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ABSTRACT This paper examines how features extracted from full-day data recorded by wearable sensors
are able to differentiate between infants with typical development and those with or at risk for developmental
delays. Wearable sensors were used to collect full-day (8–13 h) leg movement data from infants with typical
development (n = 12) and infants at risk for developmental delay (n = 24). At 24months, at-risk infants were
assessed as having good (n = 10) or poor (n = 9) developmental outcomes. With this limited size dataset,
our statistical analysis indicated that accelerometer features collected earlier in infancy differentiated between
at-risk infants with poor and good outcomes at 24 months, as well as infants with typical development. This
paper also tested how these features performed on a subset of the data for which the infant movement was
known, i.e., 5-min intervals more representative of clinical observations. Our results on this limited dataset
indicated that features for full-day data showed more group differences than similar features for the 5-min
intervals, supporting the usefulness of full-day movement monitoring.

INDEX TERMS Infant, neuromotor developmental delay, accelerometer, sensor.

I. INTRODUCTION
Mobility assessment is an important clinical tool used to
identify individuals with or at risk for mobility impairments,
and to optimize and individualize intervention.

Current mobility analysis typically relies on brief obser-
vations performed by a trained clinician using a clinical
rating scale. One scale commonly used for assessing infant
mobility is the Alberta Infant Motor Score (AIMS) [1].
Assessments relying on scales have several potential short-
comings: (1) infants may behave differently when exam-
ined in different settings (e.g., home vs. clinic), (2) the
observation period might be insufficient for the infant to
demonstrate his or her full repertoire of skills, (3) trained
healthcare professionals are needed, and (4) the evaluation

is based on subjective visual observations. Wearable sen-
sors have been proposed as a method to overcome these
shortcomings [2].

Specifically, with the advancement and pervasiveness of
wearable sensors (e.g., Apple Watch, Fitbit), it is now pos-
sible to continuously collect full-day data from individu-
als. Thus, there is an unprecedented opportunity to augment
a patient’s clinical visits with these longitudinal datasets.
Compared to traditional monitoring that is most often done
at the clinic, monitoring with wearable technology can be
less intrusive and less expensive, and allows collecting data
about overall activity and health for a longer duration of
time. Importantly, wearable devices can allow observation of
infants in their natural environment.
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While wearable devices have been applied successfully in
the case of identification of cerebral palsy (CP) [3]–[5], they
have not been validated when applied to the identification
of infants more broadly at risk of developmental delay. This
paper presents a study in which wearable sensors were used
to record leg movements over a full day from infants broadly
at risk of neuromotor developmental delay.

We analyzed how features extracted from the raw sensor
data (accelerometer and gyroscope) were useful in differen-
tiating between infants at risk of developmental delay and
infants with typical development. We further examined how
the features discriminated between poor or good development
outcomes for the at-risk category assessed at 24 months.
Finally, to evaluate the usefulness of the full-day data, the per-
formance of these features was compared to that of a smaller
subset of the data, corresponding to a period of 5 minutes.
This subset of data was chosen for its temporal correspon-
dence to typical mobility assessments done in a controlled
clinical environment.

The study design, data collection, data pre-processing, and
features used in the analysis are presented in Section II. The
statistical analysis methodology is described in Section III.
The results are presented in Section IV. We further dis-
cuss our results and related works in V. Finally, we provide
conclusions and discuss future work in Section VI.

II. DATASET
This section explains the study design, describes the dataset,
and elaborates upon the feature extraction.

A. STUDY DESIGN
In this study,∗ full-day leg movement data were collected
from a group of 12 infants with typical development (TD)
and 24 infants at risk for developmental delay (AR).†

At risk for developmental delay is defined based on
population-based criteria including pre-term birth and com-
plications at or after birth. The criteria used to define at
risk for developmental delay can be found, in full, in [8].
Infants with TD were from singleton, full-term pregnancies
with scores above the 5th percentile on Alberta Infant Motor
Scale (AIMS) [1], [9].

During the study, infants were monitored for three com-
plete days, at two-month intervals. Age at first visit was
1− 8 months for TD infants and 2− 15 months (adjusted for
prematurity) for AR infants as shown in Figure 1. The infants
were visited at their homes each morning, and wearable
sensors were placed on each of their ankles. Wearables were
attached with Velcro to a knee sock and covered by a second
sock or custom leg-warmers with a pocket to hold them in
place as shown in Figure 2. Families were encouraged to go

∗Institutional Review Board approval was obtained from Oregon Health
& Science University and the University of Southern California. A parent or
legal guardian signed an informed consent form before their child partici-
pated.

†The dataset for infants with typical development was initially collected
and introduced in [6] and [7]

FIGURE 1. Infant age at time of visit: Connected lines indicate each
infant, while squares represent each visit. TD = typical development.
ARg/ARp = at risk with good/poor outcome at 24 months.

FIGURE 2. Infant wearing sensors on the front of each ankle.

about their typical daily activities. Infants wore the sensors
until bedtime, resulting in about 8− 13 hours of data.
Most visits included a 5-minute video of the infant’s spon-

taneous movement. In this period, infants were awake, alert,
and content. Infants below the age of 7 months were recorded
while they were in a supine position. Infants aged 7 months
and older were recorded while supported in a standing posi-
tion (held at the trunk), in order to prevent them from rolling
or crawling away during the recording. These recorded videos
were later used by an expert to annotate the movements
of the infants to provide a ground truth, confirming the
accuracy of the movement detection algorithm introduced
in Subsection II-C. The data from this short period, referred
to as controlled environment data, bears similarity to the
typical clinical measurements. It should be noted that not
all infant visits included a controlled environment recording.
In total, 120 measures were included in this specific measure-
ment (60 including data from both left and right leg sensors,
with each pair collected in different visits).

In follow-up, the parent or guardian was asked if the child
had any diagnoses at 24 months of age. This information was
used to differentiate at-risk infant outcomes. A diagnosis of
developmental delay was labeled as poor (ARp), while no
diagnosis was labeled as good (ARg).

The characteristics of infants who participated in the study
are summarized in Table 1. Four infants whose families could
not be reached for follow-up were excluded, as was one who
passed away.
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TABLE 1. Baseline characteristics of samples by developmental group, (N=31, TD: Typical development, ARg/ARp: At risk of developmental delay with
good/poor outcome).

B. SENSOR DATA
We used APDM Opal wearable sensors [10] (comprised
of 3D-accelerometer, 3D-gyroscope, and 3D-magnetometer).
APDM sensors are wireless, small (48.4mm × 36.1mm ×
12 mm) and lightweight (22g) and are thus well suited for
this infant study. The acceleration range is ±6g, and mea-
surements are reported with 14-bits resolution.

Recordings were made at 20Hz. Recorded data were stored
on the internal memory of each individual sensor. The data
of both left and right sensors were actively synchronized
throughout the recording and were downloaded at the end of
each visit. The video recordings were acquired at 30 frames
per second (fps) and later synchronized with wearable data.
During each visit, infants’ anthropometric measurements
(weight, length, and head circumference) were measured,
while motor development status was quantified using the
AIMS [1].

C. PRE-PROCESSING AND FEATURE EXTRACTION
For Opal sensors it was reported [11] that pre-processing the
acceleration to remove the effect of gravity introduces further
noise. This was independently verified for the purposes of this
study. Accordingly, the raw acceleration signal was utilized.

To extract single leg movements of infants, we used an
algorithm described in [6]. The algorithmwas validated using
the video recordings of infants on the same dataset used for
this study. The algorithm distinguishes separate leg move-
ments when a leg pauses or changes direction. For each
single movement extracted, the features introduced in [7]
were computed: duration of a movement, peak acceleration
and average acceleration during amovement. In our statistical
analysis we included the mean value of the feature computed
as the mean of the daily feature average.

III. ANALYSIS
This section analyzes the correlation between left and right
leg sensor data and introduces the statistical methods utilized.

A. CORRELATION BETWEEN LEFT AND RIGHT LEGS’ DATA
Since data were collected for both legs, Pearson correlation
coefficients and their 95% confidence intervals (CI) were

TABLE 2. Degree of similarity between right and left legs.

calculated in order to assess the degree of similarity for the
salient features extracted from sensors of the left and right
legs. A high correlation for any two methods designed to
measure the same property might in itself suggest that a
widespread sample has been chosen. A high correlation does
not necessarily imply that there is good agreement between
the two methods; consequently, in addition to Pearson-
correlation analysis, Bland-Altman plots were generated to
provide a visual representation of measurement agreement or
bias between data from the two legs.

In this analysis, p-value (the significance level) implied
the probability of the hypothesis that the correlation was due
to chance. Results of this analysis are shown in Table 2.
Significant positive Pearson correlations were observed
between right and left leg data for all outcome measures (all
p < 0.001). This indicated that the results were not due to
chance. As there was no evidence of any strong bias, both
legs were considered for inclusion in the mixed model.

As an example, the scatter and Bland-Altman plots for
mean duration are shown in Figure 3.

B. STATISTICAL METHODS
Sample characteristics at baseline (the first visit of every
infant) were summarized and compared by developmental
group. Continuous variables were expressed as median and
interquartile range (IQR) and were analyzed by a Wilcoxon
rank-sum test. Categorical variables were expressed as pro-
portions and were analyzed by Fisher’s exact test. Based
on the results of section III-A, the data from both the left
and right legs of the infants were used in the mixed model
analysis.

Linear mixed effects models were used to assess the effects
of developmental group on right and left leg movement
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FIGURE 3. Top: scatter plot of the mean movement duration of the left
and right legs for the full day. Bottom: Bland-Altman plot. The diagrams
illustrate how the measurements of the left and right leg sensor data
were highly correlated. As there was no evidence of strong bias, both legs
were included in the mixed model analysis.

duration, peak acceleration, and mean acceleration. Devel-
opmental group and age were included as fixed effects. Due
to the variability of infant ages on-study, and the irregularity
in the time interludes between visit waves for each infant,
corrected age (defined as post-term age in days, to account
for premature birth) was used as the time metric and modeled
as a continuous random effect by right or left leg nestedwithin
infant. Significant effects were assessed using Tukey post-hoc
comparisons.

Although several forms of covariance structure were
tested, the variance components (VC) covariance structure
was chosen due to the limited number of parameters avail-
able in our small sample. Since the rate of change of the
outcome measurements across age can be expected to vary
between infants in different developmental groups, a group×
corrected age interaction was tested and included in the final
model only if the term was significant at p− value < 0.10.

A p − value < 0.10 was considered significant for
the present analysis given our limited sample size. All sta-
tistical analyses were performed using SAS version 9.4,
(SAS Institute, Inc., Cary, NC).

C. CONTROLLED ENVIRONMENT DATA VS. FULL-DAY DATA
The full-day data were obtained in an uncontrolled setting
containing unknown factors. Data might contain activity
generated by outside sources, such as a parent picking up
the infant. Moreover, the mood of the infant can be vari-
ant over the period of a full day. Thus, a second analysis
employed controlled environment data capture for a period of
5 minutes; movement capture in the controlled environment
was constrained to activity exclusive to the child when he or
she was alert and content. Yet, determining whether group
differences could be inferred from noisy, full-day data was
a principal goal of this study, as this kind of data capture
represents typical activity and is environmentally valid. This
investigation did not aim to identify or distinguish among
the possible sources of noise in the full-day data. The same
analysis procedures were done for the controlled environment
data, as they were for Section III-B.

IV. RESULTS
A total of 31 infants, across an average of three visits,
contributed 182 measures of right and left leg sensor data.
Infants in different developmental groups were comparable
across all baseline characteristics except developmental stage
(p = 0.04; Table 1). Developmental groups did not differ by
median age or corrected age, even after the at-risk group
was split into good and poor developmental outcome groups.
To confirm, the association between developmental stage and
corrected age was tested by a Wilcoxon rank sum test and
found to be significant (p = 0.004).
For the mixed-effects models, a significant group effect

was observed for all three outcomes (duration p = 0.008,
peak acceleration p = 0.03, mean acceleration p = 0.04;
Table 3), indicating that the mean duration, peak accelera-
tion, and mean acceleration of right and left leg movements
all varied by group (TD, ARp, ARg). Typically develop-
ing infants’ mean duration of right and left leg movements
[LS-mean (SE): 5.59(0.05)] were significantly higher than
both ARp [LS-mean (SE): 5.22(0.06)] and ARg [LS-mean
(SE): 5.27(0.06)] infants at p < 0.10. Although the mean
duration did not vary with age, the effect of age on duration
varied by developmental group (interaction p = 0.005).
ARp infants’ rate of duration change increased by 0.03(0.01)
units per month of infant age, while TD infants increased
by only 0.01(0.02) units and ARg infants decreased by
0.05(0.02) units. Because there were no significant group
differences in the mean rate of peak and mean acceleration
progression, the interaction terms were dropped from the
relevant models to avoid over-parameterizing. Themean peak
acceleration of right and left leg movements was significantly
lower inARp infants compared to TD infants [LS-means (SE):
12.78(0.20) and 13.50(0.17) for ARp and TD infants, respec-
tively]. For mean acceleration, significant differences were
observed between ARp infants [LS-mean (SE): 10.39(0.06)]
and both TD andARg infants [LS-mean (SE): 10.56(0.05) and
10.58(0.06), respectively].
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TABLE 3. Mean duration, peak acceleration, and mean acceleration by developmental group (N = 31, TD: Typical development, ARg/ARp: At risk of
developmental delay with good/poor outcome).

TABLE 4. Mean duration, peak acceleration, and mean acceleration by developmental group under controlled conditions (N = 31, TD: Typical
development, ARg/ARp: At risk of developmental delay with good/poor outcome).

The use of corrected ages in our models accounted for
variability in infant ages between developmental group and
across different visit waves. Since our age adjustments
incorporated both a statistically and biologically significant
association between age and developmental stage, observed
differences in developmental stage at baseline were not
considered to be of concern.

An additional analysis was performed on the data obtained
from the 5-minute controlled condition. Mixed models were
run as described in the methods section. A total of 26 infants
contributing 120 measures of right and left leg sensor data
were included in this analysis. A significant group effect was
observed for peak acceleration (p = 0.04), but not for dura-
tion or mean acceleration as shown in Table 4. The mean peak
acceleration of right and left leg movements was significantly
lower in ARp [LS-mean (SE): 13.33(0.30)] and TD infants
[LS-mean (SE): 13.61(0.36)] compared to ARg [LS-mean
(SE): 14.77(0.35)] infants at p < 0.10. Although there were
no differences by group, the effect of age by group varied
for mean acceleration; the average rate of mean acceleration
of right and left leg movements was lower in ARp infants
[LS-means (SE): 0.01(0.03) units per month] compared to
TD [LS-means (SE): 0.11(0.04) units per month] and ARg
infants [LS-means (SE): 0.10(0.03) units per month]. Due
to the small sample size, results should be interpreted with
caution.

V. DISCUSSION
Wearables and nearables are a class of devices that have been
used primarily for activity tracking and fitness monitoring.
Fueled by recent advances in electronics miniaturization and
soaring affordability, the newfound ubiquity of such devices
coincides with enhancements in sensor capacity, and accu-
racy as well. A new arena arises, both for consumers in terms
of visualizing their everyday behavior, and for researchers,
who gain access to anonymous, environmentally valid motion
data from millions of users. Numerous scholars have used
these devices to advance their research interests.

Ravi et al. [12] used data retrieved from accelerometers to
recognize eight motion activities (standing, walking, running,
climbing up stairs, climbing down stairs, sit-ups, vacuuming
and brushing teeth). Brezmes et al. [13] used accelerometer
data from a mobile phone to recognize activities such as
walking, climbing up and down, sitting up and down, and
falling. Case et al. [14] compared the accuracy of direct obser-
vation of step counts to that of smartphone applications and
wearable devices. In [15] accelerometer data were used for
de-ambulatory activity recognition using machine learning
approaches. Bianchi in [16] surveyed recent developments
in consumer and clinical devices for sleep, and these sen-
sors have generated a wave of interest from clinicians for
application in a wide range of diseases, such as Parkinson’s
disease [17], epilepsy [17], stroke [17], sleep disorders [16],
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and cardiac disorders [18], [19]. In these studies, wearable
data were shown to be useful, even if noisy and contain-
ing inaccuracies, e.g., fitness bands generate relatively clean
but potentially inaccurate activity data (step counts, activity
level, calories burned) and noisy but accurate raw sensor data
(accelerometer, gyroscope). Most wearable applications rely
on processed activity data, yet for some applications such
as infant mobility monitoring, adult activity models are not
appropriate and features extracted from the raw sensor signals
must be used.

Characteristics of spontaneous movements in infants at
risk for CP have been studied and described in detail [20].
This assessment methodology relies on visual observation
by expert clinicians. However, there is an emerging field of
research using alternate methods such asmotion capture cam-
eras and wearable devices to automate this process and objec-
tivelymeasure infantmovement [21].Meinecke et al. [3] used
a motion capture system to record infants at high risk for CP
and with TD for 15 minutes. From the recorded movement
data they extracted 53 features, previously introduced by [20],
that allowed them to differentiate between groups. In [22] the
movements of ten pre-term infants in a Neonatal Intensive
Care Unit were recorded for one hour using both accelerome-
ters and video equipment. A physical therapist annotated the
pre-defined abnormal movements by reviewing the videos.
Using accelerometer data for the detection of these abnormal
movements of interest showed promising results. To address
the limitations of motion capture systems, Heinze et al. [4]
used four accelerometers on hands and feet to develop a high
accuracy model for early prediction of CP.

Hadders-Algra [23] illustrated that variation of movement
behavior is the key factor for identifying children with, or
at risk of, a developmental motor disorder. Their study also
proposes that capturing this variation is more likely in longer
periods of data capture.

In order to quantify infant movement behavior across a
full day, Smith et al. [6] developed an algorithm to identify
single leg movements in infants. They defined the start and
end of each movement using acceleration and angular veloc-
ity thresholds. A new movement was identified each time
the infant’s leg paused or changed direction. They validated
their algorithm using video recordings of infants’ sponta-
neous movements and reported a sensitivity of 92%. Next,
Trujillo-Priego et al. [7] analyzed the kinematic charac-
teristics of each identified movement. They calculated the
duration of each movement, and also calculated the average
and peak magnitude of the total acceleration during a given
movement.

It has recently been proposed [24], [25] that to further
advance the field of infant mobility assessment, new tech-
nologies must sample development for a minimum of 24 hour
periods, so that the effects of circadian rhythms, behavioral
context, environmental stimuli, mood and motivation, etc.,
may be taken into account. This study starts to do so, using
full-day wearable recordings of infant leg movements. Par-
ticipants were infants with TD and AR, and infants AR were

retrospectively classified based on 24-month neuromotor out-
comes. Pre-defined features were extracted from full-day
accelerometer data and indicated that acceleration features
differentiated between at-risk infants with poor developmen-
tal outcomes, at-risk infants with good developmental out-
comes, and infants with typical development. Short period,
controlled environment data sets collected over 5 minutes did
not provide as much differentiation. Our results support the
use of full-day wearable sensor data for early identification
of developmental delay in infants.

VI. CONCLUSION AND FUTURE WORK
This study is unique and important as it analyzed full-day
accelerometer data for infants, showing that simple features
measured earlier in infancy can differentiate between infants
at-risk of developmental delay who demonstrate poor or good
outcomes at 24months, and infants with typical development.
Furthermore, our findings support the usefulness of wearable
sensor data collected over long periods in an uncontrolled
environment.

The limited number of samples in our dataset, as well as the
broad ranges in age and developmental stage serve as some
critical shortcomingswithin this investigation, thus the results
should be used with caution. Further work is needed to vali-
date our results on a larger dataset and to investigate features
that can better model the characteristics of infant movement
(we only analyzed features that mapped full-day data into
single scalars). Ultimately, these features can be used to build
diagnostic tools for the early identification of developmental
delay in infants and for objectivemeasurement of intervention
outcomes.
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