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Neurology-related protein biomarkers are
associated with cognitive ability and brain
volume in older age
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Identifying biological correlates of late life cognitive function is important if we are to
ascertain biomarkers for, and develop treatments to help reduce, age-related cognitive
decline. Here, we investigated the associations between plasma levels of 90 neurology-
related proteins (Olink® Proteomics) and general fluid cognitive ability in the Lothian Birth
Cohort 1936 (LBC1936, N=798), Lothian Birth Cohort 1921 (LBC1921, N =165), and the
INTERVAL BioResource (N =4451). In the LBC1936, 22 of the proteins were significantly
associated with general fluid cognitive ability (p between —0.11 and —0.17). MRI-assessed
total brain volume partially mediated the association between 10 of these proteins and
general fluid cognitive ability. In an age-matched subsample of INTERVAL, effect sizes for the
22 proteins, although smaller, were all in the same direction as in LBC1936. Plasma levels of a
number of neurology-related proteins are associated with general fluid cognitive ability in
later life, mediated by brain volume in some cases.
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s populations in developed countries continue to age,

there is a growing need to understand the biological

correlates of individual differences in cognitive ability in
later life. Ageing-related cognitive changes are thought to be
driven—at least in part—by structural changes in the brain!. For
example, global atrophy, grey matter and white matter volumes,
white matter microstructure and measures such as white matter
hyperintensities (WMH) and perivascular spaces (PVS)—which
are markers of cerebral small-vessel disease (SVD)—have been
associated with reduced cognitive ability and risk of dementia in
both cross-sectional and longitudinal studies?~”.

Large-scale genome-wide association studies have shown that
cognitive ability in later life is highly heritable and polygenic8-12.
Due to the highly polygenic nature of this trait, it is challenging to
identify relevant biological pathways from the genetic variants
associated with it. However, gene expression is itself determined
by a combination of genetic, ontogenetic and environmental
factors. Because proteins are the proximal products of transcribed
and expressed genetic code, directly measuring protein levels can
increase power to identify biological pathways in later-life cog-
nitive function. Protein levels are more directly linked than
genetic variants to individual variation in cognitive function and
structural brain phenotypes, with post-translational buffering as a
potential mechanism for mitigating many environmental fac-
tors!3. Peripheral blood proteins, including inflammatory mar-
kers!415 and S100B!°, have previously been associated with
cognitive ability and/or MRI brain measures, but until recently, it
has been relatively difficult and cost-prohibitive to measure
multiple proteins in large numbers of plasma samples!”, which is
what is required if we are to develop biomarkers of cognitive
function in later life in an easily accessible biological sample.
Technological advances have enabled high-throughput and cost-
effective measurement of plasma proteins, enabling us to link
plasma proteomics to cognitive function and brain structure in
three large population samples for the first time.

In this study we measured 90 neurology-related protein bio-
markers using the Proseek Multiplex Neurology I 96 x 96
reagents kit produced by Olink” Proteomics (Uppsala, Sweden)
18,19 These proteins have been implicated in neurological pro-
cesses and/or diseases, cellular regulation, immunology, devel-
opment or metabolism?’. The proteins were selected based on
literature text mining and assay performance. The participants
were ~800 members of the Lothian Birth Cohort 1936
(LBC1936)21, ~170 members of the older Lothian Birth Cohort
1921 (LBC1921)?! and ~4500 members of INTERVAL, split into

a LBC1936 age-matched subsample and a younger subsample to
investigate if associations were consistent across different age
groups?2. In cross-sectional analyses we investigated the asso-
ciation of 90 plasma proteins with general fluid cognitive ability
in 5414 samples. In the LBC1936 cohort we tested for association
with brain volumes (total brain, grey matter and normal-
appearing white matter, WMH), PVS and white matter tract
measures derived from quantitative tractography (fractional
anisotropy [FA], mean diffusivity [MD]). We investigated whe-
ther any associations between the neurology-related plasma
protein levels and general fluid cognitive ability were mediated
by structural brain variables. We hypothesised that some of the
neurology-related proteins would be associated with general fluid
cognitive ability in older individuals, and that some of these
associations would be mediated by structural brain variables.

We identify 22 neurology-related proteins that are associated
with general fluid cognitive ability in later life in the LBC1936, ten
of which are mediated by total brain volume. Effect sizes for the
22 proteins, although smaller, are all in the same direction as in
LBC1936 in an age-matched subsample of INTERVAL. Similar
effect sizes are found for the majority of these 22 proteins in the
older LBC1921. The associations are not replicated in a younger
subset of INTERVAL. In conclusion, we identify plasma levels of
a number of neurology-related proteins that are associated with
general fluid cognitive ability in later life, some of which are
mediated by brain volume.

Results

Descriptive statistics. Descriptive statistics for general fluid
cognitive ability in the LBC1936, LBC1921, INTERVAL-Old and
INTERVAL-Young samples and for the brain magnetic reso-
nance imaging (MRI) variables (LBC1936 only) are shown in
Tables 1 and 2.

PCA of the 90 neurology-related protein biomarkers. Principal
component analysis (PCA) indicated that, for all four cohorts,
the majority of the variance in the protein data was explained
by the first 17 components (63%-74%), with greater than 30%
explained by principal component (PC) 1 (Supplementary
Data 1, Fig. 1). The component loadings for PC1-PC5 are
shown in Supplementary Tables 1-4. The coefficient of factor
congruence between the four cohorts ranged between [0.85 and
1.00| for the first three principal components (Supplementary
Data 1, Fig. 2). Therefore, protein-PC1-PC3 were selected for

Table 1 Summary descriptive data for LBC1936.

Variable

Mean (SD, range) N (with OLINK data)

Age at cognitive testing and plasma collection (years)
General fluid cognitive ability

Age at brain scan (years)

Total brain volume (cm3)

Grey matter volume (cm3)

Normal-appearing white matter volume (cm?3)
White matter hyperintensity volume (cm3)
Intracranial volume (cm3)

General fractional anisotropy

General mean diffusivity

Sex

Smoking status

Antihypertensive medication

72.5 (0.7, 70.9-74.2) 805

—0.0 (1.0, —=3.5-3.2) 798

72.7 (0.7, 71.0-74.2) 684

989.1 (90.4, 730.8-1247.0) 600

471.7 (45.1, 366.4-616.2) 600

474.6 (51.0, 301.7-636.0) 600

12.1 (13.0, 0.0-98.4) 617

1438.7 (135.3, 1059.3-1857.9) 618

0.0 (0.02, —0.07-0.05) 621

—0.0 (29.2, —76.6-92.7) 621

Male 423 (52.5%)
Female 382 (47.5%)
Smoker 68 (8.5%)
Ex-smoker 353 (43.9%)
Never smoker 384 (47.7%)
Yes 373 (46.3%)
No 432 (53.7%)
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INTERVAL-OId

Table 2 Summary descriptive data for INTERVAL-Old, INTERVAL-Young and LBC1921.

INTERVAL-Young

LBC1921

Variable Mean (SD, range) N (with OLINK data) Mean (SD, range) N (with OLINK data) Mean (SD, range) N (with OLINK data)
Age (years) 703 (2.4, 67.0-77.8) 975 58.4 (5.0, 48.9-66.9) 3476 86.6 (0.4, 85.7-87.4) 175
General fluid cognitive ability -12 (1.4, —8.9-3.2) 975 —0.5 (13, —6.6-3.4) 3476 0.0 (1.0, —2.6-3.4) 165
Sex Male 646 (66.3%) Male 1975 (56.8) Male 83 (47.4%)

Female 329 (33.7%) Female 1501 (43.2%) Female 92 (52.6%)
Smoking status Smoker 28 (2.9%) Smoker 162 (4.7%) NA NA

Ex-smoker 493 (51.1%) Ex-smoker 1284 (37.4%) NA NA

Never smoker 444 (46.0%) Never smoker 1986 (57.9%) NA NA
Antihypertensive medication use  Yes 166 (17.2%) Yes 378 (11.0%) NA NA

No 799 (82.80) No 3054 (89.0%) NA NA
Trial arm F12 107 (11.1%) F12 480 (14.0%) NA NA

F14 98 (10.2%) F14 500 (14.6%) NA NA

F16 19 (12.3%) F16 507 (14.8%) NA NA

M08 210 (21.8%) MO8 639 (18.6%) NA NA

M10 230 (23.8%) M10 677 (19.7%) NA NA

M12 201 (20.8%) M12 629 (18.3%) NA NA

F## and M## = female—inter-donation interval in weeks; male—inter-donation interval in weeks.
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Fig. 1 Principal component analysis on the 90 neurology-related proteins in INTERVAL-Young, INTERVAL-OId, LBC1936 and LBC1921. a Heatmaps and

b screenplots. Source data are provided as a Source Data file.

further analyses. INTERVAL-Old protein-PC3 components
were multiplied by —1 so that the components were scaled in
the same direction in all cohorts.

Association of 90 protein biomarkers with cognitive ability.
Twenty-two proteins and protein-PC1 were associated with general
fluid cognitive ability in the LBC1936 (N = 798, age ~73 years) (8
between —0.11 and —0.17, p < 0.0029) (Supplementary Data 2 and
Table 3). In all instances lower protein levels were associated with
higher cognitive ability. Of these 23 associations, two [carbox-
ypeptidase M (CPM) and sialic acid binding Ig like lectin 1
(SIGLEC1)] were nominally associated with general fluid cognitive
ability in the age-matched INTERVAL-OId cohort (N =975, age >
67 years) (= —0.07 and —0.08 respectively, p <0.05). Sixteen
associations were significant in a meta-analysis of the LBC1936 and
INTERVAL-OId groups (8 between —0.07 and —0.10, p < 0.0029)
(Supplementary Data 2). The remaining seven associations were
nominally significant in the meta-analysis (8 between —0.05 and
—0.07, p < 0.05) (Supplementary Data 2). Direction of the effect was

consistent in both cohorts, but effect sizes were smaller in
INTERVAL-OId, for all 22 proteins and for protein-PCl1. Fourteen
of the 23 associations showed evidence of heterogeneity in the
meta-analysis (ChiSq between 4.1 and 8.9, p < 0.05), indicating that
the effect sizes were significantly different between the two cohorts.
The protein with the strongest association, in both the LBC1936
and the meta-analysis, was ectodysplasin A2 receptor (EDA2R).
When we additionally corrected cognitive ability and proteins for
smoking status and antihypertensive medication use, the majority
of associations were slightly attenuated, but remained significant
(Supplementary Data 3). Poliovirus receptor (PVR) became the
protein with the strongest association in LBC1936, and discoidin
domain receptor family, member 1 (DDRI) was most strongly
associated in the meta-analysis.

In the older and smaller LBC1921 (N =165, age ~87 years),
eight of the 23 proteins/protein-PC1 (including EDA2R) were
nominally significantly associated with general fluid cognitive
ability (B between —0.16 and —0.20, p < 0.05), and the direction
of the effect was the same for all 23. The effect sizes were similar
to the LBC1936 results for most of them (Supplementary Data 2).
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Fig. 2 Heatmaps illustrating the loadings for individual proteins for the first three protein principal components for each cohort. Heatmap illustrating
the loadings for individual proteins for protein-PC1, PC2 and PC3 for INTERVAL-Young, INTERVAL-OId, LBC1936 and LBC1921.
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Table 3 Proteins and principal components (PCs) associated
with general fluid cognitive ability in LBC1936 at p < 0.0029.
Protein Beta SE P value
EDA2R -0.17 0.035 7.32x10~7
PVR -0.17 0.035 1.44x10-6
EFNA4 -0.16 0.035 1.03x10~°
DDR1 -0.15 0.035 3.43x10°5
RSPO1 -0.14 0.035 570%x10°
SKR3 -0.14 0.035 6.49 %1075
TNFRSF12A -0.14 0.035 8.77 x10~>
VWC2 -0.14 0.035 1.02x10-4
Siglec-9 —0.14 0.035 110 %104
SCARB2 —-0.13 0.035 1.86x10~4
LAYN —0.13 0.035 2.03x104
UNC5C —-0.13 0.035 2.77 x10~4
CLM-6 —-0.13 0.035 2.82x10~4
CPM —-0.13 0.035 2.90x10—4
MSR1 -0.13 0.035 3.08x10~4
Protein-PC1 —-0.12 0.035 4.46x10~4
N2DL-2 -0.12 0.035 5.90 %104
GFR-alpha-1 —-0.12 0.035 6.49 x10—4
SIGLEC1 —-0.12 0.035 9.52x10~4
CDH6 -0.12 0.035 9.80 x10~4
THY1 —-0n 0.035 0.0012
SCARAS -01 0.035 0.0024
PLXNB1 —-0n 0.035 0.0029
Corrected for age and sex.

In the larger INTERVAL-Young (N = 3476, age < 66 years), there
was no replication (p>0.05) of the LBC1936 associations and
direction of effect was consistent for half (12/23) of LBC1936
associations (Supplementary Data 2). Similar results were found
when additionally correcting for smoking status and antihyper-
tensive drug use (Supplementary Data 3). Supplementary Fig. 1
shows scattergraphs indicating effect sizes for 90 proteins and
protein-PC1-PC3 for all four cohorts. The LBC1936 is positively
correlated with INTERVAL-Old, LBC1921 and INTERVAL-
Young (Pearson correlation coefficients =0.21, 0.38 and 0.41
respectively, p <0.05), indicating that, in general, associations
with general cognitive function across all 90 proteins were similar
in effect between the LBC1936 and the other three cohorts. A
negative correlation was identified between the LBC1921 and
INTERVAL-Young cohorts (Pearson correlation coefficient =
—0.21, p < 0.05).

Association of 90 protein biomarkers with brain variables. Ten,
seven and six proteins plus protein-PC3 were associated with
total brain, grey matter and normal-appearing white matter
volumes, respectively, after Bonferroni correction (p <0.0029) in
the LBC1936. Protein-PC3, neurocan (NCAN) and contactin 5
(CNTNS5) were associated with gFA (3 between 0.14 and 0.18, p <
0.0029). Secreted frizzled-related protein 3 (SFRP-3), CNTN5 and
cadherin 6 (CDH6) were associated with gMD (f3 between —0.12
and —0.13, p <0.0029) (Supplementary Data 4). No proteins or
protein-PCs were associated with WMH or PVS score (all p >
0.0029). Twenty-two proteins and protein-PC1 were associated
with general cognitive function in LBC1936; some of these were
also associated with brain volume (total brain [5], grey matter [4]
and normal-appearing white matter [2]), and gMD [1] (p<
0.0029). Similar results were found when additionally correcting
for smoking status and antihypertensive drug use (Supplementary
Data 5).

Higher levels of EDA2R were associated with smaller total
brain volume (8= —0.21, p=3.9x1077), smaller grey matter
volume (= —0.16, p="7.4x107>) and less normal-appearing

white matter volume (8= —0.2, p= 1.8 x 10%). The strongest
associations with total brain, grey matter and normal-appearing
white matter volumes were with NCAN and brevican (BCAN).
Higher levels of NCAN and BCAN were associated with larger
brain volumes (f3 between 0.16 and 0.28); higher levels were also
associated with higher fluid cognitive ability in INTERVAL-
Young (8=0.07, p=2.0x10"% B=0.06, p=4.0x10"%).
Protein-PC3 was the only principal component associated with
brain volumes (8 between 0.15 and 0.23); it was also associated
with fluid cognitive ability in INTERVAL-Young (8 =0.07,
p=68x1072).

Mediation analysis in LBC1936. Mediation analyses were per-
formed in the LBC1936 to investigate if brain MRI phenotypes
mediated the association between the 23 proteins/protein-PCl
and general fluid cognitive ability. Total brain volume corrected
for intracranial volume significantly and partially mediated the
association between ten of these proteins and general fluid cog-
nitive ability (FDR-corrected, percentage attenuation between
16.2% and 35.9%) (Table 4). The most significant mediation was
identified for EDA2R, where the association between higher
EDA2R and poorer cognitive ability was partially (30.6%;
B reduced from —0.157 to —0.109) mediated via total brain
volume (Fig. 3a). Multiple brain MRI measures mediated the
association between half (5/10) of the proteins and general fluid
cognitive ability (FDR-corrected, percentage attenuation between
22.0% and 36.4%) (Table 5). The most significant mediation was
identified for EDA2R, where the association between higher
EDA2R and poorer cognitive ability was partially (36.42%;
B reduced from —0.162 to —0.103) mediated via brain variables
(Fig. 3b). Similar results were found when additionally correcting
for smoking status and antihypertensive drug use (Supplementary
Data 7 and 8). Figure 4 and Supplementary Data 6 show that the
greatest unique contributions to this mediation effect were con-
sistently from normal-appearing white matter and grey matter
volumes.

For those proteins for which grey matter volume was a
significant mediator of protein-cognitive associations (EDA2R,
PVR, SKR3, MSR1 and GFR-alpha-1), we conducted a post hoc
analysis of the regional distribution of protein-cortical associa-
tions. The results of the magnitude, distribution and FDR-
corrected significance of these associations are shown in Fig. 5.
Except for GFR-alpha-1, for which no significant associations were
found, higher levels of all proteins were associated with lower
cortical volumes in parts of the cingulate, lateral frontal and both
anterior and medial temporal cortices. By contrast, parietal and
occipital areas were markedly spared. When we additionally
corrected the cortical volumes and proteins for smoking status and
antihypertensive medication use, all associations were attenuated
to non-significance for SKR3 (mean attenuation = 16.17%,
SD =7.63 and max = 41.73%). The attenuation found for both
EDA2R (M = 10.40%, SD = 5.20 and max = 28.79%) and MSR1
(M =10%, SD=5.16 and max = 32.33%) was comparable, and
the least attenuation was seen for associations between cortical
volume and PVR (M =3.96%, SD =2.18 and max = 10.33%).
Whereas the FDR-corrected extent of the associations was reduced
in all cases, some fronto-temporal associations were still evident
for EDA2R, SKR3 and PVR. Pearson correlations between
normalised protein expression levels for these five proteins are
shown in Supplementary Table 5. All the protein levels were
moderately correlated (Pearson correlations 0.4-0.8).

Discussion
This study investigated associations between 90 neurology-related
proteins and general fluid cognitive ability in the LBC1936,
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Table 4 Mediation of association between protein-PC1 and proteins and general fluid cognitive ability by total brain volume in
LBC1936.
Protein Total beta Total SE Total P Total brain vol Total brain vol IDE SE  Total brain % attn c

IDE beta vol IDE P
EDA2R —0.157 0.04 <0.001 —0.048 0.012 <0.001 30.57 —0.109
PVR —-0.173 0.04 <0.001 —-0.028 0.0m 0.009 16.18 —0.145
EFNA4 —0.135 0.041 0.001 —0.027 0.0m 0.015 20.00 —0.108
DDR1 —0.138 0.04 0.001 —0.01 0.01 0.35 7.25 —-0.128
RSPO1 —0.141 0.041 0.001 —0.02 0.0m 0.057 1418 —0.121
SKR3 —-0.126 0.041 0.002 —0.036 0.012 0.002 28.57 —0.090
TNFRSF12A -0.14 0.04 0.005 —0.027 0.0m 0.014 23.68 —0.087
VWC2 -0.124 0.04 0.002 —0.01 0.01 0.354 8.06 —-0.114
Siglec-9 —0.143 0.04 <0.001 -0.014 0.01 0.184 9.79 —0.129
SCARB2 —0.131 0.041 0.002 —0.033 0.01M 0.004 25.19 —0.098
LAYN —-0.121 0.041 0.003 —0.026 0.01 0.019 21.49 —0.095
UNC5C —0.101 0.04 0.012 —0.015 0.0m 0.147 14.85 —0.086
CLM-6 -0.12 0.04 0.003 —0.026 0.0m 0.055 21.67 —0.094
CPM —-0.116 0.04 0.004 —0.006 0.01 0.56 517 —0.110
MSR1 —0.106 0.039 0.007 —0.038 0.01 0.001 35.85 —0.068
Protein-PC1 -0m3 0.04 0.005 —0.01 0.01 0.334 8.85 —0.103
N2DL-2 -0n 0.04 0.006 —0.019 0.0m 0.079 17.27 —0.091
GFR-alpha-1 —0.106 0.041 0.009 —0.031 0.0m 0.006 29.25 —0.075
SIGLECT —-0.12 0.04 0.003 —0.028 0.01 0.011 2333 —0.092
CDH6 —0.091 0.04 0.023 —0.006 0.01 0.572 6.59 —0.085
THY1 —0.105 0.041 0.01 —-0.017 0.0m 0.118 16.19 —0.088
SCARAS5 —0.096 0.041 0.018 —0.004 0.0m 0.722 417 —0.092
PLXNB1 -0.079 0.041 0.052 —0.012 0.0m 0.277 15.19 —0.067
Corrected for age and sex. Total effect sizes (total betas) differ from those in Table 3 as the mediation analysis included fewer individuals. Significant mediations (FDR corrected) are indicated in bold.
IDE indirect effect, % attn percentage attenuated.
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Fig. 3 Mediation analysis. The association between EDA2R and gf was

a significantly partially mediated (31%) by total brain volume in LBC1936.
Indirect effect (a x b) = —0.048, p<0.001. b Significantly partially
mediated (36%) by brain MRI variables in LBC1936. Indirect effect
(axb)=-0.059, p<0.001.

LBC1921 and INTERVAL. Twenty-two proteins were associated
with general fluid cognitive ability in the LBC1936 and in a meta-
analysis of LBC1936 and an age-matched INTERVAL sample.
Effect sizes, although smaller in INTERVAL-OId, were all in the
same direction as in the LBC1936. Another study that measured
proteins in two different populations, by using an Olink panel,
showed similar differences in the effect sizes of associations with

insulin resistance?3. Differences in effect sizes may be due to
blood from the two cohorts being collected in different tube types
(citrate for LBC1936, EDTA for INTERVAL-OId) or differences
in the selection bias between the two cohorts. Similar effect sizes
to LBC1936 were found for the majority of these 22 proteins in
the older LBC1921, indicating that associations do not change
between the ages of 73 and 87 years. No replication was identified
in INTERVAL-Young, suggesting that age-related changes in
protein associations with general cognitive ability may occur.
Mediation analysis showed that brain volume mediated the
association between ten of the proteins and general fluid cognitive
ability. The two proteins that showed the strongest association
with total brain, grey matter and normal-appearing white matter
volumes (NCAN, BCAN) were not significantly associated with
general fluid cognitive ability in the LBC1936, LBC1921 or
INTERVAL-OId groups, but were associated in the INTERVAL-
Young sample. Similar effect sizes for the associations with cog-
nitive ability were found in LBC1936 and INTERVAL-Young, but
these associations were not significant in the smaller LBC1936.
The EDA2R protein showed the strongest association with gen-
eral fluid cognitive ability in the meta-analysis of the LBC1936
and age-matched INTERVAL-OIld samples. EDA2R (Ectodys-
plasin A2 Receptor) is a member of the type III transmembrane
protein of the TNFR (tumor necrosis factor receptor) superfamily
encoded by EDA2R on chromosome X. This protein is important
in hair and tooth development?4, and levels of EDA2R have been
shown to increase with age in blood?> and lung tissue2®. It was
also associated with reactive astrogliosis in mice?” and enriched in
mouse astrocytes?S, indicating that higher levels of this protein
may reduce cognitive ability by reducing the number of healthy
neurons. Other proteins that were relatively strongly associated
with general fluid cognitive ability in the LBC1936 and the meta-
analysis of the LBC1936 and INTERVAL-OId sample included
sialoadhesin encoded by the SIGLECI gene on chromosome 20, a
member of the immunoglobulin family2, which may influence
cognitive ability through its roles in demyelination and neu-
roinflammation3%; poliovirus receptor encoded by the PVR gene
on chromosome 19—viral infections have been previously linked
to neurodegeneration3!; R-spondin-1 encoded by the RSPOI gene
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Table 5 Mediation of association between protein-PC1 and proteins and general cognitive fluid ability by MRI brain variables in
LBC1936: grey matter volume, normal-appearing white matter volume, white matter hyperintensity volume, perivascular spaces,
general fractional anisotropy and general mean diffusivity.

Protein Total beta Total SE Total P Sum IDE beta  Sum IDE SE Sum IDE P % attn c

EDA2R —-0.162 0.041 <0.001 —0.059 0.015 <0.001 36.42 —0.103
PVR —-0.173 0.041 <0.001 —0.038 0.014 0.006 21.97 —0.135
EFNA4 —-0.136 0.042 0.001 —0.028 0.014 0.049 20.59 —0.108
DDR1 —0.136 0.041 0.001 —-0.014 0.014 0.308 10.29 —-0.122
RSPO1 —-0.136 0.041 0.001 —0.027 0.014 0.055 19.85 —0.109
SKR3 —0.125 0.042 0.003 —0.038 0.015 0.01 30.40 —0.087
TNFRSF12A -0.117 0.041 0.005 —0.032 0.015 0.027 27.35 —0.085
VWC2 —-0.129 0.041 0.001 —0.012 0.013 0.342 9.30 -0117
Siglec-9 —-0.141 0.041 0.001 —0.018 0.014 0.187 12.77 —0.123
SCARB2 —0.136 0.042 0.001 —-0.024 0.015 0.104 17.65 —-0.112
LAYN —-0.126 0.042 0.003 —0.025 0.014 0.074 19.84 —0.101
UNC5C —-0.101 0.041 0.014 —0.01 0.014 0.438 9.90 —0.091
CLM-6 —-0.118 0.041 0.004 —0.031 0.015 0.033 26.27 —0.087
CPM —0.109 0.041 0.008 —-0.014 0.013 0.299 12.84 —0.095
MSR1 —0.109 0.04 0.006 —0.03%9 0.015 0.007 35.78 —0.070
Protein-PC1 -0m 0.041 0.007 —0.006 0.013 0.646 541 —0.105
N2DL-2 —0.109 0.041 0.008 —0.018 0.014 0.218 16.51 —0.091
GFR-alpha-1 —-0.107 0.042 0.01 —0.036 0.014 0.01 33.64 —-0.07
SIGLEC1 —-0m2 0.041 0.007 —0.021 0.014 0.12 18.75 —0.091
CDH6 —0.088 0.041 0.032 0.002 0.014 0.862 —2.27 —0.090
THY1 —-0.104 0.041 0.012 —0.021 0.014 0.121 20.19 —0.083
SCARAS5 —0.098 0.041 0.018 —0.005 0.014 0.718 5.10 —0.093
PLXNB1 —0.081 0.041 0.050 —0.006 0.014 0.636 7.41 —0.075
Corrected for age and sex. Total effect sizes (total betas) differ from those in Table 3 as the mediation analysis included fewer individuals. Significant mediations (FDR corrected) are indicated in bold.
IDE indirect effect, % attn percentage attenuated.

on chromosome 1 and expressed in the central nervous system
during development??; discoidin domain receptor family, mem-
ber 1 encoded by the DDRI gene on chromosome 6, which is
important in myelination33. The addition of smoking status and
antihypertensive drug use as covariates slightly attenuated many
of the results.

Interestingly, two chondroitin sulfate proteoglycans (CSPGs)
that are common constituents of the extracellular matrix (ECM)
and specific to the CNS were strongly associated with brain
volume in LBC1936. CSPGs are key members of perineuronal
nets (PNNs), which are ECM structures surrounding neurons,
important in storage and maintenance of long-term
memories34-3°. Neurocan and brevican are encoded by NCAN
(chromosome 19) and BCAN (chromosome 1), respectively, and
are expressed in astrocytes and neurons. BCAN is also expressed
in oligodendrocytes. These were the only CSPGs on the Olink
assay. Neurocan inhibits neuronal adhesion and neurite out-
growth in vitro*0. Common genetic variation in NCAN is asso-
ciated with bipolar disorder*!. NCAN is the closest relative of
BCAN, and animal knockouts of BCAN and NCAN have a
similar phenotype (normal development and memory with defi-
cient hippocampal long-term potentiation)4243, NCAN peaks in
development and declines in the adult brain. In contrast, BCAN is
one of the most common CSPGs in the adult brain. It is not yet
known what role CSPGs and the PNN may play in age-related
cognitive decline; however, our data suggest that NCAN and
BCAN are associated with brain volume and may potentially play
a neuroprotective role for general fluid cognitive ability in early
adulthood. Although expression of NCAN and BCAN is highly
specific to the brain, we have shown that levels detected in
plasma, in which it is much easier to obtain samples of, also
correlate with brain structure. Future studies will be required to
confirm these proteins as blood biomarkers of brain structure.

PCA indicated that the levels of the individual proteins were
not independent, with 30% of the variance explained by the first

PC. The first three PCs derived from the 90 proteins were highly
congruent between the four cohorts, providing cross-sample
validation of the stability of the proteins’ correlational structure.
The first PC was associated with general fluid cognitive ability in
the LBC1936, LBC1921, and a meta-analysis of LBC1936 and
INTERVAL-OId samples. This association was not mediated by
brain variables in the LBC1936, suggesting that the influence on
general fluid cognitive ability was independent of the micro- and
macrostructural brain variables measured at the global level.
Proteins that loaded highly on protein-PC1 included RGM
domain family member B (RGMB) that is involved in patterning
of the developing nervous system*4, and Ephrin-A4 (EFNA4) and
Ephrin type-B receptor 6 (EPHB6), both of which are members of
the ephrin family that is implicated in the development of the
nervous system#>. Our data suggest that these proteins may also
be important in the ageing nervous system. These findings can
serve to sharpen downstream mechanistic and molecular work on
the role of specific proteins in processes involved in CNS ageing.
Protein-PC3 (like BCAN and NCAN that load highly on
protein-PC3) was not associated with general fluid cognitive
ability, but was associated with total brain, grey matter and
normal-appearing white matter volumes in the LBC1936, sug-
gesting that although it is related to brain volume, it does not do
so in a way that affects general fluid cognitive ability. A review
looking at how components of PNNs, including BCAN and
NCAN, control plasticity, and on their role in memory in normal
ageing, concluded that interventions that target PNNs may allow
the brain to function well, despite pathology3°. Therefore, com-
ponents of the PNN may protect against changes in brain volume.

The fairly common pattern of protein-cortical associations in
the cingulate, temporal and frontal lobes is of interest, as these are
among the regions implicated in higher cognitive function0-4°.
The five proteins in these analyses showed a moderate level of
correlation, but despite this the same vascular risk-type covariates
(smoking and hypertension) lead to slightly different levels of
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Fig. 4 Mediation analysis in LBC1936 separated by brain variable. Unique contributions from each of the brain variables are indicated with standard error
bars. Gmvol = grey matter volume, NAWM vol = normal-appearing white matter volume, WMH vol = white matter hyperintensity volume, gFA = general
fractional anisotropy, gMD = general mean diffusivity, PVS = perivascular spaces.

attenuation. As was shown in the analyses looking at protein
levels and general cognitive ability the least attenuation was
identified for PVR. The fact that these vascular risk factors atte-
nuated the associations might indicate the differential relevance
of these specific blood biomarkers in the well-established asso-
ciations between vascular risk and brain structure.

The strengths of this study include the fact that protein levels,
cognitive ability and structural brain variables were measured in
the same individuals at about the same time in ~600 members of
the LBC1936. Participants in the LBC1936 have a narrow age
range and are an ancestrally homogeneous population, which
reduces the variability compared with other cohorts. The age-
matched INTERVAL cohort for replication of associations with
general fluid cognitive ability and the ability to investigate these
associations in both an older (LBC1921) and younger (INTER-
VAL-Young) cohort were further strengths of this study, giving a
total sample size larger than most other studies of this type. A key
strength of the INTERVAL sample is that they are all healthy
blood donors, which minimises confounding by disease status.
The Olink Neurology panel was particularly well suited to this
study as all proteins were chosen because of a prior link to
neurology-related diseases, traits or processes and because it has
high sensitivity and specificity?°.

The limitations of the study included the fact that the proteins
were measured in blood rather than brain tissue. However, as
blood samples are relatively easy to obtain, proteins in the blood
that are associated with cognitive function and brain structure are
more likely to be useful as future biomarkers. Also, a panel of pre-
selected neurology-related proteins was used, rather than bespoke
assays for proteins that we specifically hypothesised to be asso-
ciated with cognitive ability and brain structure. One other
potential limitation of our investigation is the use of non-fasting
plasma samples. However, a recent study concluded that timing
of food intake only had a modest effect on the levels of the Olink
neurology-related biomarkers used in this study®l. The use of
citrate blood collection tubes for the LBCs and EDTA blood
collection tubes for INTERVAL is potentially a limitation.
However, the fact that the within-protein correlational structure

was consistent across cohorts, suggests that it was not a sig-
nificant confound. Another limitation was the lack of a replica-
tion cohort that included brain MRI variables. A further
limitation is that we investigated cognitive measures at the global
level. Potentially counterintuitive findings (such as the
protein-PC3 associations with brain volumes but not general
fluid cognitive ability) are plausible where specific cognitive
abilities are affected. A further potential limitation is the use of
different cognitive tests in the LBC1936, the LBC1921 and the
INTERVAL sample. Although research has shown that general
factors created from different cognitive batteries are highly con-
sistent®>°3, and specifically in LBC1936 two general cognitive
function phenotypes calculated from two non-overlapping bat-
teries of cognitive tests had a correlation of r = 0.79%, a more ideal
study would have administered the same cognitive tests to each
cohort and extracted a general factor from the combined cohorts.

In conclusion, we have identified several proteins associated
with general fluid cognitive ability and brain volume that should
be replicated in an independent study before being considered as
reliable and possibly useful biomarkers of cognitive ability in later
life. Integrating information about these proteins with informa-
tion about established biomarkers for dementia, such as amyloid
B42 and neurofilament light, may help to identify biological
pathways to potentially target therapeutically for age-related
cognitive decline.

Methods

Lothian Birth Cohort 1936. LBC1936 consists of 1091 individuals, most of whom
took part in the Scottish Mental Survey of 1947 at the age of ~11 years old. In the
survey, they took a validated test of cognitive ability, the Moray House Test (MHT)
version 12°4 They were recruited to a study to determine influences on cognitive
ageing at age ~70 years and have taken part in four waves of testing in later life (at
mean ages 70, 73, 76 and 79 years). At each wave they underwent a series of
cognitive and physical tests, with concomitant brain MRI introduced at age ~73
years2!. For this study, cognitive tests were performed, and plasma was extracted
from blood collected in citrate tubes at a mean age of 72.5 (SD 0.7) years. The
cognitive tests included here were six of the non-verbal subtests from the Wechsler
Adult Intelligence Scale-IITUK (WAIS-III)55: matrix reasoning, letter-number
sequencing, block design, symbol search, digit symbol coding and digit span
backwards. From these six cognitive tests, a general fluid cognitive component was
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Source Data file.

derived. The scores from the first unrotated component of a principal component
analysis were extracted and labelled as general fluid cognitive ability. This com-
ponent explained 51% of the variance, with individual test loadings ranging from
0.65 to 0.76. General fluid cognitive ability was regressed onto age and sex (and
separately onto age, sex, smoking status and antihypertensive drug use), and
residuals from these linear regression models were used in further statistical ana-
lyses. Cognitive data and neurology-related protein levels were available for 798
individuals. In all, 7% of these individuals self-reported stroke, 0.2% dementia and
0.4% Parkinson’s disease. No other neurological conditions were reported.

Whole-brain structural and diffusion tensor MRI data were acquired by using a
1.5 T GE Signa Horizon scanner (General Electric, Milwaukee, WI, USA) located at
the Brain Research Imaging Centre, University of Edinburgh, soon after cognitive
testing and plasma collection. Mean age at scanning was 72.7 (SD 0.7) years. Full
details are given in ref. 5. In brief, T1-, T2-, T2* and FLAIR-weighted MRI
sequences were collected and co-registered (voxel size = 1 x 1 x 2 mm). Total brain,
grey matter, normal-appearing white matter volume and WMH were calculated by
using a semi-automated multispectral fusion method!®7:58, PVS were visually
rated (5-point score in basal ganglia and centrum semiovale; the sum of the two
scores was used in this study) by a trained neuroradiologist!®.

The diffusion tensor MRI protocol employed a single-shot spin-echo echo-
planar diffusion-weighted sequence in which diffusion-weighted volumes
(b= 1000 s mm~2) were acquired in 64 non-collinear directions, together with
seven T,-weighted volumes (b= 0smm~2). This protocol was run with 72
contiguous axial slices with a field of view of 256 x 256 mm, an acquisition matrix
of 128 x 128 and 2-mm isotropic voxels. Full details are included in ref. 1°.

White matter connectivity data were created by using the BEDPOSTX/
ProbTrackX algorithm in FSL (https://fsl.fmrib.ox.ac.uk), and 12 major tracts of
interest were segmented using Tractor (https://www.tractor-mri.org.uk) scripts: the
genu and splenium of the corpus callosum, and bilateral anterior thalamic
radiations, cingulum bundles, uncinate, arcuate and inferior longitudinal fasciculi.

Tract-average white matter FA and MD were derived as the average of all voxels
contained within the resultant tract maps. General factors of FA (gFA) and MD
(gMD) were derived from a confirmatory factor analysis using all 12 tracts, to
reflect the well-replicated phenomenon of common microstructural properties of
brain white matter in early, middle and later life>®-61. Each of the T1-weighted
volumes were processed using FreeSurfer v5.1. Following visual quality control in
which the outputs for each participant were inspected for aberrant surface meshes,
skull stripping and tissue segmentation failures, their estimated cortical surfaces
were registered to the ‘fsaverage’ template, yielding a measure of regional volume at
each of 327,684 vertices across the cortical mantle.

WMH volume was log transformed, after which it showed an approximately
normal distribution. Total brain, grey matter, normal- appearing white matter
volume and log WMH volumes were regressed onto age, sex and intracranial
volume (and separately onto age, sex, intracranial volume, smoking status and
antihypertensive drug use). PVS score, gFA and gMD were regressed onto age and
sex (and separately onto age, sex, smoking status and antihypertensive drug use).
Residuals from these linear regression models were used in further statistical
analyses. Brain imaging data and neurology-related plasma protein levels were
available for between 600 and 635 individuals.

Lothian Birth Cohort 1921. LBC1921 consists of 550 individuals, most of whom
took part in the Scottish Mental Survey of 1932 at the age of ~11 years old. In the
survey, they took a validated test of cognitive ability, the MHT version 1262, They
were recruited to a study to determine influences on cognitive ageing at age ~79
years and have taken part in five waves of testing in later life (at ages 79, 83, 87, 90
and 92 years). For this study, cognitive tests were performed, and plasma was
extracted from blood collected in citrate tubes at a mean age of 86.6 years (SD 0.4)21.
Cognitive tests included Raven’s Standard Progressive Matrices®, letter-number
sequencing® and digit symbol coding®. From these three cognitive tests, a general
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fluid cognitive component was derived. The scores from the first unrotated com-
ponent of a principal component analysis were extracted and labelled as general
fluid cognitive ability. This component explained 68% of the variance, with indi-
vidual test loadings ranging from 0.78 to 0.83. General fluid cognitive ability was
regressed onto age and sex, and residuals from these linear regression models were
used in further statistical analyses. Cognitive data and neurology-related plasma
protein levels were available for 165 individuals. In all, 8% of these individuals self-
reported stroke, 0.6% dementia and 0% Parkinson’s disease. No other neurological
conditions were reported.

INTERVAL. INTERVAL is a randomised trial of ~45,000 blood donors from the
National Health Service Blood and Transplant Centres in England?2. The trial was
designed to determine whether the interval between donations could be safely
reduced. Cognitive function tests were taken ~2 years into the trial at which point
plasma was extracted from blood collected in EDTA tubes. Cognitive tests adapted
from the Cardiff Cognitive Battery®* were assessed: Stroop Test (part 1, measures
attention and reaction times in milliseconds); Trail Making Test (duration of part B
in milliseconds, measures executive function); Pairs Test (participants were asked
to memorise the positions of six card pairs, and then match them from memory
while making as few errors as possible) and Reasoning Test (a task with 13 logic/
reasoning-type questions and a 2-min time limit). Scores on the Pairs Test are for
the number of errors that each participant made; higher scores reflect poorer
episodic memory. The Reasoning Test is known as the ‘Fluid Intelligence’ test in
UK Biobank!?. The scores from the first unrotated component of a PCA of the four
tests were extracted and labelled as general fluid cognitive ability. This component
explained 48% of the variance, with individual test loadings ranging from 0.35 to
0.60. General fluid cognitive ability was regressed onto age and sex (and separately
onto age, sex, smoking status, antihypertensive drug use and trial arm), and resi-
duals from these linear regression models were used in further statistical analyses.
Cognitive data and neurology-related protein biomarkers were available for 4451
individuals. INTERVAL is a relatively cognitively healthy cohort, as history of
stroke, Alzheimer’s disease, dementia, Parkinson’s disease or other neurological
conditions make an individual ineligible to donate blood; see https://my.blood.co.
uk/KnowledgeBase/. For the purposes of this study, INTERVAL was split into
individuals aged > 67 years (INTERVAL-OIld, N = 975, mean age = 70.3 years,
SD = 2.4 years), and individuals < 66 years INTERVAL-Young, N = 3476, mean
age = 58.4 years, SD = 5.0 years). The former subsample was formed to be
approximately matched in mean age with the LBC1936.

Neurology-related protein biomarker measurement. In total, 92 neurology-
related protein biomarkers were measured in plasma by the Proximity Extension
Assay technique by using the Proseek Multiplex Neurology I 96 x 96 reagents kit by
Olink® Proteomics!®. Storage times for all plasma samples within each cohort were
similar. The data were pre-processed by Olink” using NPX Manager software.
Supplementary Table 6 lists the percentage of samples below Olink’s pre-
determined lower limit of detection (LLOD) for LBC and INTERVAL, for each
protein. Proteins with more than 10% of samples below the LLOD were removed
from further analyses. For the remaining proteins all values including those below
the LLOD were included. Normalised protein expression levels were transformed
by inverse-rank normalisation, to avoid potential false positives caused by outlying
values and then regressed onto age and sex (and separately onto age, sex, smoking
status and antihypertensive drug use [plus trial arm allocation in INTERVAL]).
Residuals from these linear regression models were used in further statistical
analyses. LBC1936 and LBC1921 used a newer version of the kit, which included
microtubule-associated protein tau (MAPT) rather than brain-derived neuro-
trophic factor (BDNF). Both BDNF (in INTERVAL) and MAPT (in the LBCs)
failed quality control, as did HAGH in both cohorts, and were therefore excluded
from all analyses. See Supplementary Table 1 for the 90 proteins analysed.

Statistical analyses. We conducted a PCA of the 90 proteins for each cohort to
establish the common variance among these markers. We used the coefficient of
factor congruence to assess the consistency with which the individual proteins
loaded on each component across groups. We used PCA results to inform our
threshold for multiple testing of independent tests (number of components with
eigenvalues >1). PCA on the transformed levels of the 90 neurological markers
revealed that 17 components explained the majority (70%) of the variance in the
data in the LBC1936. Based on PCA, a Bonferroni-corrected p value of 0.0029
(0.05/17 independent proteins) was used to indicate statistical significance®°.

Next, linear regression models were used to test the associations of each of the
90 neurology-related protein biomarkers with general fluid cognitive ability
(LBC1936, LBC1921 and INTERVAL-OIld and Young), total brain, grey matter,
normal-appearing white matter and WMH volumes, and PVS, gFA and gMD
(LBC1936 only). We also extracted the first three components from the PCA of all
90 proteins that showed acceptable stability across cohorts, i.e. those with a
coefficient of factor congruence >0.70. We then examined their associations with
cognitive and brain variables, as above. Linear regression analyses were performed
in R%, The results from LBC1936 and the approximately age-matched
INTERVAL-OIld cohort were inverse variance weighted fixed-effect meta-analysed
using (METAL)%7.

Finally, we performed mediation analysis in a structural equation modelling
framework to identify if the significant (Bonferroni-corrected) protein-cognitive
ability associations were mediated by the brain MRI variables in the LBC1936. Two
analyses were performed. The first included total brain volume corrected for
intracranial volume. The second included multiple brain structural mediators (grey
matter, normal-appearing white matter and WMH volumes, all corrected for
intracranial volume), PVS, gFA and gMD. For these analyses no selection for brain
imaging variables was made on the basis of their association with the proteins.
Mediation analyses were carried out by using the lavaan package, using
bootstrapping to calculate the standard errors, in R,

Brain cortical volumetric analyses were conducted using the SurfStat toolbox
(http://www.math.mcgill.ca/keith/surfstat) for Matrix Laboratory R2018a (The
MathWorks Inc., Natick, MA), for which 595 participants had complete MRI,
protein and covariate data.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

LBC data supporting the findings of this paper are available from the corresponding
author upon reasonable request. The INTERVAL Study Group has previously published
its trial protocol, statistical analysis plan, informed consent form and other relevant study
documents. Bona fide scientists can seek access to relevant de-identified individual
participant data (and a copy of the trial’s data dictionary) by applying to the INTERVAL
Data Access Committee after print publication of this paper at the following e-mail
address: helpdesk@intervalstudy.org.uk. The INTERVAL Data Access Committee
reviews (supplemented, when required, by expertise from additional scientists external to
the committee) applications according to usual academic criteria of scientific validity and
feasibility. Following approval by the INTERVAL Data Access Committee, a material
transfer or research collaboration agreement will be agreed and signed with the
applicants. Applicants might be requested to provide reimbursement of data
management or preparation costs, as the INTERVAL trial is no longer in receipt of
funding. Applicants will be required to provide updates to the INTERVAL Data Access
Committee on their use of the INTERVAL trial data, including provision of copies of any
publications. Applicants will be required to adhere in publications with the INTERVAL
trial’s policy for acknowledgement of the trial’s funders, stakeholders and scientific or
technical contributors. The source data underlying Figs. 1a and 5 are provided as a
Source Data file.
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