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Abstract 

Tuberculosis (TB) is the world’s leading infectious killer with 1.8 million deaths in 2015 as reported by WHO. It is 
therefore imperative that alternate routes of identification of novel anti-TB compounds are explored given the time 
and costs involved in new drug discovery process. Towards this, we have developed RepTB. This is a unique drug 
repurposing approach for TB that uses molecular function correlations among known drug-target pairs to predict 
novel drug-target interactions. In this study, we have created a Gene Ontology based network containing 26,404 
edges, 6630 drug and 4083 target nodes. The network, enriched with molecular function ontology, was analyzed 
using Network Based Inference (NBI). The association scores computed from NBI are used to identify novel drug-target 
interactions. These interactions are further evaluated based on a combined evidence approach for identification of 
potential drug repurposing candidates. In this approach, targets which have no known variation in clinical isolates, 
no human homologs, and are essential for Mtb’s survival and or virulence are prioritized. We analyzed predicted DTIs 
to identify target pairs whose predicted drugs may have synergistic bactericidal effect. From the list of predicted DTIs 
from RepTB, four TB targets, namely, FolP1 (Dihydropteroate synthase), Tmk (Thymidylate kinase), Dut (Deoxyuridine 
5′-triphosphate nucleotidohydrolase) and MenB (1,4-dihydroxy-2-naphthoyl-CoA synthase) may be selected for fur-
ther validation. In addition, we observed that in some cases there is significant chemical structure similarity between 
predicted and reported drugs of prioritized targets, lending credence to our approach. We also report new chemical 
space for prioritized targets that may be tested further. We believe that with increasing drug-target interaction dataset 
RepTB will be able to offer better predictive value and is amenable for identification of drug-repurposing candidates 
for other disease indications too.
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Background
Emergence of Multi-Drug Resistant (MDR) and Exten-
sively-Drug Resistant (XDR) Tuberculosis is impeding 
the progress of combating the epidemic of Tuberculosis 
[1]. According to WHO, in 2015 1.8 million people died 
of TB and almost 480,000 diagnosed with MDR-TB glob-
ally [2]. It takes up to 2 years to cure MDR/XDR patients 
and more than 50% patients do not respond to the exist-
ing treatment regimens [3]. Additionally, the existing 

drugs in the TB regimen are toxic (Fluoroquinolones & 
Aminoglycosides show hepatotoxicity and renal toxic-
ity, respectively) that deters compliance and leads to 
poor-treatment outcomes [4, 5]. Given that only 10% of 
the compounds go through from Phase I to final FDA 
approval [6] and high attrition rates of lead molecules 
passing from preclinical development to Phase I clinical 
studies [7], alternative strategies are needed. Drug repur-
posing is an attractive strategy to identify novel treat-
ment options given that it may reduce R&D timelines by 
3–5 years, have less development costs and the improved 
quality of success [8, 9]. The concept of drug repurpos-
ing is not new and many new drug indications have been 
identified serendipitously. The classic cases include Silde-
nafil that was initially approved for angina but repur-
posed for erectile dysfunction and Canakinumab which 
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was initially tested for Rheumatoid arthritis but was 
repurposed to treat cryopyrin-associated periodic syn-
drome (CAPS) [10].

Palomino et  al. [11] discussed the viability of drug 
repurposing methods in treatment of infectious diseases 
like Tuberculosis. Many of the drugs like Fluoroquinolo-
nes (Gatifloxacin and Moxifloxacin); rifamycins (Rifap-
entine and Clofazimine); oxazolinones (Linezolid and 
Sutezolid); and beta lactams (Meropenem and Clavula-
nate) have been repurposed against MDR/XDR TB [12]. 
Linezolid and Metronidazole have completed the Phase 
II while Gatifloxacin have completed phase III clinical tri-
als [13]. More recently, cephalosporins in combination 
with Rifampicin and other anti-TB drugs like Bedaquline 
and Delamanid have also shown promising synergistic 
activity [14]. Besides the anti-infectives, non-anti-infec-
tive agents have also been repurposed against TB. These 
include: Entacapone and Tolcapone, that act as adjunct to 
treatment of Parkinson’s disease [15]; Thioridazine and 
chlorpromazine are drugs used in treatment of psycho-
ses; and NSAIDs such as Diclofenac, Ibuprofen, and Car-
profen also have anti-TB activity [16].

Efforts towards identification of new TB drugs followed 
either phenotypic screens or target based screens [17]. 
The first approach, relies on development of whole-cell 
screening assays and availability of library of chemical 
compounds against replicating and non-growing Myco-
bacterium tuberculosis (Mtb). The target based screen-
ing approach involves purification of target protein, 
further compound screening assays against the target 
and in vivo target validation. As opposed to phenotypic 
screening, the target-based drug discovery has been less 
successful with few examples like identification of drug-
like inhibitors of EthR and malate synthase. In order to 
systematically explore the drug target space in TB, sev-
eral computational methods have also been developed 
which have identified potential drug repurposing candi-
dates for TB. Brindha et al. [18, 19] identified drug can-
didates against Mtb MurE and PknB using docking based 
virtual screening method. In addition, methods based on 
structural proteome of Mtb by Kinnings et  al. [20] and 
identification of polypharmacological drugs by Ram-
akrishnan et al. [21] have also reported repurposing can-
didates against Mtb proteins. However, these methods of 
drug repurposing are limited by the availability of the 3D 
structure of the target and/or ligand. Consequently, net-
work pharmacology based methods have been adopted 
to predict drug target interactions (DTIs), for example, 
pharmaco-chemical-genomics; Random Walk; gene 
expression and network based analysis, etc. [22–24]. 

More recently, Cheng et al. [25, 26] used Network Based 
Inference method to predict drug-target interactions but 
has not been applied to identify repurposing candidates 
for TB.

In this study, we have developed a drug-repurposing 
platform, RepTB, using network pharmacology approach 
to identify potential repurposed candidates for TB. 
RepTB utilizes Gene Ontology (GO) based drug-target 
interaction (DTIs) network to compute association scores 
for identification of new DTIs. Once the DTIs are pre-
dicted, a combined evidence based approach is applied to 
shortlist the potential candidates. Furthermore, to assess 
the chemical diversity, a near neighbor analysis was per-
formed using the chemical structure similarity index 
between the known and predicted chemical space. In the 
end, we propose synergistic DTIs that may be evaluated 
further as potential starting points in TB drug discovery 
pipeline.

Results
1.  Promiscuity in drug-target interactions from Drug-

Bank

A drug is promiscuous when it acts on multiple targets 
and exhibits distinct pharmacological effects [27]. To 
find out the level of promiscuity in the known drugs, we 
plotted the frequency of drugs against targets (Fig. 1). As 
seen in Fig.  1a, of the 6630 drugs from DrugBank [28–
31], 6402 drugs bind to fewer than 10 targets of which 
4364 drugs interact with only one target. The remain-
ing 228 drugs interact with more than 11 targets, some 
of which are known to interact with wide range of tar-
gets (DB02379: 90 targets and DB00157: 144 targets). 
Likewise, of the total 4083 targets reported in DrugBank, 
2020 targets bind to single drug (Fig. 1b). The rest, bind 
to more than one drug, for example, CDK2 protein (Uni-
prot ID: P24941) interacts with 114 drugs and Prothrom-
bin (Uniprot ID: P00734) interacts with 101 drugs. In 
Fig.  1c, the DrugBank drug-target interaction network, 
49% drugs and 44% targets show promiscuity. Of the total 
interactions, only 7% exhibit one drug-one target interac-
tion (singletons).

As discussed above, the promiscuity in the drug-tar-
get interaction space may be harnessed to predict novel 
interactions for drug repurposing. For the same, a unique 
pipeline, RepTB is established which begins with crea-
tion of the Gene Ontology based network followed by a 
combined evidence based strategy to predict drug repur-
posing candidates. The pipeline is depicted in Fig. 2. The 
components of this platform are now discussed.
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2. Gene ontology based enriched drug-target interaction 
network

The DrugBank DT network comprised of 15,824 edges. 
An additional set of 12,853 edges were added to the net-
work based on molecular function Gene Ontology (GO) 
based mapping of the targets. On combining the Drug-
Bank DTIs and GO mapping DTIs, the RepTB network 
contained 26,404 edges with 6630 drug and 4083 target 
nodes. The combined DTI edge list is available as Addi-
tional file 1.

3. Identification of new drug-target interactions using 
NBI

For the entire network comprising of 6630 drugs and 
4083 targets, NBI association scores were computed for 
approximately 27 million (27,070,290) interactions. Of 
these, 26,404 are known and 27,043,886 are new associa-
tions (unconnected drug-target pairs). In order to create 
a prioritization list, we applied a metric where a target 
was only prioritized for a drug if its association score 
was more than 20% of the maximum score in the sorted 
list with unconnected targets. This lead to identification 

of 25,323 potential DTIs which are prioritized based on 
their NBI association scores.

4. Target prioritization from combined evidence 
approach

In the prioritized dataset of 25,323 DTIs, there are 49 
Mtb targets interacting with 233 drugs (Additional file 2). 
In order to further prioritize targets from the potential 
DTIs, a combined evidence approach was implemented 
with three major criteria—role in drug resistance, 
absence of a human homolog and essentiality for survival 
or virulence.

Based on these criteria, of the 49 targets, 10 targets 
were prioritized. Of these 10, seven targets qualify for all 
three parameters. The remaining three were included in 
the prioritized list based on various factors. For exam-
ple, targets, namely, FolP1 (Rv3608c) and InhA (Rv1484), 
were also prioritized by another group [21]. Mtb dUT-
PASE (Dut, Rv2697) is also prioritized despite that it 
shares a 39% sequence identity with the human dUT-
Pase. One might argue that Dut might not be a viable tar-
get after all. However, according to the studies by Chan 
et al. [34] structural differences in the active site between 

Fig. 1 DrugBank data distribution. a The figure depicts the number of targets connected to each drug: shown as a frequency distribution graph 
in bins of 10. b Figure depicts the number of drugs connected to each target: shown as a frequency distribution graph in bins of 10. c The figure 
depicts the distribution of the DrugBank DTIs. The data clearly indicates that there is promiscuity in the drug-target interaction network that can be 
tapped to identify new interactions
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Fig. 2 RepTB prediction workflow. a DrugBank DTI network was downloaded. Molecular function GO were mapped to the targets from DrugBank 
DTIs. Network was enriched by adding GO mapped DTIs to the network. The final network consists of 26,404 unique DTIs. b Network based infer-
ence (NBI) was used to predict new interactions between the drugs and targets (GO). Given a bipartite graph G = (N, E) where NisDT  (D is set of 
drug nodes, T is set of Target nodes), and E is edge between D and T. The green edges are the known DTIs and the red edges depict the predicted 
DTIs. A weight matrix is using NBI for the predicted and known DTIs. c Predicted edges were removed where predicted score Rji (where, R is the final 
resource matrix and j and i are the drugs and targets, respectively) was either zero or less than 20% of maximum DTI score for each drug. d 49 Mtb 
targets from DTI network were prioritized using combined evidence approach. A binary matrix was created with green (true) and red (false) placed 
for 4 conditions: (1) If syn/nonsyn variations are not present in the GMTV database. (2) If a human homolog is absent. (3) If the target is a reported 
essential gene. *Represents the target is present in prioritized list of targets from study done by Ramakrishnan et al. Representatives from the top 
10 prioritized targets are shown—panC is essential in vivo, inhA is a known TB target. DrugBank Ids of the predicted drugs for the targets are also 
shown
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Human and Mtb Dut enables development of inhibi-
tors specific to Mtb. We do stress that it is imperative to 
understand the key structural features of various proteins 
to consider them as viable targets.

5. Repurposed drug candidates for TB

As depicted in Table 1, we predicted 57 potential drug 
candidates for the 10 prioritized targets. These targets 
belong to metabolic pathways that are essential for sur-
vival of the bacteria such as folate biosynthesis, pyrimi-
dine biosynthesis, cell division, mycothiol biosynthesis, 
menaquinone biosynthesis, mycolic acid biosynthesis, 
lysine and riboflavin biosynthesis, and pentothenate 
biosynthesis. Although many of the predicted drugs are 
antibacterial, some drugs have reported indications as 
antiviral, antifungal, anti-cancer and treatment of bipo-
lar disorder. Moreover, some nutraceuticals and obesity 
drugs are also predicted as potential candidates for TB 
targets.

In order to understand the chemical diversity of the 
predicted drugs in context of the known drugs of the 
prioritized targets, chemical structural similarity analy-
sis was performed. At a dissimilarity coefficient of 0.15, 
while known and predicted drugs for FolP1, MenB, 
FtsZ and Tmk were observed to be structurally simi-
lar (Fig.  3a–d), no significant structural similarity was 
observed between the known and predicted drugs for 
Dut, InhA, RibH and MshD (Fig. 3e–h).

Discussion
RepTB is a systems based platform to identify repurpos-
ing candidates for TB. In this work, we have used a data 
driven approach towards prioritizing TB targets and 
identifying existing drugs that may act on Mtb. We use 
the concept of resource allocation between the connected 
nodes (reported drug-target pairs) to find association 
scores predicting the degree of association between pre-
viously unconnected drugs and targets. We use this con-
cept to identify if a drug not known to be associated with 
a TB target can be repurposed for TB using NBI scores. 
Based on the combined evidence based approach, 10 Mtb 
targets were prioritized. These genes are deemed essen-
tial for Mtb and do not have human homolog. Recently, 
there has been a keen interest in identifying combina-
tions of non-lethal genes whose incomplete inhibition 
can produce a lethal phenotype [35].

Rv3608c (FolP1, encoded as DHPS) is part of the folate 
biosynthesis in which the reduced folate species partici-
pate in one-carbon metabolism that produce biochemi-
cally important biomolecules such as purines, thymidine, 
methionine, serine, and N-formylmethionyl-tRNA. The 
dTMP formed as a by-product of folate biosynthesis 

feeds into the DNA synthesis. DHPS converts 2-Amino- 
4-hydroxy-6-hydromethyl-7,8-dihydropteridine-P2 to 7,8- 
Dihydro-pteroate which in turn converts to 7,8-Dihy-
drofolate (DHF) that gets converted into folate by dfrA. 
Mtb is unable to acquire folate from environment and 
is dependent on de-novo synthesis [36]. Dapsone and 
other sulfonamides have been known to inhibit folP1 by 
exhibiting bacteriostatic effect [37, 38]. Sulfa drugs target 
the folP encoded protein DHPS. Sulfa drugs are struc-
tural analogs pABA and act as competitive antagonists 
of DHPS. In addition, these drugs can be alternate sub-
strates of DHPS and form sulfa-pteroates that cannot be 
further converted to folate that leads to a dead end in the 
pathway. Recently, mutations in the sulfa drug binding 
pockets of DHPS have caused resistance towards these 
drugs that has led to identification of alternate binding 
site in DHPS [39, 40]. The pterin binding pocket within 
the DHPS has a high degree of conservation and no sulfa 
drug resistance has been reported [41]. Hence, there 
have been studies designing compounds for inhibiting 
DHPS by binding to pterin binding pocket [42]. Three 
drugs were predicted for FolP1. DB04196, DB03705, and 
DB04047 are known to target Bacillus anthracis FolP 
protein and DB04047 is also known to target B. anthra-
cis FolP and E. coli FolK proteins. The molecular function 
GO terms of folP and folP1 genes are same (GO:0004156) 
even though the term assigned to B. anthracis folP gene 
is by IEA (Inferred from Electronic Annotation). Folk 
differs from FolP1 by transferring phosphorus-c moiety 
rather than alkyl or aryl group. These drugs can be repur-
posed against Mtb. The three predicted drugs for FolP1 
are antibacterial drugs DB03705 (6-Methylamino-5-Ni-
troisocytosine), DB04196 (Pteroic Acid), and DB04047 
([Pterin-6-Yl Methanyl]-Phosphonophosphate). DB03705 
and DB04196 interact with single targets in the DTI net-
work while DB04047 interacts with only 2 targets in the 
network indicating low promiscuity in the DTI network 
suggesting a high specificity for the target. It has been 
reported that folP2 gene blocks sulfamethoxazole (SMX), 
which inhibits FolP1. This causes resistance against the 
drug. It was shown that combining FolP2 and FolP1 
inhibitors can overcome the resistance in Mtb [38]. Simi-
larly, in our study, the prioritized target FolP1 is similar to 
the known targets of its predicted drugs and those drugs 
do not act via binding to the sulfa binding sites. Hence, 
show no resistance.

Rv3247c (Tmk) and Rv2697c (Dut) are involved in 
Pyrimidine biosynthesis. Thymidylate kinase (Tmk) of 
Mtb is essential for DNA synthesis by converting dTMP 
to dTDP. This enzyme lies in the junction of de novo and 
salvage pathways for biosynthesis of dTTP [43]. It also 
utilizes dUMP as substrate however with low affinity 
than dTMP [44]. Out of 11 predicted drugs for Tmk, 7 
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are gram-negative antibacterial drugs namely, DB01799 
(4-Hydroxy-3-Methyl Butyl Diphosphate), DB02480 
((S)-4-bromo-3-hydroxy-3-methylbutyl diphosphate), 
DB03165 (2-Dimethylamino-Ethyl-Diphosphate), 
DB03233 (Phosphoric Acid Mono-[3-Amino-5-(5-
Methyl-2,4-Dioxo-3,4-Dihydro-2h-Pyrimidin-1-Yl)-
Tetrahydro-Furan-2-Ylmethyl] Ester), DB04170 
(4-bromo-3-hydroxy-3-methyl butyl diphosphate), 
DB02594 (2′-Deoxycytidine), DB03723 (2′-Deoxy-Thy-
midine-Beta-L-Rhamnose). One is an antiviral drug 
DB03150 (2′,3′-Dideoxythymidine-5′-Monophosphate), 
one is a bipolar disorder drug DB02745 (Uridine) and 
two drugs, DB03195 (Phosphoric Acid Mono-[3-Fluoro-
5-(5-Methyl-2,4-Dioxo-3,4-Dihydro-2h-Pyrimidin-1-Yl)-
Tetrahyro-Furan-2-Ylmethyl] Ester), and DB03845 

(P1-(5′-Adenosyl)P5-(5′-(3′azido-3′-Deoxythymidyl))
Pentaphosphate) are indicated as anti-cancer. DB02594 is 
a known human TK2 and deoxycytidine kinase inhibitor, 
and E. coli class B acid phosphatase. DB03233, DB03150, 
DB03195, DB03845 are already known to interact with 
human Tmk (P23919) proteins. All these proteins share 
the same GO annotation thymidylate kinase activity 
(GO:0004798). DB01799, DB02480, DB03150, DB03165, 
DB03195, DB03233, DB03845, and DB04170 interact 
with single targets while DB02594 interacts with 3 tar-
gets, DB02745 and DB03723 interacts with only 2 tar-
gets each. Another predicted target, dUTPase (Dut) is 
required for the optimal growth of Mtb [45] plays and 
important role in the de novo and salvage biosynthesis 
of dTTP [46]. It maintains the dUTP/dTTP levels low 

Fig. 3 Predicted drugs for top 10 Mtb targets. The predicted targets are colored in pink. The known drug nodes of the targets are colored in green. 
The green edges show the known DTIs from the network. The dotted red line shows the highly similar (dissimilarity coefficient of 0.15) known and 
predicted drug for the specific target. Known and predicted drugs for FolP1, MenB, FtsZ and Tmk were observed to be structurally similar (panels 
a–d), no significant structural similarity was observed between the known and predicted drugs for Dut, InhA, RibH and MshD (panels e–h)
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by cleaving the dUTP to form dUMP and consequently 
preventing the incorporation of uracil into DNA. In addi-
tion, Dut is also responsible for production of dUMP is a 
precursor for dTTP formation for DNA synthesis. If the 
dut gene is non-functional, the uracil content goes up 
causing its incorporation into the DNA and consequently 
cell death [46]. Moreover, dUTPase knockouts are shown 
to be lethal in E.coli and S.cerevisiae [47, 48]. Hence, the 
prioritized Dut can be a viable target for TB. Predicted 
drug for Dut, DB04685 is an antiparasitic drug interacts 
with only 2 targets, a human Dut protein and a P. falci-
parum Deoxyuridine 5′-triphosphate nucleotidohydro-
lase. Both proteins have the same molecular function 
GO term as that of the prioritized Mtb target for dUTP 
diphosphatase activity (GO:0004170). According to the 
work done by Kaur et  al., it is possible to predict the 
vulnerability of a target in silico and to assess the bac-
tericidality based on the NAD/NADH redox ratio [49]. 
Knockout of some of the genes can lead to increase in 
this ratio that differentiates whether the mutation is bac-
teriostatic or bactericidal. The ratio under normal growth 
is maintained within 0.5–2. If the ratio increases above 5, 
the cidality increases. Both tmk and dut were assessed to 
be bacteriostatic genes [50] and since these genes belong 
to the same pyrimidine biosynthesis pathway, have no 
human homologs and are essential for the survival of 
Mtb, can be targeted together to produce a synergistic 
bactericidal effect.

Rv0548c (MenB) is part of menaquinone biosynthesis 
which is essential in the electron transport chain and oxi-
dative phosphorylation for the survival of Mtb. Menaqui-
none is synthesized by menA-G genes. MenB converts 
O-succinylbenzoyl-CoA to 1,4-dihydroxy-2-naphthoic 
acid (DHNA). Menaquinone has to be made continu-
ously to maintain the membrane stability during growth 
[51, 52]. Since Mtb does not have ubiquinone like other 
bacterial species, it is dependent on menaquinone for its 
ATP production. Inhibiting MenB will prevent transfer of 
electrons in ETC and consequently inhibit the ATP pro-
duction. Thus, a cascading effect will also decrease the 
activity of various other ATP-dependent efflux pumps. 
Our analysis predicted 13 drugs for MenB. Seven of 
these drugs—DB01669, DB01764, DB02516, DB03230, 
DB01846, DB02039, and DB3912 are antibacterials. 
DB01783 (Pantothenic acid), is used in treatment of tes-
ticular torsion, diabetic ulceration, wound healing, acne, 
obesity, diabetic peripheral polyneuropathy and DB03612 
(3-Hydroxybutyryl-Coenzyme A) is an inhibitor of mito-
chondrial beta-oxidation. DB03699, DB01856, DB03134 
and DB03905 drugs have been reported to target an 
unknown prokaryotic organism. However, the GO terms 
for the targets do not match with the predicted target. 
Since these drugs show low promiscuity, targeting MenB 

can therefore be a viable method of disrupting the forma-
tion of menaquinone and consequentially hindering bac-
terial growth [52].

Rv0819 (MshD) is an acetyltransferase and is a part 
of the mycothiol biosynthesis. 11 drugs were predicted 
for MshD. DB01669, DB01764 (Dalfopristin), DB03230, 
DB03912, DB01846, DB02516 are all antibacterials. 
DB01783 has been investigated for its hypolipidemic 
effects and as cholesterol lowering agent. Quinupristin-
Dalfospristin is a known inhibitor of Enterococcus faeca-
lis and is bacteriostatic against the bacteria. Also, when 
treated against Mycobacterium marinum was less active 
than clarithromycin [53]. However, when given in combi-
nation with other drugs like doxcycycline and ampicillin, 
the synergistic effect enhances the bactericidal activity 
[54]. DB03134, DB03699, DB03905 have been known to 
target unknown prokaryotic organisms.

Rv2150c (FtsZ) is part of the cell division process and 
standard anti-tubercular drugs are shown to be bac-
teriostatic towards FtsZ [49]. With the exception of 
DB08185, which is interacting with 27 different targets in 
the DTI, all the 17 predicted drugs for FtsZ have a very 
low promiscuity. Known targets for DB04723, Db06835, 
DB06921, DB07136, DB07157, DB07182, DB07269 share 
the molecular function GO term with FtsZ up to the 
hydrolase activity after which FtsZ branches out to fur-
ther annotation downstream. Moreover, known targets 
of DB02082 and DB02623 share the same depth of GO 
annotation as FtsZ suggesting that the predicted drugs 
could be explored for repurposing against FtsZ.

3,4-Dihydroxy-2-butanone 4-phosphate of pentose 
phosphate pathway is converted to 6,7-Dimethyl-8- ribi-
tyllumazine by Rv1416 (RibH). Since Mtb is not capable 
of taking riboflavin from the environment and riboflavin 
biosynthesis is absent in humans, RibH makes a great 
target for anti-tb drug therapy. Predicted drug DB02452 
is promiscuous and interacts with 10 targets in the DTI. 
However, according to the GO annotations, the known 
targets of DB02452 shared only single depth of the 
GO annotation as having a catalytic activity. Rv3602c 
(PanC) is part of the (R)-Pantothenate biosynthesis. 
A gene silencing study performed on panC reported 
that silencing panC in vitro was bacteriostatic in nature 
[55]. Predicted drugs for PanC, DB03255, DB03215, 
and DB07706, are antibacterial drugs and interact with 
only one target each hinting of high specificity. Rv2773c 
(DapB) is a part of lysine biosynthesis that feeds into 
peptidoglycan biosynthesis. Predicted drug for DapB, 
DB03969 is known to interact with E. coli DapB and can 
be repurposed for Mtb DapB.

Recently, there has been a renewed interest in Rv1484 
(InhA) which is already a known anti-tb target. Mtb has 
a single copy of enoyl reductase making inhA an essential 
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gene. However, known anti-tb drug, isoniazid is an inhib-
itor of InhA that acts via an indirect mechanism of action 
as a prodrug. It needs to be first activated by KatG. Since, 
there have been known mutations in KatG that cause 
resistance towards isoniazid, new direct inhibitors of 
InhA have recently been reported [56]. Predicted drugs 
for InhA in our study, DB04007, DB04393, DB08605 are 
antibacterials, DB05291 is an anesthetic, DB07453 and 
DB08607 have unknown indications. Known targets for 
DB07452, DB04047 and DB08608 share some functional 
GO based association with InhA. All these targets show 
oxidoreductase activity.

Polypharmcology is a preferred strategy to target more 
than one protein in Mtb. However, it is also impor-
tant that there are no anti-targets or off-targets of the 
predicted drugs in the host. In the combined evidence 
approach, targets that have similarity with the host pro-
teome are systematically eliminated from the prioritized 
list. So in essence, drugs with multiple targets in Mtb but 
no or few targets in host may be prioritized for further 
testing.

We identified similarity between the known and pre-
dicted drugs of the targets. FolP1, Tmk, FtsZ and MenB 
predicted drugs showed over 85% structural similar-
ity (Tanimoto similarity) with their known drugs. The 
predicted drugs, were subjected to FAF drug filter [57] 
to predict their ADME/tox properties. We used the 
XLOGP3 method as the logP computation program 
with following parameters as true: PPIHitProfiler, Fil-
ter undesirable substructures moieties, Filter Pan Assay 
Interference Compounds (PAINS) Filter (A, B, C), Lilly 
MedChem Rules (regular). Out of the 56 predicted drugs, 
4 drugs, namely, DB01764, DB07453, DB04196 (Pteroic 
Acid) and DB03969 passed all the FAF filters. Pteroic acid 
interacts with only one target in the DTI suggesting that 
the drug is not promiscuous. The drugs passed the FAF 
filter with desirable solubility and bioavailability suggest-
ing that these compounds can be repurposed for the Mtb. 
The predicted compounds therefore, offer a new set of 
diverse chemical space that can be tested further for their 
anti-tb activity.

Based on the analysis done so far, it was observed that 
some targets of the predicted drugs fall in metabolic 
pathways that have common precursors and may be 
inhibited simultaneously for synergistic effect as shown 
in Fig. 4.

The structure based drug discovery process is based 
on the availability of three-dimensional structures of 
the target protein. Although there are 2052 Mtb struc-
tures in PDB, only ~ 700 representative structures for 
Mtb proteins are present. Therefore, alternate methods 
are needed to complement the structure-based prioriti-
zation of drug target space. For the predicted DTIs, we 

compared our results with those of other groups [20, 
21] which are primarily based on the extent of structural 
information available for the Mtb proteins. Although 
there were no common predicted DTIs among the stud-
ies, there were common predicted targets such as InhA, 
PanC, MshD, FolP1, and MenB. Our work, therefore, 
complements published methods by providing new DTIs 
based on the molecular function associations between a 
drug and its known target. We have tried to incorporate 
GO information to the highest level of annotation for 
each target. Since, most proteins have broader GO terms, 
the functional aspect of DTI network is still a work in 
progress and as the GO terms for the targets become 
more descriptive, the GO mappings will be more precise 
leading to better predictions. We believe that RepTB may 
complement the efforts towards alternate process of drug 
discovery by predicting hidden drug-target associations.

Conclusion
It is an established fact that TB is a global pandemic. 
There is an increasing demand for not only new drugs but 
also for innovative drug discovery strategies. In this work 
we created RepTB, a GO based DTI network to identify 
potential repurposed candidates for TB. RepTB uses 
combined evidence approach to prioritize Mtb targets. In 
addition, we also propose new chemical space that may 
be taken further for validation. Our method relies heav-
ily on the availability of well-defined GO annotations and 
we believe that our method will be more accurate with 
improved annotations of the Mtb proteome. We, there-
fore, conclude that we have predicted diverse compounds 
that can potentially act as anti-tb. To the best of our 
knowledge, this is the first recommendation system to 
predict DTIs for TB through NBI and can also be applied 
for any other infectious agent.

Methods
1. Data acquisition and network generation
 Known drug target interactions were taken from 

DrugBank [28–31] (version 4 downloaded in Octo-
ber 2015 and updated in February 2016). The origi-
nal list contained 6630 unique drugs and 4083 unique 
targets. The total DrugBank DTIs were 15824. The 
data files, codes and associated documents are avail-
able through the GitHub link: http://ab-openl ab.csir.
res.in/gitla b/openl ab/reptb /tree/maste r

2. Gene Ontology (GO) mapping for network enrich-
ment

 We downloaded the molecular function GO map-
pings from QuickGO [32, 33] database of EBI. The 
data was filtered based on evidence codes mentioned 
in Additional file  3. Evidence codes IEA (Inference 
from Electronic Annotation), NAS (Non-traceable 

http://ab-openlab.csir.res.in/gitlab/openlab/reptb/tree/master
http://ab-openlab.csir.res.in/gitlab/openlab/reptb/tree/master
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Author Statement) and ND (No Biological Data) 
were excluded as these three evidence codes either 
are not curated or do not have supporting reference. 
We mapped the leaf nodes of the GO annotations to 
DrugBank targets. If two targets shared the same GO 
code, a new DTI edge was created (http://ab-openl 
ab.csir.res.in/gitla b/openl ab/reptb /tree/maste r).

3. Drug-Target Network Projection using Network-
Based Inference

 A drug-target interaction can be represented 
as a bipartite graph G(D,T ,E) , where drug set 
D =

{

d1, d2, . . . , dm
}

 , target set T = {t1, t2, . . . , tn} 
and E = eij : tiT , djD . An edge is formed if a drug is 
associated with a target. This graph can also be rep-
resented as an n×m adjacent matrix 

{

aij
}

 , where 
aij = 1 , if ti and dj are linked and aij = 0 if ti and dj 
are not linked.

 We denoted f0(o) = aio, o{1, 2, . . . ,m} as the 
initial resource of drug do , for a target ti , and 
f
(

j
)

 as the final resource of drug dj . The final 
resource allocation can be depicted in a matrix 

form as 
′

f
i

= W
′

f0i , where 
′

f0i is the column vec-

tor of f0 and W  is a weight matrix depicted as 

W =
{

wpq

}

m×m
=

{

1

k(tq)

∑n
l=1

aplaql
k(dl)

}

m×m
 , where 

k(dl) =
∑m

s=1 asl represents the number of targets 
that interact with drug dl .

4. Drug Target prioritization using recommendation 
system

 Predicted targets for each drug were prioritized by 
sorting in descending order of the NBI scores. DTIs 
with prediction scores of zero were removed and 
targets which had scores greater than 20% difference 
from the top score were taken as prioritized drug tar-
gets.

5. Prioritization of Mtb targets through combined evi-
dence approach

 A target prioritization matrix was created using 
data from four different research studies to further 
prioritize Mtb targets. If a target from our study is 
also prioritized in any of the other studies, a “yes” is 
marked in that cell, otherwise a “no” is marked. The 
matrix also takes into account the essentiality of the 
gene, whether Nonsyn/Syn changes observed in 
clinical isolates, and whether a human homolog is 

Fig. 4 Proposed targets for synergistic inhibition. The targets are shown in green oval shape. The proteins in blue oval belong to pathways shown 
in the figure. The known drugs of these targets are in black and the predicted drugs for these targets are shown in red box

http://ab-openlab.csir.res.in/gitlab/openlab/reptb/tree/master
http://ab-openlab.csir.res.in/gitlab/openlab/reptb/tree/master
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present or not for that target. We performed a blastp 
sequence similarity search between the Mtb targets 
and the human proteome. The search parameters 
were based on e-value < 1E − 4,   % identity of < 35% 
and query coverage of >=60%. We also matched our 
set of prioritized targets witha study done by Ram-
akrishnan et  al. [21] in which they predict DTIs by 
using sequence and structural analysis for under-
standing the evolutionary relationships between Mtb 
proteins and FDA approved drugs.

6. Near neighbor analysis to find chemically similar 
compounds

 We used ChemAxon’s JChem (Version 16.5.30.0) to 
find structurally similar compounds between known 
and predicted drugs for each of the target. Structural 
fingerprint for each of the drugs was calculated using 
the generatemd command from JChem as mentioned 
below:

 generatemd c < input_smiles_file > -g -k CF -f 
1024 -D -o < output_filename>

 Using this fingerprint, a tanimoto similarity coeffi-
cient was calculated to assess the structurally similar 
drugs using the nneib command:

 nneib -Xmx819 -f 1024 -t 0.3 -g < input_descrip-
tor_file ≫ output_near_neighbor_file –v

Cytoscape v3.5.1 [58] was used to represent the chemi-
cal space profiling for the above analyses.
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