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Abstract

Humans have the ability to learn surprisingly complicated statistical information in a variety of
modalities and situations, often based on relatively little input. These statistical learning (SL) skills
appear to underlie many kinds of learning, but despite their ubiquity, we still do not fully understand
precisely what SL is and what individual differences on SL tasks reflect. Here, we present experimen-
tal work suggesting that at least some individual differences arise from stimulus-specific variation in
perceptual fluency: the ability to rapidly or efficiently code and remember the stimuli that SL occurs
over. Experiment 1 demonstrates that participants show improved SL when the stimuli are simple and
familiar; Experiment 2 shows that this improvement is not evident for simple but unfamiliar stimuli;
and Experiment 3 shows that for the same stimuli (Chinese characters), SL is higher for people who
are familiar with them (Chinese speakers) than those who are not (English speakers matched on age
and education level). Overall, our findings indicate that performance on a standard SL task varies sub-
stantially within the same (visual) modality as a function of whether the stimuli involved are familiar
or not, independent of stimulus complexity. Moreover, test–retest correlations of performance in an
SL task using stimuli of the same level of familiarity (but distinct items) are stronger than correlations
across the same task with stimuli of different levels of familiarity. Finally, we demonstrate that SL per-
formance is predicted by an independent measure of stimulus-specific perceptual fluency that contains
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no SL component at all. Our results suggest that a key component of SL performance may be related
to stimulus-specific processing and familiarity.

Keywords: statistical learning; perceptual fluency; domain specificity; familiarity; complexity

1. Introduction

Statistical learning (SL) refers to the ability to adapt to and learn from the probabilistic
structure of the environment. This ability is phylogenetically old (Hauser, Newport, & Aslin,
2001) and appears to be operational quite early in development (Bulf, Johnson, & Valenza,
2011; Teinonen, Fellman, Näätänen, Alku, & Huotilainen, 2009). It occurs across multiple
modalities and across a wide variety of types of stimuli (Brady & Oliva, 2008; Buchsbaum,
Griffiths, Plunkett, Gopnik, & Baldwin, 2015; Fiser & Aslin, 2002; Gebhart, Newport, &
Aslin, 2009; Kirkham, Slemmer, & Johnson, 2002; Krogh, Vlach, & Johnson, 2013; Saffran,
Aslin, & Newport, 1996). Moreover, recent evidence suggests that individual differences in
SL abilities are stable and reliable (Isbilen, McCauley, Kidd, & Christiansen, 2017, 2020;
Siegelman, Bogaerts, Elazar, Arciuli, & Frost, 2018). Taken together, these findings appear
to indicate that SL is a flexible and broadly applicable capacity for extracting and using the
regularities in the world.

Because of this broad applicability, for some time, the field implicitly adopted a “uni-
tary” conception of SL under which it is a domain-general mechanism that operates similarly
across modalities. However, as Frost, Armstrong, and Christiansen (2019) note, a unitary
conception is inconsistent with more recent research, suggesting that SL involves substantial
modality specificity. For instance, people find it easier to simultaneously acquire two artificial
grammars when those grammars are presented in different modalities, a result that is difficult
to accommodate under a single mechanism view (Conway & Christiansen, 2006). Similarly,
Siegelman and Frost (2015) found no association between performance on SL tasks involving
visual and auditory linguistic stimuli. Interestingly, Siegelman et al. (2018) reported a signifi-
cant association between visual SL and SL for non-linguistic sounds, but once again not with
linguistic stimuli. They suggested that these results reflect linguistic entrenchment, theoriz-
ing that while participants came to their studies without prior knowledge and expectations
regarding how visual shapes and non-linguistic sounds were distributed, their life-long expe-
rience led to expectations regarding how syllables patterned to form words. Consistent with
this assertion, independent ratings of the “wordiness” of novel linguistic stimuli positively
predicted performance: stimuli that were more similar to native-language words were more
easily acquired through SL.

These data suggest that both modality specificity and domain independence play a role in
SL, with prior learning constituting an important yet understudied component of the process.
As a result, SL has more recently been conceptualized as composed of multiple components
(Arciuli, 2017; Frost et al., 2019; Siegelman, Bogaerts, & Frost, 2017) that are grounded in
basic perception and cognition (Christiansen, 2019; Frank, Goldwater, Griffiths, & Tenen-
baum, 2010; Isbilen et al., 2020). However, the details of those components remail unclear,
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as Siegelman et al. (2017) note: “in contrast with general intelligence … the dimensions of
SL as an individual ability are yet to be empirically established” (p. 5). We explore this issue
here.

Frost, Armstrong, Siegelman, and Christiansen (2015) suggested that variance in the per-
formance on SL tasks comes from two main sources—not only (a) variability in the efficiency
with which domain-general learning mechanisms detect the statistical properties of the input
stream, but also (b) variability in the efficiency of perceptual encoding within each modality.
This second component, which we refer to here as perceptual fluency (PF), reflects something
like the ease and accuracy with which people can encode and recall the items whose statistical
regularities are being learned. Relatively little is known exactly what factors contribute to PF
and why—indeed, this is part of the motivation for our work here—but as a first approxima-
tion, we suggest that it likely reflects aspects of both processing efficiency and memory (e.g.,
encoding, retrieval, and span). The logic is as follows: if people with higher PF find it easier
to process and/or remember individual items, one might expect them to have more capacity
“left over” that they can use to acquire the statistical regularities between those items. Individ-
ual differences in PF across modality might thus explain how SL tasks could be uncorrelated
across modalities even though they depend on similar domain-general computations.

One test of this dual-source theory came from presenting participants with visual SL
tasks that manipulated probabilistic structure and speed of presentation (Bogaerts, Siegel-
man, & Frost, 2016). As predicted, both variables affected learning, with higher performance
observed for stimuli with higher transition probabilities (TPs) and longer exposure periods.
People who benefited most from the longer inspection times were also better at learning the
underlying statistical structure. This suggests that an individual’s PF may afford a significant
advantage in SL, and is consistent with the observation that at least one measure of SL has
been found to be associated with psychometric measures of processing speed (Kaufman et al.,
2010).

But what makes a person have high PF on a given set of stimuli? One possibility, as Frost
et al. (2015) theorized, is that it is modality-specific: different people’s brains process stim-
uli differently in different modalities. Another possibility is that fluency increases with the
amount of time available (Arciuli & Simpson, 2011; Bogaerts et al., 2016; Turk-Browne,
Junge, & Scholl, 2005). These factors are well studied and likely to play an important role.

In this paper, we investigate another factor. We hypothesize that individual differences
in perceptual fluency—and thus statistical learning—might also reflect differences in how
people process specific stimulus items rather than differences due to task or modality. We
focus on two possible properties of those items (complexity and familiarity) and explore how
and to what extent they affect PF and—via that—SL in the visual modality.

There is already substantial evidence that both complexity and familiarity affect PF. More
complex stimuli take longer to process and require more working memory capacity (Alvarez
& Cavanagh, 2004; Eng, Chen, & Jiang, 2005; Kemps, 1999; Liu, Chen, Liu, & Fua,
2012; Luria, Sessa, Gotler, Jolicoeur, & Dell’Acqua, 2010). They are also more appealing
(Madan, Bayer, Gamer, Lonsdorf, Sommer, 2018) and attentionally engaging (Sun Fire-
stone, 2021). Complexity affects learning as well: new symbols are easier to acquire when
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they are visually simpler (Pelli, Burns, Farell, & Moore-Page, 2006). However, it is diffi-
cult to disentangle complexity from familiarity (Popov & Reder, 2020; Zhang, Liu, So, &
Reder, 2020). Ratings of the two are often negatively correlated, suggesting that familiar-
ity causes people consider things to be less complex (Bonin, Peereman, Malardier, Meot, &
Chalard, 2003; Cycowicz, Friedman, Rothstein, & Snodgrass, 1997). Moreover, the effects
of complexity on processing and memory are often substantially reduced, if not eliminated
entirely, once familiarity is taken into account (Bethell-Fox & Shepard, 1988; Jackson & Ray-
mond, 2008; Ngiam, Khaw, & Goodbourn, 2019; Reder, Liu, Keinath, & Popov, 2016; Sun,
Zimmer, & Fu, 2011; Xie & Zhang, 2017; Zhang et al., 2020). This may be because items
use working memory resources in a way that is inversely proportional to their strength in
long-term memory (Popov & Reder, 2020). Thus, a complex item that is highly familiar and
therefore strongly represented in long-term memory may require less working memory capac-
ity than one that has never been seen before.

Our main question is whether statistical learning is improved when using items that people
have higher perceptual fluency for (like simpler or more familiar ones). We expect higher PF
to improve SL by freeing up cognitive capacity that can then be devoted to learning statisti-
cal regularities. This yields several predictions. First, SL performance should be higher when
the items involved are simpler and/or more familiar. Second, to the extent that PF reflects
stimulus-specific characteristics like familiarity or complexity rather than modality-specific
abilities, correlations between SL tasks should be higher when the stimuli share those charac-
teristics (even when the modality is the same). Finally, SL performance should be predicted
by performance on a task that measures stimulus-specific PF but requires no SL at all. We test
and find support for all of these predictions here.

It is worth noting that although our hypothesis is that individual differences in SL are mod-
erated by PF—which is shaped at least in part by familiarity—our work is distinct from other
research that also suggests that prior experience plays a role in SL of linguistic information(for
example, Endress & Mehler, 2009; Gebhart et al., 2009; Perruchet & Poulin-Charronnat,
2012; Siegelman et al., 2018; but see also Potter, Wang, & Saffran, 2017; Wang & Saffran,
2014). Our focus here is on the role that familiarity may play in making individual stimulus
items easier to remember and parse; we thus predict that previous exposure should facilitate
SL in any modality. The focus of previous work is on the role that prior experience plays in
learning statistical regularities between items; it suggests that previous linguistic exposure
may impair SL due to interference and entrenchment, and the focus is not on the items so
much as the TPs between them. Our approach complements this other research because both
focus on the role of prior experience in shaping SL; it is distinct because it has a different
mechanism and makes different predictions.

In the first of our three experiments, we show (a) that SL is better for stimuli that are
both simpler and more familiar; and (b) perceptual fluency on those stimuli predicts SL.
Experiments 2 and 3 are aimed at disentangling the impact of complexity versus familiarity.
We find that SL and PF are still correlated and both are higher when stimuli are familiar,
regardless of their visual complexity.



A. Perfors, E. Kidd / Cognitive Science 46 (2022) 5 of 28

Fig. 1. Overview of Experiment 1 structure. Each participant was tested in two sessions. The first involved a
visual statistical learning (SL) task with either LETTER or COMPLEX stimuli (see Figs. 2 and 3 for details). In the
second session, the same participants completed another SL task with new stimuli that were either of the same or
different type (although the specific stimulus items were always different). Following that, each person performed
two consecutive tasks that measured their perceptual fluency (PF) on the two stimulus sets they had seen (Fig. 4).

2. Experiment 1: Method

This research tests the hypothesis that individual differences in SL are influenced by indi-
vidual differences in PF. We investigated this by having the same individuals participate in
two different visual SL tasks on two different days, as shown in Fig. 1. On each day, people
were randomly assigned to one of two conditions (LETTER or COMPLEX) in which the SL
task was the same and the only difference was the stimuli involved. The LETTER condition
involved highly familiar and very simple stimuli (letters and common symbols), while the
COMPLEX condition involved novel and visually complex shapes. On each day, people were
randomly assigned to a condition; thus, some people saw the same type of stimuli on each
day (although distinct items each time), while others saw the LETTER stimuli on 1 day and the
COMPLEX stimuli on another. If complexity and/or familiarity play an important mediating
role, we would expect SL performance to be higher for the LETTER stimuli. Additionally, we
also expect there to be a higher test–retest correlation across sessions when the stimulus type
is the same.

In addition to the SL tasks that occurred during both experimental sessions, Session 2 also
presented participants with two measures of PF for the stimuli they had previously seen (the
first PF task used the stimuli from Session 1, and the second used the stimuli from Session 2).
The PF task, described in more detail below, was designed to measure the speed with which
these particular stimuli could be parsed and encoded while involving no SL at all. If PF plays
an important role in SL, we would expect that PF task performance would be correlated with
SL task performance.
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Fig. 2. Experiment 1 stimuli. At each session, participants saw 16 stimulus items that were either LETTER or
COMPLEX, depending on randomly assigned condition. Although some people saw stimuli of the same type in
both sessions, no single item occurred both times.

2.1. Participants

For Session 1, 160 participants were recruited from Amazon Mechanical Turk for the
15-minute task, for which they were paid $3.50USD. Of these, 14 were excluded for fail-
ing the attention check (described below). The remaining 146 were invited to return for a
second 20-minute session a week later, for which they were paid $4USD. One hundred thirty
five returned, three of whom failed the attention check. All analyses focus on the remaining
132 participants, 73 (55.3%) of whom were male and 129 (97.7%) were from the US. Ages
ranged from 20 to 69 (mean 36.1). At each session, participants were randomly assigned to
either LETTER or COMPLEX stimulus sets of 16 items each. This resulted in 53 people who saw
the SAME stimulus complexity each time (17 LETTER, 36 COMPLEX) and 79 people who saw
a DIFFERENT stimulus complexity each time (44 saw LETTER first, 35 saw COMPLEX first).

2.2. Materials

As shown in Fig. 2, the COMPLEX stimuli were created by combining between four and six
straight lines, resulting in novel shapes that were perceptually discriminable but effortful to
parse and remember. The LETTER stimuli consisted of letters and symbols. We chose these
because they are highly overlearned and very familiar to any literate English speaker. To
minimize the potential for “chunking” letter combinations into existing words, no vowels or
vowel-like symbols like @ or & were included. Moreover, all participants in all conditions
saw a different random combination of the stimuli into triples, as described below.

2.3. Procedure

2.3.1. Statistical learning task
The SL task in both sessions follows a standard design, as illustrated in Fig. 3. In it,

participants see that symbols appear on the center of their screen one-by-one; SL involves
learning the probability with which different symbols follow each other. Some symbols were
embedded in “easy” triplets in which the TP of seeing one symbol given the previous one
was 1.0. In the “hard” triplets, the TP was much lower, though still non-zero. After a training
during which participants simply watched the sequence of symbols, they were given a test
designed to measure the extent to which they had learned the TPs.
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Fig. 3. Statistical learning task. All experiments used the same statistical learning task, a standard one adapted
from Siegelman et al. (2017). In it, participants see individual symbols on the screen one by one for 800 ms
each; statistical learning involves acquiring information about which symbols follow each other and with what
probability. There are eight triplets of symbols, each randomly occurring 24 times within the 10-minute training
sequence. For easy triplets, the TP between symbols is 1.0, meaning that a given symbol always follows the same
other symbol. For the hard triplets, the TP between symbols is 0.33. Performing well on the test phase requires
having learned these TPs. The triplets shown here are illustrative only; symbols were randomly assigned for each
participant.

The specific details of our task were nearly identical to Siegelman et al. (2017), which was
designed to have good psychometric properties including reasonable test–retest reliability and
the ability to differentiate between individuals. Besides the specific stimuli used, because we
were running on MTurk, the only difference between our task and theirs is that we included an
attention check by embedding four or five English words in the training sequence. (In Session
1, these words were train, boy, lion, and walk. In Session 2, they were boat, lady, koala, tree,
and doll.) Before training, participants were told that they should simply watch the sequence,
but that to ensure attention we had included a few English words among the symbols; they
were not informed about how many there would be. They were told to write down any English
words as they occurred and report them in a text box at the end of training. People who got
fewer than three correct in either session were excluded from all analyses.

Following Siegelman et al. (2017), the SL task itself consisted of 16 items combined into
eight triplets, each repeated 24 times in random order. The task is divided into two phases:
(a) a familiarization phase and (b) a test phase. During the familiarization phase, each item
appeared alone at the center of the participant’s screen for 800 ms with a 200 ms interstim-
ulus interval. The eight triplets were designed so that four were easy, defined by TPs of 1.0
between each item (x5-x6-x7, x8-x9-x10, x11-x12-x13, x14-x15-x16), while the other four were
harder, defined by TPs of 0.33 between items (x1-x2-x3, x2-x1-x4, x4-x3-x1, x3-x4-x2). The map-
ping of each image to each item, as well as the order of the triplets and the location of the
embedded English words, was randomized for each participant at each session (thus the TP
between triplets was 1/8 = 0.125). The presentation of triplets was constrained so that triplets
were never immediately repeated. The familiarization phase lasted 10 minutes.

The test phase immediately followed. We administered the exact same 42-item test as in
Siegelman et al. (2017). In contrast to many common SL tasks, which typically use two-
alternative forced choice (2AFC) as a sole measure of learning, the task uses an array of
different method to measure learning. These were: (a) 16 2AFC trials, where participants had
to choose whether they had seen either an attested triplet or an unattested foil; (b) eight 4AFC
trials, where participants had to choose the correct triplet given three foils; (c) six 2AFC trails
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Fig. 4. Perceptual fluency task. During each trial of the PF task, a target stimulus is flashed briefly onscreen,
followed by a masking stimulus for 200 ms. Participants are then presented with four items (the target, the mask,
and two others randomly selected from the stimulus set). If they successfully identify the target, on the next trial,
the duration of target presentation decreases by 15 ms; if not, it increases by 15 ms. The PF score (PFscore)
reflects the mean target latency over all 48 trials. Smaller PFscore indicates better PF, because it indicates that the
person can attain similar accuracy based on a shorter target presentation time.

where participants had to choose which pair of shapes they had seen, where the correct one
had TPs of either 0.33 or 1.0 and the incorrect one had lower TPs; (d) four 4AFC “pair” trials,
which were identical but had three distractor pairs; and (e) eight pattern completion trials,
where participants were required to complete four triplets patterns and four pair patterns by
selecting the correct symbol.

For each participant, we calculated an overall SL accuracy score, SLscore, which reflects
the proportion of the 42 test items that they got correct. To evaluate whether our participants
were engaging with the task in a way similar to the participants in Siegelman et al. (2017), we
calculated the correlation for performance on each item between our participants and theirs.
It was significant in both conditions (LETTER: r = .8, p < .0001; COMPLEX: r = .68, p <

.0001), suggesting that our participants found the same items to be difficult as theirs did.

2.3.2. Perceptual fluency task
The PF task, as illustrated in Fig. 4, is a novel measure we designed to capture the facility

with which people could encode and recall the specific stimuli in the experiment. Inspired in
part by the Inspection Time literature (see O’Connor Burns, 2003 for an overview), each of
the 48 trials in the task involves flashing an item onto the screen for a small amount of time
(250 ms on the first trial) followed by a masking stimulus (always presented for 200 ms). The
task is adaptive: if the participant successfully identifies the item, the target on the next trial
flashes more quickly (with a duration of 15 ms less); if they do not, it flashes slower (with
a duration of 15 ms more). Over the course of the task, participants who can achieve similar
accuracy for targets displayed for a shorter duration have higher perceptual fluency for those
stimuli. This is reflected in their PFscore, which consists of the mean target latency over all
trials; a lower PFscore thus reflects higher PF.
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Each of the 16 symbols in the relevant stimulus set was the target three times. Masks
and distractors were selected from the same stimulus set and randomized by person, as was
trial order.

3. Experiment 1: Results

The overall hypothesis being tested in this paper is that PF plays a mediating role in the
performance on SL tasks. This hypothesis yields several testable predictions. First, it predicts
that people will show different levels of performance on SL in tasks that differ only in terms
of which stimuli they use, for which the SL component is identical. Second, it predicts that
correlations between SL performance at two different time points should be greater if the
stimuli are of the same type than if they are not (even though all are within the same modality).
Third, it predicts that SL performance should be correlated with PF, even though no SL is
involved in the PF task at all. We consider each prediction in turn. Unless stated otherwise,
all analyses include data from both sessions.

3.1. Is performance better on LETTER stimuli?

Do people improve when the stimuli involved are LETTER rather than COMPLEX? We ask
this question separately for both SL and PF tasks. Appendix A contains more detail.

3.1.1. Statistical learning
Accuracy on the SL tasks, as measured by SLscore, does appear to span the range of indi-

vidual differences, ranging between 26.2% and 97.6% (mean: 59.6%) in the LETTER con-
dition and 28.6% and 92.9% (mean: 52.7%) in the COMPLEX condition. In both conditions,
performance is significantly above chance, which Siegelman et al. (2017) calculate as 40%
(LETTER: t (112) = 11.45, p < .0001, d = 1.08; COMPLEX: t (150) = 10.69, p < .0001, d =
0.87). Moreover, the difference in accuracy between LETTER and COMPLEX conditions, as
shown in Fig. 5(a), is significant (t (211) = 3.24, p = .0014, d = 0.42).

3.1.2. Perceptual fluency
As Fig. 5(b) reveals, PF was also significantly improved (as reflected in a lower PFs-

core) when the stimuli were LETTER than when they were COMPLEX (t (240.1) = −3.46, p =
.0006, d = 0.43). This is reassuring both because it helps to support the notion that PFscore
is indeed measuring something about perceptual fluency, and because it suggests that partici-
pants were behaving sensibly on the PF task in general.

3.2. Are SL correlations higher between stimuli of the same familiarity?

If PF influences performance on SL tasks, then we should expect that test–retest correla-
tions between SL performance on two different sessions should be reasonably high when
the stimuli are of the same type (LETTER–LETTER or COMPLEX–COMPLEX), even though
no individual items are repeated. Conversely, we should expect lower correlations if they
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Fig. 5. Performance as a function of stimulus complexity. (a) In the statistical learning task, accuracy (SLscore)
was significantly higher for LETTER stimuli than for COMPLEX stimuli, though both were far above chance at
approximately 40%. (b) In the perceptual fluency task, mean latency of the target stimulus (PFscore) was signifi-
cantly lower for LETTER stimuli, indicating that participants were better at quickly encoding and remembering the
LETTER stimuli than the COMPLEX ones.

Fig. 6. Test–retest correlations in SLscore as a function of stimulus similarity. The left panel shows the correlation
between SLscore on Sessions 1 and 2 for those participants who performed the statistical learning task using
stimuli of the same type each time (either LETTER–LETTER or COMPLEX–COMPLEX). The right panel shows the
same correlation but for participants who saw a different type of stimuli each time (either LETTER–COMPLEX or
COMPLEX–LETTER). Correlations were significantly higher when the stimuli were of the same type, despite the
fact that all were in the same modality and no specific symbols were repeated between sessions.

are different at different sessions (LETTER-COMPLEX or COMPLEX–LETTER), even though the
modality is the same. We evaluate this prediction in Fig. 6. It is clear that the test–retest cor-
relation between SAME stimuli was higher (r = .7, p < .0001) than between DIFFERENT sets
(r = .43, p < .0001). The difference between these correlations is significant using a Fisher
r-to-z transformation (z = 2.26, p = .024).

3.3. Does perceptual fluency predict performance in the statistical learning task?

A final prediction of the hypothesis that PF influences SL performance is that higher PF
(as measured by a lower PFscore) should be associated with higher SL (as measured by
a higher SLscore). The correlation between PF and SL accuracy within the same person
was indeed significant both across the SAME stimuli (r = −.37, p < .0001) and DIFFERENT
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stimuli (r = −.28, p < .0001); the difference between these correlations is not significant
(z = −0.76, p = .45).

4. Experiment 2: Method

The results thus far suggest that SL is improved when PF is high, as when stimuli are
simpler and more familiar. Moreover, test–retest correlations between SL tasks are higher
when the stimuli on both days are of the same type, and performance on a test of PF is both
higher for letters than unfamiliar complex shapes, and is correlated with SL performance.

However, an open question remains: to what extent do our results reflect familiarity, and
to what extent do they reflect complexity? We deliberately confounded these two factors in
Experiment 1, which means that we cannot tell whether they performed worse on the COM-
PLEX stimuli because they were novel or complicated or both. We investigate this question in
Experiment 2, which presents another group of participants with stimuli that were designed
to be simpler than the COMPLEX stimuli in Experiment 1, while still being unfamiliar (we
call them SIMPLE). If complexity was driving the results in Experiment 1, we would expect
SL performance using the SIMPLE stimuli to be similar to the LETTER stimuli, since both are
relatively simple; if not, we would expect performance on the SIMPLE stimuli to be similar to
the COMPLEX ones, since both are unfamiliar.

4.1. Participants

Eighty participants were recruited from Amazon Mechanical Turk and paid $3.50USD for
the 15-minute task, which was a single session, identical to Session 1 of Experiment 1 but
with SIMPLE stimuli. Of these, six were excluded for failing the attention check, which was
the same as before. All analyses focus on the remaining 74 participants, 46 (62.2%) of whom
were male, and 70 (94.6%) were from the United States. Ages ranged from 21 to 62 (mean
36.4). None were in Experiment 1.

4.2. Materials

Our goal in Experiment 2 was to design stimuli that were not as visually complex as the
COMPLEX stimuli in Experiment 1. Defining visual complexity is a difficult task and to our
knowledge, there is no fully agreed-upon approach (see, for example, Donderi, 2006; Miton
& Morin, 2021; Pelli et al., 2006; and Sun & Firestone, 2021, for discussions of the issues
involved). However, most measures capture similar general principles (e.g., that simpler items
have fewer and more distinguishable features) and are highly correlated with each other. We
therefore designed the SIMPLE stimuli to have fewer features than the COMPLEX ones (between
two and four rather than four and six) as well as more distinguishable features (consisting of
lines, arcs, and circles rather than just lines). The stimuli are shown in Fig. 7.

To ensure that these stimuli were indeed simpler, we calculated the objective complexity
of each stimulus using a measure called perimetric complexity. It is defined as the ratio of
inked surface to the perimeter of the inked surface and is both commonly used (Miton &
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Fig. 7. Experiment 2 stimuli. All participants saw 16 unfamiliar SIMPLE stimulus items (left panel) that were
designed to be visually less complex than the COMPLEX ones in Experiment 1. They had fewer and more distin-
guishable features and scored lower on an objective measure called perimetric complexity (right panel).

Morin, 2021) and correlated with human learning efficiency (Pelli et al., 2006). The calcula-
tion was implemented in Mathematica as in Watson (2012). As Fig. 7 shows, the perimetric
complexity of the SIMPLE stimuli was significantly lower than that of the COMPLEX stimuli
(t (55.2) = 8.134, p < .0001) and closer to the LETTER stimuli, although still significantly
different (t (52.1) = −6.269, p < .0001). If complexity matters and familiarity does not, one
would therefore expect SL performance on the SIMPLE stimuli to be better than on the COM-
PLEX stimuli and slightly worse than the LETTER stimuli. Conversely, if only familiarity mat-
ters, then one would expect that performance on the SIMPLE and COMPLEX stimuli should be
similar to each other, and both substantially worse than on the LETTER stimuli.

4.3. Procedure

The procedure was completely identical to the SL task in Session 1 of Experiment 1, except
with SIMPLE stimuli instead. As before, participants observed a 10-minute familiarization
task in which they saw the stimuli appear individually on screen. Which symbols appeared
in which position was again randomized for each participant, and all participants saw a com-
bination of easy and hard triplets. Each of the triplets occurred 24 times in random order, as
before, and the attention check was the same. The test phase was also identical, involving the
same 42 questions, which measured how well they had learned the transitional probabilities
between the SIMPLE stimuli.

5. Experiment 2: Results

As in the previous experiment, accuracy on the SL task (SLscore) using the SIMPLE stimuli
spans the range of individual differences, with a mean of 50.5%, a minimum of 26.2%, and a
maximum of 95.2%. Performance was significantly above the chance level of 40% (t (73) =
6.2, p < .0001, d = 0.73) and there was once again a high correlation between the item-level
accuracy of the participants of Siegelman et al. (2017) and ours (r = .66, p < .0001).
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Fig. 8. Experiment 2: SL performance by condition. Accuracy on the SL task (SLscore) was significantly higher
for LETTER stimuli than for either the unfamiliar complex stimuli (COMPLEX) or the unfamiliar simple stimuli
(SIMPLE), suggesting that it is familiarity rather than complexity that improves statistical learning performance.

Most importantly, as shown in Fig. 8, overall SL performance on the SIMPLE stimuli was
more similar to performance on the COMPLEX stimuli than the LETTER stimuli. To make
the most appropriate comparison, we performed a one-way ANOVA on SLscore between
SIMPLE and the Session 1 SL task performance in the LETTER and COMPLEX conditions
(results were not qualitatively different if instead we used the SL scores from both sessions).
There was a significant effect of condition (F (2, 203) = 4.2743, p = .0152, η2 = 0.04).
Follow-up t-tests indicated that the difference between LETTER and SIMPLE was significant
(t (113.8) = 2.68, p = .0085, d = 0.47) but not the difference between COMPLEX and SIM-
PLE (t (142.1) = −0.63, p = .5271, d = 0.11). In other words, people showed similar levels
of SL for both of the unfamiliar stimuli, despite the fact that they differed substantially in com-
plexity. This suggests that familiarity rather than complexity underlays the SL performance
that we observed in Experiment 1.

6. Experiment 3: Method

The results from Experiments 1 and 2 are suggestive, but despite our best efforts, it may
have been impossible to fully measure or control for stimulus complexity. Accordingly, it is
possible that the SIMPLE stimuli were not actually simpler or easier to process. If this were
the case, it would mean that—Experiment 2 notwithstanding—these effects might have been
driven by complexity rather than familiarity. This would still be interesting, but would have
very different implications for the nature of the mechanisms that underlie SL. In addition, it
would be reassuring to replicate these results on a different population of participants.

Motivated by these considerations, we conducted a third pre-registered experiment
designed to disentangle complexity and familiarity. In it, we took the opposite approach as in
Experiment 2, holding complexity constant but testing participants who varied in their famil-
iarity with the stimuli. Specifically, we used two sets of stimuli: CHINESE characters and the
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Fig. 9. Experiment 3 stimuli. All participants saw the CHINESE and COMPLEX items in two separate SL and PF
tasks. CHINESE and COMPLEX stimuli did not differ in perimetric complexity.

COMPLEX stimuli from Study 1. We tested two different groups of participants: native Chi-
nese speakers (for whom the Chinese characters were overlearned and highly familiar) and
English speakers (who had little or no experience with Chinese). If familiarity were driving
the effect, one would expect that the Chinese participants would show better SL and higher
PF for the CHINESE stimuli, but that all participants would perform equally on the novel COM-
PLEX stimuli.

6.1. Participants

A total of 206 undergraduates enrolled in first-year psychology at the University of Mel-
bourne participated in this 35–45 minute experiment to receive course credit. Of these, 29
were excluded for failing the pre-registered attention check, which was identical to the one in
Experiment 1 and consisted of correctly reporting the English words that had been embedded
in the training sequences of the SL tasks. All analyses focus on the remaining 177 participants,
48 (27.1%) of whom were male. Ages ranged from 17 to 27 (mean 19.4).

All participants took part in the exact same experiment as each other, seeing the same
stimuli and undergoing the same procedure. The conditions were defined by the participants
themselves according to the following pre-registered criteria. First, they took a short four-
question quiz in which they were asked to choose the meaning of four different Chinese
characters (for questions, see Appendix B). Participants who scored less than three correct
were automatically assigned to the English group. Of those who got three or more correct,
those who did not rate themselves as native speakers of Chinese were also put into the English
group. This left 61 participants in the Chinese group and 116 in the English group. Since all
came from the same undergraduate cohort, the groups were matched on education level and
did not differ in age (t (157.37) = 0.39, p = .694).

6.2. Materials

As described below, every participant in Experiment 3 took part in the same two SL and
PF tasks as each other. In one, they saw the COMPLEX stimuli from the first session of Exper-
iment 1. In the other, the stimuli were common CHINESE characters, as shown in Fig. 9. The
characters varied in the number of strokes and pronunciation (based on initial phoneme and
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tone) and all corresponded to simple nouns. Appendix B contains the full list of characters.
There was no difference in the perimetric complexity of the CHINESE and COMPLEX stimuli
in this experiment (t (29.2) = 0.722, p = .476).

6.3. Procedure

The procedure for this experiment was similar to Experiment 1 but had a few important
differences resulting from several considerations. First, in order to recruit from the under-
graduate population pool, it was necessary to have an experiment that could be completed
in one session; use of this pool was important as it contained many native Chinese speak-
ers who matched the non-Chinese speakers on age and education level. Second, the important
comparisons for this experiment were between groups rather than between tasks, which neces-
sitated a different structure.

We therefore presented each participant with two SL tasks, one with each type of stimuli
(COMPLEX and CHINESE), with the order randomized. Each person then also completed two
PF tasks with the same stimuli, in the same order as in the SL tasks. Thus, a participant
who saw the CHINESE stimuli on the first SL task saw them in the first PF task as well. This
ensured that nobody performed two adjacent tasks with the same stimuli. The SL and PF
tasks themselves were identical to those in Experiment 1, with the same attention checks,
instructions, and questions, and so forth.

7. Experiment 3: Results

The purpose of this experiment was to further explore whether stimulus familiarity or com-
plexity drove the effects in the previous experiment. If, as hypothesized, it is due to familiar-
ity that yields several (pre-registered) predictions. First, it suggests that we should observe an
interaction between speaker and stimulus on SL tasks, such that Chinese speakers will per-
form better on the CHINESE stimuli than in any other case. Second, it suggests that we should
see the same interaction on the PF task. And third, it suggests that PF should be correlated
with SL, especially on the same stimuli. We consider each prediction in turn.

7.1. Statistical learning

As in the previous experiments, accuracy on the SL task (SLscore) covered the range of
individual differences, from 19.0% to 100% (mean: 48.9%). Performance was significantly
above chance (t (353) = 11.8, p < .0001, d = 3.43) and there was again a high correlation
between the item-level accuracy of the participants of Siegelman et al. (2017) and ours on
both the first SL task (r = .64, p < .0001) and the second (r = .75, p < .0001).

If familiarity rather than complexity drives the effects we have seen so far, we should expect
that there should be an improvement in SL performance only for those participants who saw
familiar stimuli: the Chinese speakers shown CHINESE characters. That is, we should expect an
interaction between participant and stimulus. Conversely, if stimulus complexity were driving
the effect, we should expect everyone to perform equally on both stimulus sets.
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Fig. 10. Experiment 3 statistical learning. As predicted by the familiarity hypothesis, there was an interaction
between participant and stimulus type: Chinese speakers (left panel) showed higher statistical learning perfor-
mance on the CHINESE stimuli than did English speakers.

The results, as shown in Fig. 10, support the familiarity hypothesis: Chinese speakers
show improved performance on CHINESE stimuli, and the interaction is significant (stim-
ulus: F (1, 704) = 9.1698, p = .0026; participant: F (1, 704) = 0.0062, p = .9375; interac-
tion: F (1, 704) = 29.4098, p < .0001). Post-hoc t-tests reveal that, as expected, English
speakers performed similarly on the CHINESE and COMPLEX stimuli (t (461.9) = 0.758, p =
.449), while Chinese speakers performed significantly better on the CHINESE stimuli than
they did on the COMPLEX stimuli (t (195.1) = −5.804, p < .0001). These results indicate that
stimulus familiarity, not absolute complexity, drives these individual differences in SL.

7.2. Perceptual fluency

By a similar logic as above, if familiarity underlies PF, we should expect an interaction
between participant and stimuli on PFscore as well. As Fig. 11 shows, this is indeed what
we found: Chinese speakers performed better (with a lower PFscore) on the CHINESE stim-
uli than anybody did on any of the other stimuli (stimulus: F (1, 698) = 30.885, p < .0001;
participant: F (1, 698) = 30.066, p < .0001; interaction: F (1, 698) = 38.7714, p < .0001).
Post-hoc t-tests reveal that, as in the SL task, English speakers performed similarly on the
CHINESE and COMPLEX stimuli (t (447.5) = 0.804, p = .422), while Chinese speakers per-
formed significantly better on the CHINESE stimuli than they did on the COMPLEX stimuli
(t (232.25) = 8.815, p < .0001).

We can also investigate whether PF is associated with SL. If familiarity has something to
do with this, one would expect that the correlation between PFscore and SLscore would be
higher when the stimuli were the same (both CHINESE or both COMPLEX) than when they were
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Fig. 11. Experiment 3 perceptual fluency. As predicted by the familiarity hypothesis, there was an interaction
between participant and stimulus type: although all participants had poor perceptual fluency on the COMPLEX

stimuli, the Chinese speakers (left panel) had better perceptual fluency (as reflected by a lower PFscore) on the
CHINESE stimuli than did English speakers.

different (i.e., PF for CHINESE and SL for COMPLEX or PF for COMPLEX and SL for CHINESE).
This was indeed the case (same: r = −0.2, p < .0001; different: r = −.04, p = .45). The
difference between these correlations was significant (z = −2.1, p = .036).

8. General discussion

This work investigated the degree to which PF on specific stimuli influences SL involv-
ing those stimuli, and to what extent PF is driven by stimulus familiarity, complexity, or
both. Recognizing that SL relies on basic memory processes (Frank et al., 2010; Frost et al.,
2019; Isbilen et al., 2020), we hypothesized that participants would learn the same statistical
regularities better when they found items to be easier to perceptually distinguish, parse, and
remember. This hypothesis was uniformly supported across three experiments. In Experiment
1, participants were significantly better at learning statistical regularities when the stimuli
involved were simple and familiar than when they were complex and novel, even though the
modality was the same in both cases. This suggests that the ease with which statistical distri-
butions are learned is moderated not only by a person’s modality-specific level of perceptual
fluency, but also by how easily they can process and remember specific items. These effects
were also observable at the individual level: test–retest correlations were higher when the two
tasks used items that were similarly complex and familiar, even though none of the specific
individual items were repeated. Additionally, individual performance on both SL tasks was
significantly associated with performance on a novel independent measure of PF. In Experi-
ment 2, we found that SL performance was not improved when the stimuli were simpler but
still unfamiliar. Finally, in Experiment 3, we held stimulus complexity constant and varied
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participant experience with the experimental material, and once again found that participants
performed best on the stimuli with which they were most familiar.

Overall, these data identify a fundamental role for perceptual fluency in statistical learning
and demonstrate that perceptual fluency not only varies significantly between individuals but
is also strongly driven by familiarity. Our findings are consistent with research showing that
familiarity matters more than complexity in working memory and processing efficiency (Jack-
son & Raymond, 2008; Ngiam et al., 2019; Reder et al., 2016; Xie & Zhang, 2017; Zhang
et al., 2020). Our results may also help elucidate why frequency of exposure—leading to high
familiarity—matters in so many aspects of cognition, from language to decision-making to
memory (for example, Hasher & Zacks, 1984; Sedlmeier & Betsch, 2002; Gries & Divjak,
2012; Baayen, Milin, & Ramscar, 2016). Given the ubiquity of frequency effects, it is perhaps
not particularly surprising if SL is also improved when the items involved are highly familiar,
having occurred frequently in prior experience. Indeed, this finding can also explain why peo-
ple with specific expertise or training in a domain show better SL in that domain (Mandikal
Vasuki, Sharma, Ibrahim, & Arciuli, 2017; Martire, Growns, & Navarro, 2018).

Our work thus suggests an important modification to existing theories of SL (for example,
Frost et al., 2015). Rather than postulating that individual variation in the efficiency of per-
ceptual processing and memory is entirely based on modality or timing, our results indicate
that familiarity with the specific items involved plays an important moderating role. We do
not suggest that there are no modality-specific individual differences in PF, but we do suggest
that familiarity may be far more important than has previously been recognized; indeed, it is
possible that some of the variation that has historically been attributed to modality differences
may reflect familiarity differences instead.

Whether familiarity would have the exact same effect on SL in the auditory modality
remains an open question, as to our knowledge, comparable studies to ours do not exist.
However, our results are consistent with evidence that Mandarin learners have better statisti-
cal learning for artificial tonal stimuli than English speakers (Potter et al., 2017). Moreover,
high frequency and therefore more familiar items have been found to play facilitative roles in
speech segmentation in infants (Bortfield, Morgan, Golinkoff, & Rathbun, 2005; Monaghan
& Christiansen, 2010) and adults (Frost, Monaghan, & Christiansen, 2016). Other research
has shown an important role for high-frequency marker words in artificial grammar learning
(for example, Valian & Coulson, 1988). In these studies, the high-frequency familiar items
serve as cues to higher level structure, and their designs are interesting because they mimic
asymmetrical (e.g., Zipfian) frequency distributions present in language. An auditory analog
of our current study would show something even more fundamental, suggesting that famil-
iarity with a lower level feature of language (e.g., syllables or phonemes) might provide an
important basis for the statistical learning of higher level forms (e.g., words).

We have interpreted our results as reflecting the importance of familiarity, but one might
question to what extent they reflect verbalisability instead: perhaps, people performed better
for familiar stimuli not because they were familiar per se, but because they had names and
were thus easier to verbalize. This possibility is consistent with research suggesting that SL is
improved for stimuli that are easy to encode verbally (Conway, Karpicke, & Pisoni, 2007). It
is probable that verbalisability does play some role in our results, and it is impossible to rule
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it out entirely: any stimulus that is familiar enough to improve SL will also almost certainly
become associated with a label or mental shorthand. That said, several considerations suggest
that our results are not entirely due to an improved ability to verbalize familiar stimuli. First,
verbaliseability cannot explain the significant correlations found between performance on
the PF and SL tasks. The PF task was a stimulus-specific task that had no component of
SL at all, and occurred too rapidly (on the order of 120–130 ms) for verbalization to be a
factor in the performance. For similar reasons, verbaliseability cannot explain the improved
PFscore Chinese people had for CHINESE stimuli. Second, verbaliseability cannot explain
why in Experiment 3 the Chinese participants actually performed worse in the SL task on
the COMPLEX stimuli than the English participants did (t (298.7) = −4.7, p < .0001); the
COMPLEX should be equally unverbaliseable for both populations. This result might instead
indicate a form of perceptual interference, with COMPLEX stimuli being harder for Chinese
people to encode because of their similarity to the highly familiar Chinese characters. This
interpretation is speculative, but regardless, it does suggest that at least part of the performance
differential in the SL task reflects familiarity rather than verbaliseability. Additionally, even
if part of the effect is due to verbaliseability, this does not change our main conclusion that
stimulus-specific PF affects SL; it just means that PF is enhanced for verbaliseable stimuli.

Our work is complementary to entrenchment accounts of SL, which suggest that the prior
experience of TPs can interfere with the learning of novel TPs over the same items (Endress
& Mehler, 2009; Perruchet & Poulin-Charronnat, 2012; Siegelman et al., 2018). The results
are an interesting contrast to these cases, because our focus has been on the experience with
the stimuli themselves (rather than the TPs) and because (other than the Chinese participants
with COMPLEX stimuli) we found a facilitative rather than disadvantageous effect of prior
experience. The facilitative effect makes sense given our focus on the stimuli themselves,
since the relevant prior experience did not contradict what participants saw in experiment
(whereas in previous research, the TPs in the experiment contradicted the learned TPs in the
language). In our work, people’s previous experience with letters and characters may have
made those stimuli easier to rapidly encode, thus allowing more processing resources to be
devoted to the SL component of the task. The effect of stimulus familiarity seems to have
been substantial enough to override any interference caused by any pre-existing TPs (letter–
letter associations) that participants may have had. Although our stimuli were controlled such
that no participant saw the exact same combinations of items, literate participants are likely to
have implicit expectations of relative letter locations, which could have but did not influence
pattern detection.

Overall, our results support the suggestion that, rather than being a purely abstract and
domain-general process, SL is a multicomponential process grounded in basic cognition
(Arciuli, 2017; Frost et al., 2019; Growns, Siegelman, & Martire, 2020; Siegelman et al.,
2017). Indeed, we found that within-domain variation in PF (both within and between indi-
viduals) plays a significant role in learning. These data are important, in the first instance,
because they broaden the scope of variables that influence SL. Frost et al. (2019) argued that
while SL is likely implicated in most domains of cognition, research on the topic has pur-
sued a more isolationist strategy, and as such its promise as an explanatory concept has not
been realized. Our finding that PF influences SL naturally lends itself to Frost et al. (2019)’s
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call for domain integration because it grounds learning in basic memory and perceptual
processes.

A natural question, which we cannot fully answer here, is how PF and SL interact. On
the one hand, it is clear that stimulus encoding is a pre-condition for learning probability
distributions across items (Bogaerts et al., 2016); however, if SL plays a fundamental role
in learning, then the relationship should be bidirectional, such that perceptual features may
be sharpened by predictable patterns over time. By way of example, consider how the two
might interact in reading acquisition. Once a child learns individual letters, they begin to
coordinate those letters into words, which in languages like English is difficult because of the
one-to-many grapheme-to-phoneme mappings. Initially, this process is labored for children,
whose strategies vacillate between whole-form memorization and phoneme-by-phoneme pro-
nunciation. However, an account where SL is important for reading (Arciuli, 2018) predicts
that, as the learner identifies regularities in the visual input, orthographic representations will
be strengthened, thus completing a virtuous circle.

This work suggests part of a solution to the question of exactly what SL is and how it relates
to other cognitive skills. If SL is influenced by PF, and that, in turn, is affected by familiarity
and prior experience, then we should expect a degree of modality-specific effects on learning,
which is consistent with the bulk of past research. As such, we take a further step away from
the conceptualization of performance on SL tasks as measuring domain-general computations
over amodal abstract representations. These findings also suggest that one way to improve SL
(and any learning that relies on it) is simply to increase exposure to the stimuli involved.
We are particularly excited for the potential of this possibility, since statistical learning is
important in so many different domains and increased exposure is in many cases a relatively
easy and cheap intervention. Much remains to be done, but our work opens the door to a
variety of advances, both theoretical and applied.
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Notes

1. https://github.com/perfors/vsl/ contains stimuli, experiment code, data, and analyses for
all experiments.

2. We removed a single outlier that was more than 4SD from the mean of PFscore. Results
are qualitatively the same if no outliers or outliers at 2SD or 3SD are removed. We opted
to remove at 4SD because inspection of the data suggested that this particular data point
appeared to be a high-leverage outlier with a very long relative latency.

3. The pre-registration can be found at http://aspredicted.org/blind.php?x=r76fb4.
4. We pre-registered running 160 participants, expecting more difficulty in recruiting than

we had, and were encouraged to run more than 160 in order to ensure that all students
were able to earn sufficient course credit. All analyses reported here were performed
only once, on the full dataset, but in order to ensure that our results were not due to
a larger sample size than anticipated, we also ran all analyses on the first 160 people
in the dataset, with identical results; see https://github.com/perfors/vsl/ for details of
these analyses.

5. We followed this classification because it is what we pre-registered, but upon examina-
tion of the dataset, we saw that numerous participants did not rate themselves as native
speakers but still got three or more correct on the quiz. We therefore replicated all anal-
yses with a classification that put those participants in the Chinese group. The results,
which can be found in the Supporting Information, are qualitatively the same to those
reported here.

6. As pre-registered and as in Experiment 1, we removed the six PFscore values that were
more than 4SD from the mean. Including them does not change any of our qualita-
tive results.

References

Alvarez, G., & Cavanagh, P. (2004). Capacity of visual short-term memory is set both by visual information load
and by number of objects. Psychological Science, 15, 106–111.

Arciuli, J. (2017). The multi-component nature of statistical learning. Philosophical Transactions of the Royal
Society B, 372(1711), 1–9.

Arciuli, J. (2018). Reading as statistical learning. Language, Speech, and Hearing Services in Schools, 49, 634–
643.

Arciuli, J., & Simpson, I. (2011). Statistical learning in typically developing children: The role of age and speed
of stimulus presentation. Developmental Science, 14, 464–473.

Baayen, H., Milin, P., & Ramscar, M. (2016). Frequency in lexical processing. Aphasiology, 30(11), 1174–1220.
Bethell-Fox, C., & Shepard, R. (1988). Mental rotation: Effects of stimulus complexity and familiarity. Journal of

Experimental Psychology: Human Perception and Performance, 14(1), 12–23.
Bogaerts, L., Siegelman, N., & Frost, R. (2016). Splitting the variance of statistical learning performance: A

parametric investigation of exposure duration and transitional probabilities. Psychonomic Bulletin and Review,
23, 1250–1256.

Bonin, P., Peereman, R., Malardier, N., Meot, A., & Chalard, M. (2003). A new set of 299 pictures for psycholin-
guistic studies: French norms for name agreement, image agreement, conceptual familiarity, visual complexity,
image variability, age of acquisition, and naming latencies. Behavior Research Methods, Instruments, and Com-
puters, 35(1), 158–167.

https://github.com/perfors/vsl/
http://aspredicted.org/blind.php?x=r76fb4
https://github.com/perfors/vsl/


22 of 28 A. Perfors, E. Kidd / Cognitive Science 46 (2022)

Bortfield, H., Morgan, J., Golinkoff, R., & Rathbun, K. (2005). Mommy and me: Familiar names help babies into
speech segmentation. Psychological Science, 16, 298–304.

Brady, T., & Oliva, A. (2008). Statistical learning using real-world scenes: Extracting categorical regularities
without conscious intent. Psychological Science, 19(7), 678–685.

Buchsbaum, D., Griffiths, T., Plunkett, D., Gopnik, A., & Baldwin, D. (2015). Inferring action structure and causal
relationships in continuous sequences of human action. Cognitive Psychology, 76, 30–77.

Bulf, H., Johnson, S., & Valenza, E. (2011). Visual statistical learning in the newborn infant. Cognition, 121(1),
127–132.

Christiansen, M. (2019). Implicit statistical learning: A tale of two theories. Topics in Cognitive Sciences, 11,
468–481.

Conway, C., & Christiansen, M. (2006). Statistical learning within and between modalities: Pitting abstract against
stimulus-specific representations. Psychological Science, 17(10), 905–912.

Conway, C., Karpicke, J., & Pisoni, D. (2007). Contribution of implicit sequence learning to spoken language
processing: Some preliminary findings with hearing adults. Journal of Deaf Studies and Deaf Education, 12(3),
317–334.

Cycowicz, Y., Friedman, D., Rothstein, M., & Snodgrass, J. (1997). Picture naming by young children: Norms for
name agreement, familiarity, and visual complexity. Journal of Experimental Child Psychology, 65(2), 171–
237.

Donderi, D. (2006). An information theory analysis of visual complexity and dissimilarity. Perception, 35(6),
823–835.

Endress, A., & Mehler, J. (2009). The surprising power of statistical learning: When fragment knowledge leads to
false memories of unheard words. Journal of Memory and Language, 60, 351–367.

Eng, H., Chen, D., & Jiang, Y. (2005). Visual working memory for simple and complex visual stimuli. Psycho-
nomic Bulletin and Review, 12, 1127–1133.

Fiser, J., & Aslin, R. (2002). Statistical learning of new visual feature combinations by infants. Proceedings of the
National Academy of Sciences, 99(24), 15822–15826.

Frank, M. C., Goldwater, S., Griffiths, T. L., & Tenenbaum, J. B. (2010). Modeling human performance in human
speech segmentation. Cognition, 117, 107–125.

Frost, R., Armstrong, B., & Christiansen, M. (2019). Statistical learning research: A critical review and possible
directions. Psychological Bulletin, 145, 1128–1153.

Frost, R., Armstrong, B., Siegelman, N., & Christiansen, M. (2015). Domain generality versus modality speci-
ficity: The paradox of statistical learning. Trends in Cognitive Sciences, 19(3), 117–125.

Frost, R., Monaghan, P., & Christiansen, M. (2016). Using statistics to learn words and grammatical categories:
How high frequency words assist language acquisition. In A. Papafragou, D. Mirman, & J. Trueswell (Eds.),
Proceedings of the 38th Annual Conference of the Cognitive Science Society (pp. 81–86). Austin, TX: Cognitive
Science Society.

Gebhart, A., Newport, E., & Aslin, R. (2009). Statistical learning of adjacent and nonadjacent dependencies among
nonlinguistic sounds. Psychonomic Bulletin and Review, 16, 486–490.

Gries, S., & Divjak, D. (Eds.). (2012). Frequency effects in language learning and processing. Berlin/Boston: De
Gruyter Mouton.

Growns, B., Siegelman, N., & Martire, K. (2020). The multi-faceted nature of visual statistical learning: Individual
differences in learning conditional and distributional regularities across time and space. Psychonomic Bulletin
& Review, 27, 1291–1299.

Hasher, L., & Zacks, R. (1984). Automatic processing of fundamental information: The case of frequency of
occurrence. American Psychologist, 39(12), 1372–1388.

Hauser, M., Newport, E., & Aslin, R. (2001). Segmentation of the speech stream in a nonhuman primate: Statistical
learning in cotton-top tamarins. Cognition, 78, B53–B64.

Isbilen, E., McCauley, S., Kidd, E., & Christiansen, M. (2017). Testing statistical learning implicitly: A novel
chunk-based measure of statistical learning. In G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (Eds.),



A. Perfors, E. Kidd / Cognitive Science 46 (2022) 23 of 28

Proceedings of the 39th Annual Conference of the Cognitive Science Society (pp. 564–569). Austin, TX: Cog-
nitive Science Society.

Isbilen, E., McCauley, S., Kidd, E., & Christiansen, M. (2020). Statistically-induced chunking recall: A memory-
based approach to statistical learning. Cognitive Science, 44, e12848.

Jackson, M., & Raymond, J. (2008). Familiarity enhances visual working memory for faces. Journal of Experi-
mental Psychology: Human Perception and Performance, 34(3), 556–568.

Kaufman, S., DeYoung, C., Gray, J., Jiménez, L., Brown, J., & Mackintosh, N. (2010). Implicit learning as an
ability. Cognition, 116, 321–340.

Kemps, E. (1999). Effects of complexity on visuo-spatial working memory. European Journal of Cognitive Psy-
chology, 11(3), 335–356.

Kirkham, N., Slemmer, J., & Johnson, S. (2002). Visual statistical learning in infancy: Evidence for a domain
general learning mechanism. Cognition, 83, B35–B42.

Krogh, L., Vlach, H., & Johnson, S. (2013). Statistical learning across development: Flexible yet constrained.
Frontiers in Psychology, 3, 598.

Liu, T., Chen, W., Liu, C., & Fua, X. (2012). Benefits and costs of uniqueness in multiple object tracking: The role
of object complexity. Vision Research, 66, 31–38.

Luria, R., Sessa, P., Gotler, A., Jolicoeur, P., & Dell’Acqua, R. (2010). Visual short-term memory capacity for
simple and complex objects. Journal of Cognitive Neuroscience, 22, 496–512.

Madan, C., Bayer, J., Gamer, M., Lonsdorf, T., & Sommer, T. (2018). Visual complexity and affect: Ratings reflect
more than meets the eye. Frontiers in Psychology, 8, 2368.

Mandikal Vasuki, P., Sharma, M., Ibrahim, R., & Arciuli, J. (2017). Statistical learning and auditory processing in
children with music training: An ERP study. Clinical Neurophysiology, 128(7), 1270–1281.

Martire, K., Growns, B., & Navarro, D. (2018). What do the experts know? Calibration, precision, and the wisdom
of crowds among forensic handwriting experts. Psychonomic Bulletin and Review, 25(6), 2346–2355.

Miton, H., & Morin, O. (2021). Graphic complexity in writing systems. Cognition, 214, 104771.
Monaghan, P., & Christiansen, M. (2010). Words in puddles of sound: Modelling psycholinguistic effects in lan-

guage acquisition. Journal of Child Language, 37, 545–564.
Ngiam, W., Khaw, K., & Goodbourn, P. (2019). Visual working memory for letters varies with familiarity but not

complexity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(10), 1761–1775.
O’Connor, T., & Burns, N. (2003). Inspection time and general speed of processing. Personality and Individual

Differences, 35(3), 713–724.
Pelli, D., Burns, C., Farell, B., & Moore-Page, D. (2006). Feature detection and letter identification. Vision

Research, 46, 4646–4674.
Perruchet, P., & Poulin-Charronnat, B. (2012). Beyond transitional probability computations: Extracting word-like

units when only statistical information is available. Journal of Memory and Language, 66(4), 807–818.
Popov, V., & Reder, L. (2020). Frequency effects on memory: A resource-limited theory. Psychological Review,

127(1), 1–46.
Potter, C., Wang, T., & Saffran, J. (2017). Second language experience facilitates statistical learning of novel

linguistic materials. Cognitive Science, 41, 913–927.
Reder, L., Liu, X., Keinath, A., & Popov, V. (2016). Building knowledge requires bricks, not sand: The critical

role of familiar constituents in learning. Psychonomic Bulletin and Review, 23(1), 271–277.
Saffran, J., Aslin, R., & Newport, E. (1996). Statistical learning by 8-month-old-infants. Science, 274(5294),

1926–1928.
Sedlmeier, P., & Betsch, T. (Eds.). (2002). Etc: Frequency processing and cognition. New York, NY: Oxford

University Press.
Siegelman, N., Bogaerts, L., Elazar, A., Arciuli, J., & Frost, R. (2018). Linguistic entrenchment: Prior knowledge

impacts statistical learning performance. Cognition, 177, 198–213.
Siegelman, N., Bogaerts, L., & Frost, R. (2017). Measuring individual differences in statistical learning: Current

pitfalls and possible solutions. Behavior Research methods, 49(2), 418–432.



24 of 28 A. Perfors, E. Kidd / Cognitive Science 46 (2022)

Siegelman, N., & Frost, R. (2015). Statistical learning as an individual ability: Theoretical perspectives and empir-
ical evidence. Journal of Memory and Language, 81, 105–120.

Sun, H., Zimmer, H., & Fu, X. (2011). The influence of expertise and of physical complexity on visual short-term
memory consolidation. Quarterly Journal of Experimental Psychology, 64(4), 707–729.

Sun, Z., & Firestone, C. (2021). Curious objects: How visual complexity guides attention and engagement. Cog-
nitive Science, 45, e12933.

Teinonen, T., Fellman, V., Näätänen, R., Alku, P., & Huotilainen, M. (2009). Statistical language learning in
neonates revealed by event-related brain potentials. BMC Neuroscience, 10, 127–132.

Turk-Browne, N., Junge, J., & Scholl, B. (2005). The automaticity of visual statistical learning. Journal of Exper-
imental Psychology: General, 134(4), 552–564.

Valian, V., & Coulson, S. (1988). Anchor points in language learning: The role of marker frequency. Journal of
Memory and Language, 27, 71–86.

Wang, T., & Saffran, J. (2014). Statistical learning of a tonal language: The influence of bilingualism and previous
linguistic experience. Frontiers in Psychology, 5, 953.

Watson, A. (2012). Perimetric complexity of binary digital images: Notes on calculation and relation to visual
complexity. Vision Research, 14, 1–41.

Xie, W., & Zhang, W. (2017). Familiarity increases the number of remembered Pokemon in visual short-term
memory. Memory and Cognition, 45(4), 677–689.

Zhang, J., Liu, X., So, M., & Reder, L. (2020). Familiarity acts as a reduction in objective complexity. Memory
and Cognition, 48, 1376–1387.

Appendix A: Further analyses for Experiments 1 and 2
Figs. A1–A4.

Fig. A1. Histograms of accuracy on the SL tasks. Each histogram plots the individual overall SLscore for each
participant, broken down by condition. It is evident that there is a wide range of individual variation within each
condition, and that the histograms appear approximately normal and similar in character to those reported in
Siegelman et al. (2017).

Appendix B: Stimuli for Experiment 3
Fig. B1

Appendix C: Additional analyses for Experiment 3
Figs. C1–C3
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Fig. A2. Item-level correlations with data from Siegelman et al. (2017). Each plot shows the correlation of perfor-
mance on each of the 42 test items in the first SL task in our study and that of Siegelman et al. (2017). Correlations
are strong and highly significant whether calculated over the LETTER stimuli (left), the COMPLEX stimuli (middle),
or the SIMPLE ones. This demonstrates that our participants were approaching the task similarly to theirs.

Fig. A3. Performance in perceptual fluency task. The panels on the left show PFscore as a function of whether
the PFtask was the first or the second the participant did. The time course (bottom) reveals that there is a small
effect of both learning (improved performance initially on the second task) and fatigue (improved performance at
the end of the first task). However, as the bar graph at the top reveals, these effects cancel each other out and there
is no significant difference by order of the task. Conversely, the panels on the right show that there is consistently
better performance with the LETTER stimuli than with the COMPLEX stimuli.
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Fig. A4. Correlations between PFscores. Each plot shows the correlation of performance on the two PF tasks
each person took, broken down by whether the stimuli were from the same set (both COMPLEX or both LETTER).
Correlations are significant for both, but higher when the stimuli were from the same set. This suggests that the
PF task reflects aspects of both stimulus-specific encoding efficiency as well as more general speed of encoding
or processing.

Fig. B1. Stimuli used in Experiment 3. On the left are the four test questions used to evaluate Chinese proficiency;
correct answers are italicized. The table on the right shows all 16 Chinese characters along with their pronunciation
and meaning. All corresponded to nouns and varied widely in initial phoneme and tone.
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Fig. C1. Histograms of accuracy on the SL tasks. Each histogram plots the individual overall SLscore for each
participant, broken down by condition. As before, there is a wide range of individual variation within each con-
dition, and the histograms appear approximately normal and similar in character to those reported in Siegelman
et al. (2017).

Fig. C2. Item-level correlations with data from Siegelman et al. (2017). Each plot shows the correlation of perfor-
mance on each of the 42 test items in the SL task in our study and that of Siegelman et al. (2017), broken down
by whether it was the first or the second task. As before, correlations are strong and highly significant, which this
demonstrates that our participants were approaching the task similarly to theirs.
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Fig. C3. Correlations between PF scores. Correlation of performance on the two PF tasks each person took. As
before, the correlation is positive and significant.


