After removal of the oesophagus, trachea, gastrointestinal
tract, pancreas, spleen, and gonads the semi-eviscerated
weight was measured, and after removal of the head, heart,
claws, liver, glandular stomach, gizzard, and abdominal fat
the eviscerated weight was measured. The dressing percent-
age was calculated by dividing the carcass weight by the
body weight. The percentage of carcass weight originating
from of each carcass trait (eviscerated weight, semi-eviscer-
ated weight, breast muscle weight, leg muscle weight, and
abdominal fat weight) was calculated by dividing each trait
by the carcass weight [7].

Table 1 Compositions and
nutrient levels of the chicken

Avian broiler chicken Daweishan mini chicken

diets, and egg characteristics of Age

the two chicken breeds ..
Nutrition

Metabolizable energy (Kcal kg™)

Crude protein (%)

Calcium (%)

Total phosphorus (%)

Available phosphorus (%)

Salt (%)

Lys (%)

Met (%)

Methionine + cystinol (%)
Egg weight (mean+ SD)
Egg shape index (mean + SD)
Chick birth weight (Mean +SD)

40 weeks-old 30 weeks-old

2760 2750

16.0 15.6

3.07 3.00

0.66 0.60

0.37 0.38

0.37 0.37

0.82 0.76

0.42 0.35

0.70 0.63
57.63+£3.44 35.52+4.10
1.37+0.07 1.30+£0.04
48.19+4.02 20.70£2.50

Chickens received the starter diet from day O to 30. From day 30 to 150 the chickens received the adult

chicken diet
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Myostatin real-time PCR

Real-time PCR was performed to quantify skeletal mus-
cle myostatin mRNA expression as described previously
[8]. Breast and leg muscle samples were collected within
20 min after chickens were sacrificed. Samples were
immediately placed in sterile tubes (RNase-free), snap fro-
zen in liquid nitrogen, and stored at — 80 °C. Total RNA
was isolated using Trizol-Reagent (Invitrogen, USA) and
reverse transcribed using oligo (dT) 12—-18, random prim-
ers, and M-MLYV reverse transcriptase (Invitrogen, USA).

Real-time PCR analysis was performed using the iCy-
cler Real Time Detection System (Bio-Rad Laboratories,
Inc. USA) and SYBR Green master mix (iQTM SYBR-
Green® Supermix, Dalian TaKaRa Biotechnology Co.
Ltd. Add). The myostatin primers used were 5'-GCTTTT
GATGAGACTGGACGAG-3' (forward) and 5'-AGCGGG
TAGCGACAACATC-3' (reverse), and the annealing tem-
perature was 60 °C. The 18S rRNA gene was used as a
reference: 5S’CGCGTGCATTTATCAGACCA-3’ (forward)
and 5'-ACCCGTGGTCACCATGGTA-3' (reverse), anneal-
ing temperature 58 °C. Primers were commercially syn-
thesized (Shanghai Shenggong Biochemistry Company
P.R.C). The PCR reactions were performed in 25 pl vol-
umes containing 12.5 pl of iQ™ SYBR Green Supermix,
0.5 ul (10 mmol 171) of each primer, and 1 pl of cDNA.
Amplification and detection of products was performed
with the following cycle profile: one cycle of 95 °C for
2 min, and 40 cycles of 95 °C for 15 s, annealing tempera-
ture for 30 s, and 72 °C for 30 s, followed by a final cycle
of 72 °C for 10 min. The specificity of the amplification
product was verified by electrophoresis on a 0.8% agarose
gel and DNA sequencing.

Statistical analysis

Carcass trait data were expressed as the mean + SE for
the two breeds. SAS version 9.3 was used for all analyses
as described by Arounleut et al. [9]. Myostatin mRNA
expression levels were expressed relative to 18S. Dif-
ferences in temporal gene expression and comparisons
between breast and leg muscle were analyzed using a T
test. Both breeds were tested individually across all time
points (0—150 day of age). Correlation analyses between
myostatin expression and carcass traits were performed
using the Spearman correlation procedure, which was cho-
sen because of the nonparametric nature of the data. The
CORR procedure of SAS (SAS version 9.3) was used to
perform the correlations. Significance and residual values
were calculated using a two-way ANOVA. P <0.05 was
used to determine statistical significance.

Results
The model system

Figure 1 shows the growth rate (Fig. 1a) and body weight
(Fig. 1b) data for the two chickens. At all ages the AB
line chickens showed a higher growth rate than the DMC
chickens. The commercial AB line chickens showed a high
increased daily growth rate from hatching to 5 weeks of
age after which the growth rate decreased. The DMC
chickens showed a small increase in average daily growth
rate until week 8 followed by a small decline of the aver-
age daily growth. The DMC chickens showed no peak like
the AB line chickens for growth rate. As a consequence
of this the body weight of the AB line chickens increased
more sharply than the DMC and reached a much higher
body weight at 20 weeks (Fig. 1b).
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Fig. 1 Daily growth rate (a) and body weight (b) of the ABC and the
DMC. Data are in grams
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Figure 2 shows the carcass weight gain and muscle devel-
opment. The carcass weights (Fig. 2a) of the DMC were
significantly lower than the commercial AB during the entire
growth period. The carcass weight, breast muscle weight,
and leg muscle weight (Fig. 2a, c, e) increased faster after
day 30 than during the first 30 days of life. The dressing
percentage (Fig. 2b), which is the amount of meat on the car-
cass, indicates that muscle content was higher in the AB car-
casses. Both breast (Fig. 2¢) and leg muscle (Fig. 2e) growth
rates were closely related to carcass weight. Higher breast
muscle percentage (Fig. 2d), but not leg muscle percentage
(Fig. 2f) was observed in the AB compared to the DMC.
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Fig.2 Developmental changes in commercial AB (ABC) and DMC
(DMC) from birth to 150 days of age. a, ¢, e Measured weights (g) of
carcass, breast muscle, and leg muscle, respectively; b, d, f calculated
percentages of dressing, breast muscle, and leg muscle, respectively.
The dressing percentage was the carcass weight divided by the body
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These observations were confirmed by additional carcass
measurements (Table 2, Supplementary material 1).

Myostatin mRNA expression

Figure 3 shows myostatin expression levels of breast and
leg muscle. Myostatin expression in leg muscle was higher
than in breast muscle in the AB, with the largest differ-
ence observed on days 60—120. The smallest difference
was observed on days 0 and 30. Differences between breast
and leg muscle myostatin expression in the DMC were only
observed at day 60.
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weight. The muscle percentages were calculated by dividing muscle
weight by carcass weight. All measurements differed between ABC
and DMC at all time points except for breast muscle percentage (d)
at birth (0 days) and leg muscle percentage at day 0, 30, 60, and 120
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Table 2 (.Ia.rcass.mea.surements Carcass traits Age

of the Avian broiler line and the

DMC breed at all sampled ages Odays 30days 60 days 90 days 120 days 150 days

AB
Carcass weight (g)* 44.38 662.85 2156.57  3158.65 3941.50  4690.67
Semi-eviscerated weight (g)° 39.81 606.35 1762.16  2839.19  3557.87 4283.46
Eviscerated weight (g)° 34.04 494.04 154142 2549.19  3129.87 3884.63
Breast muscle weight (g) 3.56 116.08 457.55 770.17  1017.50 1257.67
Leg muscle weight (g) 5.14 117.54 384.47 657.23 869.67 1151.62
Dressing percentage (%) 92.01 90.38 90.63 91.25 90.07 91.22
Semi-eviscerated percentage (%)°  82.50 82.65 81.72 82.14 81.42 83.31
Eviscerated percentage (%)° 70.53 74.49 71.52 73.77 71.55 75.58
Breast muscle percentage (%)° 10.41 23.39 29.54 30.23 32.38 32.29
Leg muscle percentage (%)° 15.18 23.71 24.99 25.79 27.80 29.58
Abdominal fat percentage (%)° 4.07 5.56 5.33
Abdominal fat weight (g)° 101.24 167.33 196.00
DMC

Carcass weight (g)* 18.12 107.23 251.3 434.29 564.28 673.23
Semi-eviscerated weight (g)° 15.6 88.84 214.5 365.51 502.28 577.31
Eviscerated weight (g)° 12.96 79.19 180.83 306.1 415.86 471.59
Breast muscle weight (g) 1.13 11.55 41.16 57.77 80.9 92.53
Leg muscle weight (g) 1.52 15.05 4243 67.83 114.14 121.46
Dressing percentage (%)° 87.55 86.76 85.83 88.54 87.49 87.2
Semi-eviscerated percentage (%)°  75.14 71.89 73.23 74.67 77.88 74.84
Eviscerated percentage (%)° 62.45 64.09 61.86 62.58 64.41 61.81
Breast muscle percentage (%)° 8.71 14.62 23.67 18.8 19.43 19.45
Leg muscle percentage (%)° 11.88 18.98 23.55 22.12 27.28 25.47
Abdominal fat percentage (%)° 3.14 5.08 4.51
Abdominal fat weight (g)° 9.52 20.43 20.31

Carcass measurements were done after subsequently dissection of various organs as detailed in the foot-
notes

aThe carcass weight was measured after the blood and feathers had been dissected

®The semi-eviscerated weight was measured after subsequent dissection of the oesophagus, trachea, gastro-
intestinal tract, pancreas, spleen, and gonads

‘the eviscerated weight was measured after subsequent dissection of the head, heart, claws, liver, glandular
stomach, gizzard and abdominal fat

4The dressing percentage was determined as the proportion of the carcass weight of the body weight

°The proportions of the weights from each of the carcass traits (eviscerated weight, semi-eviscerated
weight, breast muscle weight, leg muscle weight, and abdominal fat weight) of the carcass weight were
calculated as eviscerated percentage, semi-eviscerated percentage, breast muscle percentage, leg muscle

percentage, and abdominal fat percentage, respectively

Breast muscle myostatin expression was higher in the
AB than the DMC at day 30. In contrast, breast and leg
muscle myostatin expression was higher in DMC than AB
from day 60 to day 150. Myostatin expression in DMC
reached a peak level at day 60 in both muscles, which was
not observed in the AB. Although breast muscle myostatin
expression decreased after day 60 in the DMC, it remained
relatively high compared to AB. Leg muscle myostatin
expression also decreased after day 60 in the DMC, reach-
ing the same overall levels observed in the AB on days 90
and 120. There remained a small but significant difference

in myostatin expression between the two breeds at days
120 and 150.

Correlation between animal traits and myostatin
expression

Figure 3 shows differences in myostatin expression between
day 0 and day 30, and from day 60 onwards. This indicates that
important changes in the regulation and effect of myostatin
may occur between 30 and 60 days of age. Therefore, we cor-
related myostatin expression with the measured production
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Fig. 3 Myostatin expression of
the breast muscle of DMC (BM-
DMC) and commercial AB
(BM-ABC), and the leg muscle
of DMC (LM-DMC) and com-
mercial AB (LM-ABC) at 0,

30, 60, 90, 120, and 150 days
of age. Data are expressed as
the mean ratio + SE of specific
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traits for time points ranging from day O to 30, day 60 to 150
(Table 3), day 0 to 60, and day 90 to 150 (Table 4). The results
differ for days 30 to 60 as the end of period 1, the period
where the largest differences in myostatin expression were
found (Fig. 3). The analyses showed high similarity between
the breeds for the correlations. The correlations for the com-
mercial AB were significant for day 0-30 and day 60-150, but
not day 0-60 and day 90-150. A reverse in the direction of the
correlation was observed for the DMC. This may indicate that
myostatin expression is differently regulated between the two
chicken breeds.

Additional correlations between the muscle/meat character-
istics were also calculated (Table 5, day 0—60 and day 90-150).
The correlations were as expected for carcass quality data and
did not differ between the two analyses differing for either day
60 or 90 separating the two developmental periods; high cor-
relations were found between body weight and carcass traits
measured after slaughter.

@ Springer

60 90 120 150 days

Discussion

Commercial broiler chickens have been subjected to strong
human-driven selection leading to remarkable phenotypic
changes in morphology, such as increased muscle growth
and physiology leading to a more than 300% increase in
body growth rates [10-12], accompanied by significant
increases in metabolic rates [7, 13] and higher incidence
of sudden death syndrome [14], associated with smaller
organs. The internal organs of commercial AB develop
slower, remain smaller in size, and have limited oxygen
supply compared to the Daweishan chickens [15]. We
observed a high correlation between body weight and car-
cass traits, indicating balanced growth in both breeds. The
lower correlation comparing AB and DMC for the eviscer-
ated weight from day 90 to 150 revealed higher internal
organ content in the DMC.
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DMC displayed low body and muscle growth rates, lead-
ing to a lower body weight compared to the commercial
AB. Identifying the genetic changes underlying these devel-
opmental differences would provide new insight into the
biological mechanisms by which genetic variation shapes
phenotypic diversity [16]. Our results provide evidence
for major differences in body growth rates and muscular
development between the two breeds. The commercial AB
are characterized by an extremely high dressing percent-
age (>90%) due to high muscularity (>60% for breast and
leg muscles only), both of which were more moderate in
the DMC (muscle content 45% for these two muscles). We
conclude that comparing these two breeds together provides
a large phenotypic contrast, providing an excellent model
system to investigate the molecular biological mechanisms
underlying the physiology of selection pressures applied to
commercial AB. The lower dressing percentage of DMC
compared to commercial AB observed here indicates that
DMC have relatively higher internal organ weights. These
differences may indicate breeding effects due to selection for
high growth rate and muscle content in the commercial AB.

Breast and leg muscle myostatin expression in DMC
peaked at day 60. This suggests that this developmental time
point represents a crucial regulatory stage. Breast muscle
myostatin expression at day 30 is higher in commercial AB
than DMC, suggesting reduced muscle development in the
commercial AB. Indeed a delay in the development of both
muscles—especially breast muscle—and body growth rates
was associated with increased myostatin expression at day
30 in the commercial AB. Nevertheless, the growth rate of
commercial AB is already much higher than DMC, which
may be related to the selection background of the breed.

From day 60 onwards, breast and leg muscle myostatin
expression was higher in the DMC than the commercial
AB. Myostatin reduces muscle growth [1] and body/carcass
growth rates [17], and the body/carcass growth and muscle
development rates of commercial AB is much higher than
DMC. This suggests that from day 60 onwards, myostatin is
a regulator of both muscle and whole body growth.

The higher myostatin expression observed in the leg mus-
cle compared to breast muscle suggests leg muscle growth
rates are affected more by myostatin than breast muscle
growth rates. Therefore, we hypothesize that the regulation
of myostatin expression is part of the biological mechanism
underlying the response to selection for increased breast
muscle development and body growth rates in commercial
AB. This is in agreement with Guernec et al. [18].

Our correlation analyses between myostatin expres-
sion and body and muscle growth suggest an important
switch in regulatory mechanisms between 30 and 60 days
of age. The observed correlations were higher in the time
period ranging between day 0 to 30 and day O to 60 for the
commercial AB, and to a lesser extent in the time period

ranging from day 60 to 150 than day 90 to 150. The oppo-
site was observed for the DMC. We concluded that (1)
the switch in regulation of myostatin expression occurs
between 30 and 60 days of age in both breeds, and (2)
the myostatin effect is higher in the young commercial
AB than the young DMC, while the reverse conclusion
can be reached for the older chickens. Myostatin expres-
sion is highly regulated via different mechanisms. These
mechanisms may induce the regulatory switch. The selec-
tion pressure in the commercial AB line may have affected
these regulatory mechanisms, and as a consequence the
mechanisms differ between the two chicken breeds. An
alternative explanation of the observed myostatin effects
may be that the regulation of muscle weights and body
weights differs in the two breeds. In the time period rang-
ing from day 90 to 150, myostatin expression correlated
negatively with body growth and leg muscle development
in the commercial AB, and with body growth in the DMC.
Higher myostatin expression was associated with reduced
body growth rates and muscle development. This suggests
a direct biological effect of myostatin expression on these
traits. The observed lower myostatin expression, especially
in the breast muscle of the commercial AB compared to
the DMC could result from selection for increased breast
muscle weight and whole body growth rates. Because
myostatin reduces the development and size of muscle tis-
sue, lower myostatin expression could explain the biologi-
cal regulatory mechanism by which through which selec-
tion results in increased body growth rate and muscle size.

While correlation was observed between myostatin
expression and body and muscle growth in young animals
(0-60 days), there was a lack of association between the
myostatin expression between leg and breast muscle. This
again indicates that myostatin expression is differently regu-
lated between leg and breast muscle. This may indicate that
the switch in regulation of myostatin expression between 30
and 60 days of age in both breeds has finished and therefore
regulatory mechanisms differ.

The situation in young animals (0—-60 days) is different.
No correlation between myostatin expression and body and
muscle growth was observed in the young AB, suggesting
myostatin expression is not involved in regulating growth
rates in the high growth and muscularity broiler breed during
early development.

In conclusion, our data suggest that regulation of myosta-
tin expression may be part of a biological mechanism
underlying selection for high growth rate, high muscularity,
and high body weight in commercial AB. The biological
effects differ before and after 60 days of age, at which point
myostatin expression peaks in the slow growing chicken
line. Furthermore, the biological mechanisms underlying
the response to selection in breast and leg muscle seem to
be different in the two growth periods. This suggests that
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regulation of myostatin represents only a part of the biologi-
cal mechanisms at play.
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