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Abstract: Objective: To compare the radiomic features of F-18 fluorodeoxyglucose positron emission
tomography/computed tomography (18F-FDG PET/CT) and intratumoral heterogeneity according
to tumor budding (TB) status and to develop a prediction model for the TB status using the radiomic
feature of 18F-FDG PET/CT in patients with cervical cancer. Materials and Methods: Seventy-six pa-
tients with cervical cancer who underwent radical hysterectomy and preoperative 18F-FDG PET/CT
were included. We assessed the status of intratumoral budding (ITP) and peritumoral budding (PTB)
in all available hematoxylin and eosin-stained specimens. Three conventional metabolic parameters
and fifty-nine features were extracted and analyzed. Univariate analysis was used to identify signifi-
cant metabolic parameters and radiomic findings for TB status. The prediction model for TB status
was built using 3 machine learning classifiers (random forest, support vector machine, and neural
network). Results: Univariate analysis led to the identification of 2 significant metabolic parameters
and 12 significant radiomic features according to intratumoral budding (ITB) status. Among these
parameters, following multivariate analysis for the ITB status, only compacity remained significant
(odds ratio, 5.0047; 95% confidence interval, 1.1636–21.5253; p = 0.0305). Two conventional metabolic
parameters and 25 radiomic features were selected by the Lasso regularization, and the prediction
model for the ITB status had a mean area under the curve of 0.762 in the test dataset. Conclusion:
Radiomic features of 18F-FDG PET/CT were associated with the ITB status. The prediction model
using radiomic features successfully predicted the TB status in patients with cervical cancer. The
prediction models for the ITB status may contribute to personalized medicine in the management of
patients with cervical cancer.
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1. Introduction

Tumor budding (TB) is defined as a single neoplastic cell or cell cluster of up to four
neoplastic cells at the invasive front of the tumor (peritumoral budding (PTB)) or within
the tumor mass (intratumoral budding (ITB)) [1]. Several studies have demonstrated that
TB is associated with lymphovascular invasion (LVI), lymph node metastasis, disease recur-
rence, and an unfavorable survival outcome, especially in colorectal cancer [2], esophageal
carcinoma [3], and head and neck cancer [4]. Recently, we evaluated the prognostic roles of
TB and the correlation between TB and conventional pathological parameters in gyneco-
logical cancers [5,6]. Our results demonstrated that TB was associated with deep depth
invasion, higher International Federation of Gynecologic Obstetrics (FIGO) stage, LVI, and
lymph node metastasis in endometrial cancer [5]. Moreover, high TB was an independent
prognostic factor for predicting survival outcomes in cervical cancer [6].

Currently, F-18 fluorodeoxyglucose positron emission tomography/computed to-
mography (18F-FDG PET/CT) is widely used to detect lymph node involvement, distant
metastasis, and recurrence in cervical cancer [7]. Various metabolic parameters of 18F-FDG
PET/CT have been reported as prognostic factors, including the maximum standardized
uptake value (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG).
A recent systematic review showed that a high primary tumor SUVmax has a significant
correlation with the poor event-free survival (hazard ratio (HR), 1.938; 95% confidence
interval (CI), 1.203–3.054, p = 0.004) and overall survival (HR, 2.582; 95% CI, 1.936–3.443,
p < 0.001). Moreover, the highest primary tumor TLG (HR, 1.843; 95% CI, 1.100–3.086,
p = 0.02) and MTV (HR, 2.06; 95% CI, 1.21–3.51, p = 0.007) was associated with poor event-
free survival [8]. Recently, radiomics studies, which represent intratumoral heterogeneity,
have emerged as a new and exciting area of research. The measurement of texture indices
from tumor 18F-FDG PET/CT images has recently been proposed as an adjunct to pre-
dict tumor response to therapy. Moreover, there is emerging evidence that intratumoral
metabolic heterogeneity on pretreatment 18F-FDG PET/CT might be a predictor of tumor
recurrence after treatment in patients with lung, esophageal, head and neck, and cervical
cancer [9–12]. Furthermore, recent studies have shown that 18F-FDG PET/CT radiomics
using various textural features are potential biomarkers to predict tumor recurrence and
lymph node metastasis [13,14].

Tumor heterogeneity is defined as the presence of different cell subpopulations or
clones and has a fundamental role in tumor growth, progression, and therapeutic resistance.
Tumor hypoxia, angiogenesis, necrosis, fibrosis, cell proliferation, and inflammation are
all known to affect tumor heterogeneity [15]. Epithelial–mesenchymal transition (EMT) of
primary tumor tissues may lead to the loss of cell-to-cell adhesion, allowing individual cells
or small groups of cells to acquire the ability to migrate and invade through the surrounding
tissues. Moreover, TB may lead to more aggressive clinicopathologic characteristics through
a similar mechanism of EMT, such as increased extracellular matrix degradation, increased
migration, and loss of cell adhesion [16]. These EMT processes are accompanied by changes
in cell morphology [17] and may lead to changes in tumor heterogeneity. However, to
our knowledge, no previous studies have evaluated the correlation between metabolic
parameters and radiomic findings of 18F- FDG PET/CT and TB in cervical cancer. Therefore,
we hypothesized that TB may be associated with higher metabolic parameters in 18F-FDG
PET/CT because of the aggressive behavior of TB and that the radiomic finding may differ
according to TB status.

This study compared the radiomic features on 18F-FDG PET/CT and intratumoral
heterogeneity according to TB status to develop a prediction model for the TB status using
radiomic features of 18F-FDG PET/CT in patients with cervical cancer.

2. Materials and Methods
2.1. Patients

Following approval from the Institutional Review Board of Kyungpook National
University Chilgok Hospital (KNUCH 2020-03-011), we reviewed the archival medical
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records and hematoxylin and eosin (H&E)-stained slides of patients with early-stage and
locally advanced cervical cancer. The need for informed consent was waived due to the
retrospective nature of the study. Between March 2011 and July 2015, a total of 136 patients
who underwent radical hysterectomy with pelvic and paraaortic lymphadenectomy for
treating early-stage and locally advanced cervical cancer were included. Among the
136 patients, 76 patients underwent preoperative 18F-FDG PET/CT and were enrolled
in this study. The enrolled patients were semirandomly divided into a training dataset
(51 patients) and a test set (25 patients) using the “doBy” R package while preserving
the distribution of ITB status. Patients with a history of preoperative chemotherapy,
radiotherapy, or synchronous malignancies were excluded. The patients were clinically
staged according to the 2009 International FIGO staging system [18].

2.2. Histopathological Evaluation

Specimens were examined from multiple sections of the whole tumor areas and
stained with H&E. For each case, all available specimens were independently reviewed for
the detailed histopathological features and the quantitative assessment of TB by two pathol-
ogists (J.Y.P and J.Y.P) in a blinded manner, with no knowledge of the clinicopathological
data and outcomes.

The pathological parameters included tumor size, FIGO stage, histological subtype,
deep stromal invasion, LVI, parametrial invasion, lymph node metastasis, and the number
and distribution of TB. TB was defined as an isolated single cancer cell or small cell clusters
composed of ≤4 tumor cells located at the advancing edge (PTB) and within the tumor
area (ITB).

2.3. 18F-FDG PET/CT Image Acquisition

All patients fasted for at least 6 h, and their blood glucose levels were determined
before the administration of 18F-FDG. Patients with blood glucose levels >150 mg/dL
were rescheduled for a later examination, and treatment was administered to maintain a
blood glucose concentration <150 mg/dL in all participants. Patients received intravenous
injections of approximately 5.2 MBq of FDG per kg of body weight and were advised to rest
for 1 h before undergoing 18F-FDG PET/CT imaging. The 18F-FDG PET/CT scans were
performed using a Discovery 600 (GE Healthcare, Chicago, IL, USA). Before the PET scan,
for attenuation correction, a low-dose CT scan was obtained without contrast enhancement
from the skull base to the thigh while the patient was in the supine position and breathing
quietly. PET scans were also obtained from the skull base to the thigh at 2.5 min per bed
position. PET images were reconstructed using a 128 × 128 matrix and an ordered-subset
expectation maximum iterative reconstruction algorithm.

2.4. Image Interpretation and PET Image Analysis

The 18F-FDG PET/CT images were interpreted by two experienced nuclear medicine
physicians (S.Y.J and S.W.L), and a final consensus was achieved for all patients. A positive
finding in the uterine cervix was defined as any focus with increased FDG uptake compared
to the surrounding normal tissue. Foci of FDG uptake mimicking positive findings in the
pelvis, such as urinary activity or a functional ovarian cyst, were excluded from the analysis.

All image analyses were performed using the Advantage Workstation 4.5 software
(GE Medical Systems, Waukesha, WI, USA). The primary tumor lesion was delineated by
the volume of interest by using an isocontour threshold method based on the SUV, and
metabolic PET parameters were assessed. SUVmax values were based on body weight
and were calculated using the following formula: SUVmax = maximum activity in the
region of interest (ROI) (MBq/g)/(injected dose (MBq)/bodyweight (g)). SUVmax was
designated as the highest value of SUVmax of the primary tumor. The MTV was determined
as the volume of voxels with an SUV threshold of the mediastinal blood pool because
the mediastinal blood pool is regarded as the preferred site for measuring background
activity [19]. The mean SUV of the mediastinal SUV values was determined by drawing an
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ROI over contiguous slices on the descending aorta, carefully excluding the walls from the
ROI. The mean SUV of the mediastinal background plus 2 SDs was used as the threshold
to automatically calculate the MTV [19]. The TLG was calculated as the MTV multiplied by
SUVmean of the lesion. The MTV and TLG were also obtained for the primary tumor.

2.5. Statistical Analysis

The differences between subsets were evaluated with a Student’s t-test or Mann–
Whitney test, and differences between proportions were compared with the chi-square test
or Fisher’s exact test. Receiver operating characteristic (ROC) curve analysis was performed
to identify an optimal cutoff value of metabolic parameters and radiomic finding of 18F-
PET/CT for predicting the ITB status. Multiple logistic regression analysis was used to
evaluate the metabolic parameters and radiomic findings of 18F-PET/CT for ITB status. The
estimated odds ratios (ORs), with 95% confidence intervals (95% CIs), are presented. All
statistical tests were two-sided, and p < 0.05 was considered significant. Statistical analysis
was performed using SPSS software version 22.0 (SPSS, Chicago, IL, USA), Medcalc version
15.4 (Medcalc Software, Ostend, Belgium), and R version 3.6.3 (R Foundation for Statistical
Computing, Vienna, Austria). The R packages “caret”, “glmnet”, “MASS”, and “pROC”
were used for analysis.

2.6. Radiomic Analysis

Radiomic features were extracted using the LIFEx package (http://www.lifexsoft.org,
accessed in 1 July–30 September 2020) [20]. LIFEx was set up using the following input
parameters for calculating the features: 64 Gy levels to resample the ROI content, which
was performed in absolute terms between a minimum of 0 and a maximum of 20 [21]. A
total of 59 features were extracted from the analysis of the volumes inspected; these indices
included conventional parameters, shape and size features, histogram-based features,
and second- and high-order-based features. The correction for the partial volume effect
was not applied. The analysis included all primary tumor lesions, irrespective of their
volume; however, LIFEx calculates the shape and size indices as well as the second-order-
(gray-level co-occurrence matrix (GLCM)) and high-order-based (neighborhood gray-level
different matrix (NGLDM), gray-level run-length matrix, (GLRLM) and gray-level zone-
length matrix (GLZLM)) features only for an ROI of at least 64 voxels due to technical
reasons. The features calculated are summarized in Table S1.

Each feature value was normalized using z-score normalization (z = [x − mean {x}/SD
{x}] [standard deviation {SD}]). The feature selection process consisted of two steps in
the training dataset. First, a t-test was performed to screen potential features throughout
radiomic features and conventional metabolic parameters. Only features with p < 0.05 were
considered significant and entered into the next selection step. Least absolute shrinkage and
selection operator (Lasso) regression was used to select key features to build a prediction
model, with three-fold cross-validation.

Following feature selection, the prediction models were constructed using a random
forest (RF), a support vector machine (SVM), and a neural network (NN) using the training
dataset. We built prediction models using only conventional metabolic parameters and
both conventional metabolic parameters and radiomic features. The constructed model
performance was validated independently in the test dataset by the area under the ROC
curve. The improvement of prediction accuracy was assessed with the net reclassification
improvement (NRI) and integrated discrimination improvement (IDI) statistics. The R
packages “randomForest”, “kernlab”, “neuralnet”, and “PredictABEL” were used to build
and evaluate the prediction model.

3. Results
3.1. Clinicopathologic Features and Treatment Outcomes

The clinicopathologic characteristics of the study participants are listed in Table 1.
The predominant FIGO stage was IB1 (n = 43 (56.6%)), followed by IB2 (n = 14 [18.4%)),

http://www.lifexsoft.org
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IIB (n = 10 (13.2%)), and IIA (n = 9 (11.8%)). The histologic cervical cancer types were
as follows: squamous cell carcinoma (n = 91 (66.9%)), adenocarcinoma (n = 37 (27.2%)),
and adenosquamous carcinoma (n = 8 (5.9%)) (Table 1). The median ITB count was 3.5
(range, 0–40), and the median PTB count was 4 (range, 0–44). ITB and PTB were observed
in 47 (61.8%) and 62 patients (81.6%), respectively.

Table 1. Clinicopathological and tumor budding characteristics.

Variables N (Range)

Age (years)
Mean ± SD 47.95 ± 10.73

Median (range) 49 (25–74)

FIGO stage (n, %)
IB1 43, 56.6
IB2 14, 18.4
IIA 9, 11.9
IIB 10, 13.2

Histology (n, %)
Squamous cell carcinoma 54, 71.1

Adenocarcinoma/adenosquamous carcinoma 22, 28.9

Tumor size (cm)
Mean ± SD 3.01 ± 1.67

Median (range) 3 (0–8.5)

Lymphovascular invasion (n, %) 59, 77.6

Deep stromal invasion (n, %) 46, 60.5

Parametrial invasion (n, %) 28, 36.8

Lymph node metastasis (n, %) 22, 28.9

Tumor budding characteristics
Intratumor budding counts

Mean ± SD 6.40 ± 9.61
Median (range) 3.5 (0–40)

Peritumoral budding counts
Mean ± SD 7.49 ± 9.42

Median (range) 4 (0–44)

Intratumoral budding (n, %) 47, 61.8

Peritumoral budding (n, %) 62, 81.6
FIGO = International Federation of Gynecologic Obstetrics.

3.2. Comparison of Metabolic Parameters and Radiomic Features of 18F-PET/CT According to
TB Status

The median SUVmax was significantly higher in the positive ITB group than in the
negative ITB group (11.35 vs. 8.37, p = 0.0406; Figure 1). However, the median SUVmax
did not change significantly according to the PTB status. Among the radiomic features,
entropyGLCM (GLCM; p = 0.0111), coarseness (NGLDM; p = 0.0497), low gray-level
run emphasis/long-run low gray-level emphasis (GLRLM; p = 0.0189 and p = 0.0101,
respectively), low gray-level zone emphasis/short-zone low gray-level emphasis/zone-
length nonuniformity zone (GLZLM; p = 0.0137, p = 0.0154, and p = 0.0056, respectively),
sphericity/compacity (shape and size; p = 0.0065 and p = 0.0108, respectively), and
kurtosis/entropyHist/energyHist (histogram; p = 0.0267, p = 0.0130, and p = 0.0200, re-
spectively) were significantly different according to the ITB status. However, there were no
significantly different radiomic findings according to the PTB status (Table 2).
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Figure 1. F-18 fluorodeoxyglucose positron emission tomography/computed tomography radiomic feature selection
performed by the least absolute shrinkage and selection operator (Lasso) regularization method. (A) Area under the curve
was drawn versus log (λ) by the 5-fold cross-validation. The vertical dotted line defines the optimal λ value. The optimal λ
of 0.0012, with log (λ) of −6.7061 was selected; (B) Lasso coefficient profiles of the 48 potential PET features as selected by
the t-test. Twenty-seven features were selected with the optimal λ.

3.3. Multiple Logistic Regression Analysis for ITB Status

Univariate and multivariate analyses were performed to evaluate the correlation
between 18F-FDG PET/CT values and the ITB status (Table 3). Among the significant
parameters of conventional metabolic parameters (SUVmax, MTV, and TLG) and each
radiomic finding (GLCM, NGLDM, GLZLM, shape and size, and histogram) in univariate
analysis, the most significant parameters (the lowest p value) were included in multivariate
analysis for the inhibition of conflicting each parameter. In univariate analysis, SUVmax
(OR, 3.34; 95% CI, 1.27–8.79; p = 0.0146), TLG (OR, 4.42%; 95% CI, 1.33–14.72; p = 0.0154),
entropyGLCM (OR, 5.36; 95% CI, 1.95–14.69; p = 0.0011), coarseness (OR, 3.94; 95% CI,
1.41–11.03; p = 0.0090), low gray-level run emphasis (OR, 3.45; 95% CI, 1.26–9.47; p = 0.0161),
long-run low gray-level emphasis (OR, 3.34; 95% CI, 1.27–8.79; p = 0.0146), low gray-
level zone emphasis (OR, 4.05; 95% CI, 1.52–10.82; p = 0.0052) short-zone low gray-level
emphasis (OR, 3.94; 95% CI, 1.41–11.03; p = 0.0090), zone-length nonuniformity zone (OR,
9.16; 95% CI, 1.27–8.79; p = 0.0146), sphericity (OR, 6.09; 95% CI, 2.15–17.28; p = 0.0007),
compacity (OR, 8.73; 95% CI, 2.48–30.76; p = 0.0007), kurtosis (OR, 3.96; 95% CI, 1.38–11.38;
p = 0.0106), EntropyHist (OR, 5.98; 95% CI, 2.12–16.86; p = 0.0007), and EnergyHist (OR, 5.98;
95% CI, 2.12–16.86; p = 0.0007) were significant parameters that correlated with positive
ITB. Multivariate analysis with the entered methods showed that only compacity (OR,
5.00; 95% CI, 1.16–21.53; p = 0.0305) remained an independent parameter correlated with
positive ITB (Table 3).
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Table 2. Comparison of radiomic features according to the tumor budding status.

Total (n = 76) Intratumor Budding Peritumoral Budding

Valuables Yes (n = 47) No (n = 29) p Yes (n = 62) No (n = 14) p

Conventional metabolic parameters

SUVmax
0.0406 0.8828Mean ± SD 12.30 ± 7.84 12.73 ± 6.48 11.60 ± 9.75 12.11 ± 7.69 13.11 ± 8.76

Median (range) 10.64 (3.28–48.94) 11.35 (5.25–39.79) 8.37 (3.28–48.94) 10.50 (4.13–48.94) 13.34 (3.28–35.52)

MTV
0.2548 0.8723Mean ± SD 20.64 ± 29.09 23.18 ± 34.60 16.52 ± 16.45 20.78 ± 30.78 20.05 ± 20.82

Median (range) 13.79 (2.15–220.0) 15.21 (2.44–220.00) 10.73 (2.15–76.79) 14.49 (2.15–220.00) 11.79 (6.51–76.79)

TLG
0.0606 0.8407Mean ± SD 170.65 ± 478.22 219.30 ± 600.25 91.81 ± 101.10 179.81 ± 526.27 130.08 ± 132.62

Median (range) 78.75 (11.16–4118.4) 85.97 (15.76–4118.40) 57.09 (11.16–488.82) 78.74 (11.16–4118.40) 77.05 (19.25–488.82)

Radiomic features

GLCM

0.0111 0.8500
Entropy GLCM

Mean ± SD 7.68 ± 1.30 7.98 ± 1.10 7.21 ± 1.46 7.70 ± 1.19 7.62 ± 1.76
Median (range) 7.662 (4.89–10.22) 7.78 (5.85–10.22) 6.99 (4.89–9.88) 7.57 (4.98–10.22) 8.10 (4.89–9.88)

NGLDM

0.0497 0.7276
Coarseness
Mean ± SD 0.0204 ± 0.0157 0.0170 ± 0.0128 0.0258 ± 0.0186 0.0194 ± 0.0138 0.0249 ± 0.0225

Median (range) 0.0140 (0.0002–0.0757) 0.0129 (0.0002–0.0514) 0.0239 (0.0025–0.0757) 0.0147 (0.0002–0.0560) 0.0125 (0.0054–0.0757)

GLRLM

0.0189 0.0939
Low Gray-level Run Emphasis

Mean ± SD 0.0073 ± 0.0040 0.0065 ± 0.0034 0.0087 ± 0.0044 0.0068 ± 0.0034 0.0096 ± 0.0054
Median (range) 0.0071 (0.0013–0.0213) 0.0057 (0.0013–0.0160) 0.0081 (0.0020–20.0213) 0.0062 (0.0013–0.0160) 0.0081 (0.0020–0.0213)

Long-Run Low Gray-level Emphasis
0.0101 0.1266Mean ± SD 0.0098 ± 0.0064 0.0085 ± 0.0056 0.0120 ± 0.0071 0.0090 ± 0.0054 0.0134 ± 0.0093

Median (range) 0.0087 (0.0014–0.0322) 0.0069 (0.0014–0.0299) 0.0099 (0.0022–0.0322) 0.0084 (0.0014–0.0299) 0.0101 (0.0022–0.0322)

GLZLM

0.0137 0.2547
Low Gray-level Zone Emphasis

Mean ± SD 0.0079 ± 0.0051 0.0069 ± 0.0045 0.0096 ± 0.0061 0.0074 ± 0.0040 0.0104 ± 0.0081
Median (range) 0.0071 (0.0014–0.0327) 0.0060 (0.0014–0.0206) 0.0085 (0.0021–0.0327) 0.0070 (0.0014–0.0206) 0.0079 (0.0021–0.0327)

Short-Zone Low Gray-level Emphasis
0.0154 0.2177Mean ± SD 0.0045 ± 0.0026 0.0039 ± 0.0019 0.0054 ± 0.0033 0.0042 ± 0.0020 0.0058 ± 0.0043

Median (range) 0.0039 (0.0008–0.0183) 0.0036 (0.0011–0.0100) 0.0047 (0.0084–0.0183) 0.0038 (0.0008–0.0100) 0.0043 (0.0016–0.0183)
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Table 2. Cont.

Total (n = 76) Intratumor Budding Peritumoral Budding

Valuables Yes (n = 47) No (n = 29) p Yes (n = 62) No (n = 14) p

Zone Length Nonuniformity Zone
0.0056 0.2492Mean ± SD 12.95 ± 11.89 15.47 ± 13.76 8.88 ± 6.28 13.53 ± 12.55 10.42 ± 8.22

Median (range) 9.63 (1.88–80.85) 11.86 (3.40–80.85) 7.55 (1.88–32.24) 9.63 (1.88–80.85) 8.58 (2.77–32.24)

Shape and Size

0.0065 0.9040
Sphericity

Mean ± SD 5208.48 ± 4024.88 5676.9 ± 4507.4 3963.1 ± 2723.4 5238.6 ± 4203.5 5075.1 ± 3244.7
Median (range) 4249.8 (714.7–26258.1) 4894.7 (1227.2–26258.8) 3319.1 (714.7–11649.2) 4362.1 (1122.0–26258.8) 4005.5 (714.7–11649.2)

Compacity
0.0108 0.4859Mean ± SD 4.44 ± 1.32 4.75 ± 1.34 3.95 ± 1.16 4.42 ± 1.34 4.52 ± 1.29

Median (range) 4.27 (2.27–8.88) 4.58 (2.76–8.88) 3.77 (2.27–6.28) 4.23 (2.39–8.88) 4.35 (2.27–6.28)

Histogram

0.7682
Kurtosis

Mean ± SD 3.00 ± 0.94 2.81 ± 0.68 3.30 ± 1.21 2.94 ± 0.80 3.25 ± 1.42
Median (range) 2.72 (1.76–7.47) 2.63 (1.76–5.05) 2.84 (2.12–7.47) 2.72 (1.76–5.96) 2.69 (2.15–7.47)

EntropyHist
0.9706Mean ± SD 4.33 ± 0.76 4.50 ± 0.63 4.06 ± 0.88 4.33 ± 0.69 4.34 ± 1.05

Median (range) 4.40 (2.68–5.74) 4.50 (3.18–5.74) 4.01 (2.68–5.49) 4.36 (2.68–5.74) 4.77 (2.71–5.49)

EnergyHist
0.7579Mean ± SD 0.0685 ± 0.0403 0.0591 ± 0.0320 0.0836 ± 0.0478 0.0670 ± 0.0372 0.0749 ± 0.0534

Median (range) 0.0576 (0.0212–0.1820) 0.0518 (0.0212–0.1816) 0.0722 (0.0244–0.1820) 0.0603 (0.0212–0.1820) 0.0474 (0.0244–0.1685)

GLCM = gray-level co-occurrence matrix; GLRLM = gray-level run-length matrix; GLZLM = gray-level zone-length matrix; MTV = metabolic tumor volume; NGLDM = neighborhood gray-level different matrix;
SUVmax = maximum standardized uptake; TLG = total lesion glycolysis.
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Table 3. Multiple logistic regression analysis for the evaluation of the correlation between radiomic features and intratumor
budding status.

Univariate Analysis Multivariate Analysis

Variables Odds Ratio 95% CI p Odds Ratio 95% CI p

Conventional metabolic parameters

SUVmax (>8.858) 3.3393 1.2685–8.7908 0.0146 2.4973 0.8933–6.9810 0.0810
MTV (cm3, >16.3) 2.5385 0.9092–7.0869 0.0753

TLG (>32.0247) 4.4211 1.3282–14.7159 0.0154

Radiomic features

GLCM
EntropyGLCM (>7.1782) 5.3554 1.9520–14.6928 0.0011 0.6139 0.0708–5.3208 0.6579

NGLDM
Coarseness (≤0.0254) 3.9407 1.4085–11.0251 0.0090 1.0604 0.2057–5.4660 0.9441

GLRLM
Low Gray-level Run Emphasis

(≤0.0081) 3.4533 1.2588–9.4739 0.0161

Long-Run Low Gray-level
Emphasis (≤0.0094) 3.3393 1.2685–8.7908 0.0146 1.6936 0.4822–5.9481 0.4111

GLZLM
Low Gray-level Zone
Emphasis (≤0.0074) 4.0533 1.5196–10.8155 0.0052

Short-Zone Low Gray-level
Emphasis (≤0.005) 3.9407 1.4085–11.0251 0.0090

Zone Length Nonuniformity
Zone (>14.1652) 9.1607 1.9444–43.1600 0.0051 5.3971 0.9464–30.7790 0.0577

Shape and Size
Sphericity (>4160.0834) 6.0893 2.1463–17.2763 0.0007

Compacity (>3.4057) 8.7344 2.4798–30.7648 0.0007 5.0047 1.1636–21.5253 0.0305

Histogram
Kurtosis (≤3.1264) 3.9609 1.3783–11.3826 0.0106

EntropyHist (>4.0608) 5.9815 2.1219–16.8615 0.0007
EnergyHist (≤0.0688) 5.9815 2.1219–16.8615 0.0007 2.9011 0.4526–18.5937 0.2611

CI = confidence interval GLCM = gray-level co-occurrence matrix; GLRLM = gray-level run-length matrix; GLZLM = gray-level zone-length
matrix; MTV = metabolic tumor volume; NGLDM = neighborhood gray-level different matrix; SUVmax = maximum standardized uptake;
TLG = total lesion glycolysis.

3.4. Predicting Model for ITB Status Using Radiomic Features of 18F-FDG PET/CT

Forty-eight features were significant parameters in the t-test and were subjected
to a further selection step by the Lasso regularization (Figure 1). Among them, the fi-
nal 27 remaining features (SUVmax, MTV, SUV_Skewness, discretized_SUVmax, dis-
cretized_SUV_Skewness, discretized_SUV_Kurtosis, discretized_SUVpeak_Sphere, dis-
cretized_HISTO_ExcessKurtosis, GLCM_Entropy_log2, GLCM_Dissimilarity, GLRLM_LRE,
GLRLM_LGRE, GLRLM_SRHGE, GLRLM_LRLGE, GLRLM_GLNU, GLRLM_RLNU,
NGLDM_Contrast, NGLDM_Busyness, GLZLM_SZE, GLZLM_LZE0, GLZLM_LGZE,
GLZLM_HGZE, GLZLM_SZLGE, GLZLM_SZHGE, and GLZLM_LZLGE) were selected.
Supplementary Figure S1 shows the ROC curves of the prediction models by three machine
learning algorithms in the training and test datasets. The area under the curve (AUC)
values of the prediction models constructed by the RF, SVM, and NN were 0.752, 0.784,
0.752, respectively in the test dataset. Figure 2 shows the ROC curves of the prediction
models built using only conventional metabolic parameters and conventional metabolic
parameters+radiomics features in the test datasets. The area under the curve (AUC) values
of the prediction models using conventional metabolic parameters constructed by the
RF, SVM, and NN were 0.673, 0.719, and 0.712, respectively (Table 4). With the addition
of radiomic features, AUC values in the test dataset were 0.752, 0.784, 0.752 in the RF,
SVM, and NN models, respectively. The NRI values for the addition of radiomic features
to conventional metabolic parameters were 0.183, 0.105, and 0.275 in RF, SVM, and NN
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models, respectively. This consisted of a respective 18.3%, 10.5%, and 27.5% improvement
in classification by adding radiomic parameters into prediction models, although these
gains were not statistically significant.

Figure 2. Receiver operating characteristic curves of the prediction models constructed by the random forest, support vector
machine, and neural network algorithms using conventional metabolic parameters only (A) and conventional metabolic
parameters + radiomic features (B) in the test dataset.

Table 4. Performance metrics of prediction models for predicting tumor budding status in the test dataset.

Model AUC (95% CI) NRI (95% CI) p IDI (95% CI) p

Conventional metabolic parameters

RF 0.673 (0.454–0.893) Reference – Reference –
SVM 0.719 (0.488–0.950) Reference – Reference –
NN 0.712 (0.469–0.956) Reference – Reference –

Conventional metabolic parameters + radiomic features

RF 0.752 (0.561–0.943) 0.183 (−0.115–0.482) 0.229 0.183 (−0.129–0.495) 0.250
SVM 0.784 (0.576–0.993) 0.105 (−0.334–0.543) 0.640 0.105 (−0.359–0.543) 0.658
NN 0.752 (0.561–0.942) 0.275 (−0.158–0.707) 0.214 0.275 (−0.178–0.727) 0.234

AUC = area under the curve; CI = confidence interval; NRI = net reclassification improvement; IDI = integrated discrimination improvement;
RF = random forest; SVM = support vector machine; NN = neural network.

4. Discussion

In this study, the radiomic features of 18F-FDG PET/CT were associated with TB
status, especially in the ITB status. Among the 59 features, 12 features were significantly
different according to the ITB status in univariate logistic regression analysis. Among these
12 features, compacity was the most significant parameter for the ITB status in multivariate
logistic regression analysis. Moreover, we developed the prediction model for the ITB
status by the 3 commonly used machine learning classifiersusing conventional metabolic
parameters and radiomic features, and the mean AUC was 0.763.

Radiomics is a relatively new and evolving field in medical imaging in which many
features are extracted from medical image analysis and interpretation using bioinformatic
approaches [15]. Furthermore, radiomics precision medicine and tumor heterogeneity have
recently become a hot topic in oncological medicine [22]. At the biological level, it has
been recognized that the heterogeneity of the tumor microenvironment might be reflected
in medical images, with respect to cellular density, proliferation, angiogenesis, hypoxia,
receptor expression, necrosis, fibrosis, and inflammation, all of which may contribute to a
more aggressive phenotype and poor treatment responses [23]. Therefore, the radiomic
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signature may represent a segmentation of tumor subregions with different biological
characteristics and contribute to treatment response and prognosis.

In colorectal cancer, high ITB has been shown to correlate with higher tumor grade,
higher pT stage, lymphatic invasion, vascular invasion, nodal metastasis, and shorter sur-
vival time [24]. Moreover, ITB may lead to more aggressive clinicopathologic characteristics
through a similar mechanism to that of PTB, such as increased extracellular matrix degra-
dation, increased migration, and loss of cell adhesion [16]. Therefore, we hypothesized that
ITB may be associated with higher metabolic parameters due to its aggressive nature.

To date, only one study has demonstrated a correlation between tumor cancer cell
metabolism and the morphological features of aggressiveness as assessed by microscopy
such as TB [24]. In an earlier study, the MTV was higher in the TB group than in the nonTB
group, with marginal significance (p = 0.06) in laryngeal and pharyngeal carcinoma [25].
In this study, SUVmax was significantly different according to the ITB status (p = 0.0406).
Moreover, SUVmax and TLG were associated with the ITB status in univariate logistic
regression analysis (p = 0.0146 and p = 0.0154, respectively). The aggressive nature of ITB
may present as higher metabolic parameters in 18F-FDG PET/CT.

EMT of primary tumor tissues may lead to the loss of cell-to-cell adhesion and oc-
currence ITB. Consequently, ITB may lead to the segmentation of tumor subregions with
different biological characteristics and may contribute to tumor heterogeneity. However,
to our knowledge, no study has reported on the correlation between ITB and radiomic
findings. In this study, 12 features were associated with the ITB status and compacity was
a powerful biomarker representing ITB status in multivariate logistic regression analysis.
Previous studies demonstrated that among the radiomic features, compacity was the most
significant covariate to predict local control and survival in hepatocellular carcinoma [26].

The results of our previous study showed that tumors with high TB were signifi-
cantly associated with LVI, deep stromal invasion, parametrial invasion, and lymph node
metastasis in cervical cancer [6]. Preoperative prediction of the TB status may help in
the development of personalized medicine, such as decisions on the radicality of surgery
or the extent of lymphadenectomy. However, TB status was finally determined by post-
operative surgical specimens. To date, there is no modality that can estimate TB status
preoperatively. Therefore, prediction models were constructed for ITB status using both
conventional metabolic parameters and radiomic features from 18F-FDG PET/CT scans.
Among the 48 features, which were significant parameters in the univariate logistic regres-
sion, 27 features were selected by the t-test and Lasso regularization. The AUC values
of the prediction models were >0.75 in the test dataset. The prediction performance was
improved in all classifiers, although they were not statistically significant. One possible
reason for statistical insignificance is that the number of test dataset was too small (n = 25)
and may underestimate the statistical power.

The main limitations of this study are its retrospective nature, heterogeneity of the
sample, and small sample size, which may have contributed to selection bias. Additionally,
as this is a single-center study, the generalization of our findings is limited. Despite these
limitations, our study offers some unique and significant findings, in that we showed
correlations between radiomic findings and the TB status for the first time and established
the prediction models for the ITB status using radiomic features in 18F-FDG PET/CT.

In conclusion, higher metabolic quantities were observed in the positive ITB group
than in the negative ITB group. Radiomic findings in 18F-FDG PET/CT were associated
with ITB status, and among these features, compacity was the most significant covariate
for the ITB status. Furthermore, prediction models for ITB status using radiomic findings
in 18F-FDG PET/CT may contribute to personalized medicine in cervical cancer.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/diagnostics11081517/s1, Figure S1. Receiver operating characteristic curves of the prediction
models constructed by the random forest, support vector machine, and neural network algorithms
using metabolic and radiomic features in the training dataset (A) and test dataset (B). Table S1:
Radiomic features calculated from 18F-FDG PET/CT images in Lifex.

https://www.mdpi.com/article/10.3390/diagnostics11081517/s1
https://www.mdpi.com/article/10.3390/diagnostics11081517/s1
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