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Abstract

Split-belt treadmill walking allows researchers to understand how new gait patterns are

acquired. Initially, the belts move at two different speeds, inducing asymmetric step lengths.

As people adapt their gait on a split-belt treadmill, left and right step lengths become more

symmetric over time. Upon returning to normal walking, step lengths become asymmetric in

the opposite direction, indicating deadaptation. Then, upon re-exposure to the split belts,

step length asymmetry is less than the asymmetry at the start of the initial exposure, indicat-

ing readaptation. Changes in step length symmetry are driven by changes in step timing and

step position asymmetry. It is critical to understand what factors can promote step timing

and position adaptation and therefore influence step length asymmetry. There is limited

research regarding the role of visual feedback to improve gait adaptation. Using visual feed-

back to promote the adaptation of step timing or position may be useful of understanding

temporal or spatial gait impairments. We measured gait adaptation, deadaptation, and read-

aptation in twenty-nine healthy young adults while they walked on a split-belt treadmill. One

group received no feedback while adapting; one group received asymmetric real-time feed-

back about step timing while adapting; and the last group received asymmetric real-time

feedback about step position while adapting. We measured step length difference (non-nor-

malized asymmetry), step timing asymmetry, and step position asymmetry during adapta-

tion, deadaptation, and readaptation on a split-belt treadmill. Regardless of feedback,

participants adapted step length difference, indicating that walking with temporal or spatial

visual feedback does not interfere with gait adaptation. Compared to the group that received

no feedback, the group that received temporal feedback exhibited smaller early deadapta-

tion step position asymmetry (p = 0.005). There was no effect of temporal or spatial feed-

back on step timing. The feedback groups adapted step timing and position similarly to

walking without feedback. Future work should investigate whether asymmetric visual feed-

back also results in typical gait adaptation in populations with altered step timing or position

control.
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Introduction

The ability to adjust a walking pattern to meet task demands–gait adaptation–is crucial to

mobility [1]. Gait adaptation is commonly assessed on a split-belt treadmill (SBT), which has

two independent belts. One measure of SBT gait that adapts is step length asymmetry [2–5].

Initially, healthy individuals walk on the SBT with asymmetric step lengths, where the leg on

the slow belt takes a longer step than the leg on the fast belt [2]. Step length asymmetry gradu-

ally decreases over the course of ten minutes, despite the belts still moving at different speeds.

Provided more than ten minutes to adapt, step lengths become asymmetric such that the fast

leg takes a longer step than the slow leg [4] likely in response to the work done by treadmill on

the legs [6–8]. Healthy individuals adjust their walking patterns on an SBT by adapting tempo-

ral (step timing) and spatial (step position) parameters when gait is perturbed [9, 10]. Here,

step timing refers to the time taken between the previous and the current foot strikes, and step

position refers to the distance between the pelvis and the lead ankle at foot strike.

When re-exposed to a typical treadmill, on which the belts are moving at the same speed,

healthy adults deadapt and return to their normal gait pattern, evidenced by aftereffects in step

length, step timing, and step position asymmetries that subsequently return to normal [2, 11,

12]. The aftereffect in step length asymmetry is opposite to the asymmetry seen during initial

adaptation. When then exposed to the same SBT perturbation a second time–readaptation–

the initial step length asymmetry is less than that seen during adaptation, demonstrating a

learning of the new gait pattern [11, 12].

Step timing and position may be dissociable and controlled separately, evidenced by the

alteration of spatial gait parameters independent of step timing [13–16]. In fact, cortical activ-

ity in felines measured during obstacle crossing indicate that separate cortical areas code for

position and timing during movement [17, 18]. Distinct populations of neurons in posterior

parietal cortex code for the distance from an object and for the timing before contact with the

object [17, 18]. This separation of spatial and temporal information allows for the discrete

adjustment of limb movements in both space and in time. Recent mouse [16] and human [13]

studies suggest that individuals cannot alter step timing without affecting step position. During

SBT walking, individuals provided with visual feedback and targets to walk with symmetric

step positions continued to adapt their step timing; conversely, individuals provided with

visual feedback and targets to walk with symmetric step times did not adapt step position [13].

Step position may be explicitly controlled without affecting step timing, but explicit control of

timing affects step position.

While we know that restricting adaptation in step timing affects position [13], we do not

know how providing feedback and targets congruent with step timing adaptation will affect

step length adaptation. As healthy individuals adapt to the SBT over ten minutes, they reduce

the initial asymmetry in step length [2, 3, 5]. To achieve this initial reduction in step length

asymmetry while the belt speeds are different, step timing and position asymmetries increase

to combat the difference in belt–therefore, leg–speeds. Long and colleagues reported that

healthy adults given spatial feedback do not adapt step length asymmetry or step timing differ-

ently than those given no feedback as belt asymmetry was gradually introduced [14]. The effect

of step position feedback on non-gradual SBT walking remains unknown. Asymmetric step

timing may indeed be an implicit goal of gait adaptation, considering that asymmetric step

timing is a determinant of the energy cost of SBT walking [19]. Understanding how the rate

and magnitude of step timing and position adaptation can be manipulated during SBT walking

is important for studying populations with impaired step timing or position control, such as

those with a history of stroke [9, 20], cerebellar ataxia [21], and essential tremor [22].
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The purpose of this study was to investigate the effects of temporal and spatial visual feed-

back and targets of step timing and position asymmetry on 1) step length difference, step tim-

ing asymmetry, and step position asymmetry, and 2) rates of adaptation, deadaptation, and

readaptation. We asked healthy young adults to adapt on an SBT and step to either asymmetric

temporal or spatial feedback congruent with adaptation. We asked a third group to walk on an

SBT with no feedback. We measured step length difference, step timing, and step position over

a set number of steps in adaptation, deadaptation, and readaptation. Conditions were mea-

sured by steps rather than time based on prior research suggesting that one step is considered

one trial [23, 24], and to compare our results to those of Gonzalez-Rubio and colleagues that

held timing and position symmetric [13]. We measured raw step length difference as opposed

to normalized step length asymmetry for consistency with the raw step timing and step posi-

tion feedback provided to participants.

Considering that step timing affects step position [10, 13–16], we hypothesized that tempo-

ral feedback would affect the adaptation, deadaptation, and readaptation of both step timing

and step position. Conversely, considering the control of step position does not seem to affect

step timing, we hypothesized that spatial feedback would affect the adaptation, deadaptation,

and readaptation of step position only. We expected that both feedback groups would adapt

step length difference quicker than the group provided no feedback.

Methods

Participants

We recruited thirty young adults ages 19 to 35 from the Auburn community. Participants

were excluded if they had: loss of vision, peripheral neuropathy, vestibular dysfunction,

active unstable medical or psychiatric conditions, diabetes, any orthopedic condition, a his-

tory of lower extremity surgery or injury requiring physical therapy, injury to the lower

extremity in the last six months, a score of less than 24 out of 30 on the Mini-Mental State

Exam [25] (due to the lack of literature citing Mini-Mental State Exam cut-off scores for cog-

nitive impairment in young adults, the established threshold value for older adults was

used), or previous experience walking on an SBT with belt speeds decoupled. Participants

were also excluded if they took medications affecting balance or alertness/attention (i.e.,

medications for depression, anxiety, and allergies). Auburn University student participants

were offered course extra credit for participating. All participants provided written informed

consent before participating in the study as approved by the Auburn University Institutional

Review Board. There were always two researchers involved in the data collection [26], and

there were up to four other research assistants in the room not observing the data collection

but processing data.

Participants were randomized into one of three groups. We performed a power calculation,

conservatively estimating an effect size of 0.25 and using an alpha of 0.05, for change in step

length difference. Twenty-four participants (6 per group) was needed to detect significant

interactions between 3 groups across 6 epochs with a power of 0.80. To be consistent with the

number of participants in similar studies, a total of thirty participants were recruited for this

study and randomized into the three groups. However, one participant in the Spatial Feedback

group screened out due to an inability to step to the spatial targets, resulting in nine partici-

pants in the Spatial Feedback group: No Feedback (n = 10), Temporal Feedback (n = 10), and

Spatial Feedback (n = 9). Similar sample sizes have been previously studied to explore the

effects of spatial and temporal visual feedback on gait adaptation (Gonzalez-Rubio et. al., 2019,

n = 7 per group [13]; Long et. al., 2016, n = 10 per group [14]).
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Locomotor adaptation paradigm

Kinematic data were collected from bilateral, passive-reflective markers placed according to

the Vicon Nexus Lower-Body Plug-in-Gait Functional Ai model using a 17-camera motion

capture system (100 Hz; Vicon, Oxford, UK, version 2.10) while participants walked on an

instrumented SBT (1000 Hz; Bertec Corporation, Columbus, OH). Each participant first

walked through the lab space to orient the participant to the lab environment. The participant

then began the SBT protocol. Participants held on to the side handrails for the duration of the

study [11, 22]. They were instructed to look at the display in front of them throughout SBT

walking. The electronic display was located directly in front of the participant at eye level for

all SBT walking conditions. Considering the effect of instruction on gait, participants were all

provided the same instructions [27].

First, all groups warmed up for two minutes by walking with the belts tied at 0.75 m/s.

Then, participants were given two minutes to practice the visual feedback paradigm while the

belts were tied at 0.75 m/s. Two minutes was sufficient for participants to reach 100 steps,

which has been previously used to familiarize participants to a visuomotor walking task [28].

No participant needed longer than two minutes to become familiar with the paradigm. More

details on the visual targets are provided in the Visual Feedback Paradigm section. After the

two-minute visual feedback practice, the belts were tied at 1.0 m/s for 150 strides (about three

minutes) then tied at 0.5 m/s for 150 strides (baseline, about 5 minutes), during which the

screen displayed fixation crosses for all groups. We defined a stride as heel-strike to heel-strike

of the same limb.

After baseline walking at 0.5 m/s, the treadmill was stopped completely. Then the treadmill

belts were set to the speeds for the “split” condition (adaptation). To ensure that during adap-

tation step length difference error would be augmented, the assigned slow leg was the leg that

had a longer step length during the last three strides of the tied walking warmup at 0.75 m/s.

Sixteen of twenty-nine participants (55%) walked with their dominant leg taking a longer step.

While walking at 0.75 m/s, participants walked with 19.3 ± 13.1 mm of step length difference,

which was an asymmetry of 2.0 ± 1.4% of participant stride length. The fast belt was set to 1.0

m/s and the slow belt was set to 0.5 m/s. This adaptation condition was maintained for 600

strides (about 14 minutes), during which the Feedback groups were given visual temporal or

spatial feedback and the No Feedback group was given fixation crosses. The treadmill was

stopped completely following adaptation.

Then, the treadmill belts were tied at 0.5 m/s for 150 strides (deadaptation, about 5 minutes)

to test for aftereffects, during which the screen displayed fixation crosses for all groups. The

treadmill was again stopped completely. Following deadaptation, the treadmill belts were set to

the same split condition as in adaptation for 150 strides (readaptation, about 3.5 minutes); the

fast belt was set to 1.0 m/s, and the slow belt was set to 0.5 m/s, during which the screen dis-

played fixation crosses for all groups.

Visual feedback paradigm

No Feedback group. The No Feedback group saw fixation crosses displayed on the screen

on both the left and right sides for all conditions–two-minute warmup, two-minute visual

feedback practice, 1.0 m/s walking, baseline 0.5 m/s walking, adaptation, deadaptation, and

readaptation (Fig 1). Participants in the No Feedback group were provided the following fixa-

tion cross instructions for each walking condition: “Look at the screen in front of you and

focus on the crosses as you walk. Look at the left cross as you take a left step and look at the

right cross as you take a right step.”
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Fig 1. Example television display and depiction of the kinematics given as feedback. The display was split into left and

right, representative of the left and right steps. The No Feedback group saw fixation crosses for all walking conditions.

Temporal and Spatial Feedback groups saw targets and feedback for the two-minute practice condition and the adaptation

condition and saw fixation crosses for all other conditions. The feedback for both Feedback groups looked the same:

horizontal target boxes for each leg with vertical blue bars that changed height with each step based on real-time kinematics.

If the top of the blue bar landed within the target box, the target box turned green. If the top of the blue bar landed above or
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Feedback groups. Participants in both the Temporal and the Spatial Feedback groups saw

fixation crosses and received the fixation cross instructions during the 0.75 m/s walking

warmup (Fig 1). During the two-minute visual feedback practice, participants in the Feedback

groups saw targets and real-time temporal or spatial visual feedback. The targets presented to

the Feedback groups during feedback practice were symmetric and were set to the participant’s

recorded natural step timing (Temporal Feedback group) or step position (Spatial Feedback

group). The targets for feedback practice were calculated from the last three strides [29, 30] of

the 0.75 m/s tied walking warmup. The Feedback groups were instructed to walk by keeping

their step timing or position within the targets. Then, during 1.0 m/s and 0.5 m/s tied walking,

participants in the Feedback groups saw fixation crosses on the screen.

During adaptation, participants in the Feedback groups again saw targets and real-time

temporal or spatial feedback, calculated from the last three strides during each of the 1.0 m/s

and 0.5 m/s tied walking conditions. Therefore, the horizontal target boxes were asymmetric.

The targets were intended to simulate the step timing and step position the participant would

achieve without feedback by the end of 1200 steps. Considering that individuals would achieve

different step timing and step position values by the end of 1200 steps, the targets chosen were

reflective of each individual’s natural stepping pattern at each belt speed when the belts were

tied. Pilot testing demonstrated that participants could physically achieve the step timing or

position asymmetries calculated from tied-belt walking, and that these asymmetries were con-

sistently significantly asymmetric across participants. The fast leg always targeted the higher

absolute value of step timing or step position, as this is how adaptation occurs in both the tem-

poral and the spatial domain when no visual feedback is present. Therefore, for the Temporal

Feedback group, the fast leg targeted the step timing when walking tied at 0.5 m/s (longer

time), and the slow leg targeted the step timing when walking tied at 1.0 m/s. For the Spatial

Feedback group, the fast leg targeted the step position when walking tied at 1.0 m/s (more

anterior foot placement), and the slow leg targeted the step position when walking tied at 0.5

m/s. Finally, during both deadaptation and readaptation, participants in the Feedback groups

saw fixation crosses on the screen.

Description of visual targets and feedback. When targets and real-time feedback were

displayed, the left and right targets were depicted as horizontal boxes, and the real-time step

feedback was depicted as left and right vertical blue bars. Consistent with the measured out-

comes, temporal targets and feedback were measured as the time between consecutive contra-

lateral foot strikes. Spatial targets and feedback were measured as the anteroposterior distance

from the ankle marker to the respective anterior pelvis marker at foot strike. With each step,

the vertical blue bars changed size based on either when or where the participant stepped for

the Temporal or Spatial Feedback group, respectively. When targets and feedback were on the

screen, participants in the Temporal Feedback group were instructed, “Look at the screen in

front of you. Aim to match the size of the bar to the target area on the screen, for each leg, by

adjusting when, not where you step down on the treadmill.” Participants in the Spatial Feed-

back group were instructed, “Look at the screen in front of you. Aim to match the size of the

bar to the target area on the screen, for each leg, by adjusting where, not when you step down

on the treadmill.” The horizontal target box turned green when participants stepped within

the target and turned red when participants stepped outside of the target.

below the target box, the target box turned red. In this example, the fast leg–determined prior to the adaptation condition–is

the left leg for the participant in both the Temporal and Spatial Feedback groups.

https://doi.org/10.1371/journal.pone.0247706.g001
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The maximum display height was calculated as the average of the two targets multiplied

by 1.75 (Temporal Feedback) or 2.75 (Spatial Feedback). The scaling factors were chosen

empirically from pilot testing as the optimal gain for successful targeting while ensuring that

the target boxes did not overlap. The error tolerance was determined as ±5% of the display

height such that the target area was a consistent size for both legs and for all participants

(average Temporal Feedback target height: 0.13 sec ± 0.01 sec; average Spatial Feedback tar-

get height: 35 mm ± 4 mm). The error tolerance relative to target values was 9 ± 2% for the

Temporal Feedback group and 15 ± 4% for the Spatial Feedback group. If a participant’s step

landed outside of the target, that step was counted as a missed step and the target box turned

red.

Data analysis

Treadmill gait events were marked in real-time using force data, for use in the visual feedback

paradigms and counting steps during each trial. The force data were not filtered live during

data collections, so a force threshold was empirically found to mark gait events consistently

and accurately above the noise of the treadmill (80 N threshold). Gait events were marked

post-processing by a custom MATLAB code (Mathworks, Natick, USA, version 2020a) using

unfiltered force data with the same threshold as the real-time event marking so that the analy-

sis would reflect the real-time step timing and position feedback. If a participant crossed over

the midline of the treadmill, kinematic data were used to mark gait events for the respective

step.

Step length was calculated as the anteroposterior distance between the ankle markers at

foot strike. Step timing was calculated as the time between contralateral consecutive foot

strikes where timeslow leg was the time, in seconds, from a fast leg foot strike to the subsequent

slow leg foot strike. Step position was defined as the anteroposterior distance from the ankle

marker to the respective anterior pelvis marker at foot strike. These calculated variables were

the same as the real-time targets and feedback to participants. These parameters have been

used previously as both feedback and measurement [13]. Asymmetry (step length, step timing,

and step position) was calculated using the following equation.

Asymmetry ¼ fast leg � slow leg

An asymmetry value of zero indicates that the legs on the fast and the slow belts were sym-

metric in the respective outcome measure. A positive asymmetry score indicates that the leg

on the fast belt had a higher value (longer step length, longer time to step, or stepped further in

front of the pelvis) than the leg on the slow belt. Step length difference, step timing asymmetry,

and step position asymmetry were measured during six epochs: early adaptation, early deadap-

tation, and early readaptation (first five strides) and at the plateau (mean of the last 30 strides)

of adaptation, deadaptation, and readaptation [20, 31].

The rates of adaptation in step length difference, step timing asymmetry, and step position

asymmetry were inferred from the number of steps a participant took until five consecutive

strides were within two standard deviations of the plateau during adaptation, deadaptation,

and readaptation. Although steps to plateau is not a direct measurement of the rate of adapta-

tion, it is indicative of the rate, where a larger number of steps to reach a plateau is a lower rate

of adaptation.

Participants walked for 600 strides during adaptation, 150 strides during deadaptation, and

150 strides during readaptation. However, only steady-state gait was analyzed, and data during

belt acceleration were not used. Therefore, participants walked for: adaptation, 598 ± 2 strides;

deadaptation, 146 ± 5 strides; readaptation, 149 ± 1 strides.
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Statistical analysis

Separate one-way ANOVAs compared group differences in age, height, mass, and typical

treadmill walking speed. A three (group) by six (epoch: early and plateau of adaptation, dead-

aptation, and readaptation) multivariate mixed model ANOVA assessed differences in step

length difference, step timing asymmetry, and step position asymmetry. A three (group) by

three (condition: adaptation, deadaptation, and readaptation) multivariate mixed model

ANOVA assessed differences in the number of steps to plateau in step length difference, step

timing asymmetry, and step position asymmetry. When sphericity was violated, a Green-

house-Geisser correction was used. Statistical significance was set at α = 0.05 for all analyses,

and Bonferroni post-hoc adjustments were applied when appropriate.

Results

One-way ANOVAs revealed no significant group differences in age (F(2,26) = 1.599,

p = 0.221), height (F(2,26) = 1.076, p = 0.356), mass (F(2,26) = 0.145, p = 0.866), or typical

treadmill walking speed (F(2,24) = 0.230, p = 0.796) (Table 1). Table 2 provides the F statistics,

p-values, and effect sizes for the omnibus statistical tests. Participants in the Temporal Feed-

back group stepped within the targets for 1032 of the 1200 steps, or 86% of the trial (SD: 103

steps, 9%). Participants in the Spatial Feedback group stepped within the targets for 919 of the

1200 steps, or 77% of the trial (SD: 87 steps, 7%).

Fig 2 depicts the means of each group’s adaptation, deadaptation, and readaptation curves

for step length difference, step timing asymmetry, and step position asymmetry. Fig 3 depicts

the mean and standard errors of each group’s asymmetry variables in each condition and sig-

nificant differences. There was a significant multivariate interaction between group and epoch

for the magnitude of step length difference, step timing asymmetry, and step position asymme-

try. Univariate tests revealed significant interactions between group and epoch in step length

difference, in step position, but not in step timing (Fig 3A–3C). In follow-up Bonferroni t-

tests, there were no differences between groups within conditions in step length difference (Fig

3A). Follow-up Bonferroni t-tests revealed that the Temporal Feedback group had smaller

aftereffects in step position asymmetry–i.e., a smaller magnitude in early deadaptation–than

the No Feedback group (p = 0.005, d = 1.49, Fig 3C). Otherwise, there were no significant dif-

ferences between groups within conditions in step position asymmetry.

Fig 4 depicts the mean, median, and quartiles of each group’s adaptation, deadaptation, and

readaptation steps to plateau in step length difference, step timing asymmetry, and step posi-

tion asymmetry, along with significant differences. There was a significant multivariate effect

of condition on the number of steps to plateau, but no multivariate interaction. There were sig-

nificant main effects of condition in all three variables. Participants reached a plateau in step

length difference in fewer steps (higher rate) during readaptation than during adaptation

(p< 0.001, d = 1.09, Fig 4A). Participants reached a plateau in step timing in fewer steps

(higher rate) during deadaptation than during adaptation (p = 0.015, d = 0.84), and in fewer

steps (higher rate) during readaptation than during adaptation (p = 0.009, d = 0.89, Fig 4B).

Participants reached a plateau in step position in fewer steps (higher rate) during readaptation

than during deadaptation (p = 0.008, d = 0.91, Fig 4C).

Discussion

The purpose of this study was to investigate the effects of asymmetric step timing and step

position visual feedback and targets on 1) step length difference, step timing asymmetry, and

step position asymmetry, and 2) rates of adaptation, deadaptation, and readaptation. This

study has four main findings. First, regardless of group, all participants were able to adapt to
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the perturbation induced by the SBT. Second, we hypothesized that visual feedback would

result in faster step length difference adaptation–however, visual feedback did not affect the

rate of adaptation. Third, we hypothesized that temporal feedback would affect step timing–

however, neither temporal nor spatial feedback altered step timing. Fourth, we hypothesized

that both temporal and spatial feedback would affect step position–while temporal feedback

altered step position deadaptation, spatial feedback did not alter step position.

Despite a group difference in step position aftereffects, all groups responded typically to the

SBT; step length difference decreased throughout adaptation, aftereffects in step length differ-

ence decreased throughout deadaptation, and step length difference was smaller upon second

exposure to the SBT. Therefore, stepping to explicit visual feedback did not change overall gait

adaptation, deadaptation, or readaptation. In line with previous literature, healthy young

adults walking with congruent visual feedback adapt the magnitude of step length difference

similar to adaptation without feedback [14]. We did observe smaller aftereffects in step posi-

tion in the Temporal Feedback group. Interestingly, these aftereffects did not carry over into

aftereffects in step length difference. However, our measurement of step timing and position

should not sum to step length difference when foot velocity is included, as should occur if we

had measured temporal, spatial, and velocity contributions to step length difference [9]. Nota-

bly, we specifically measured the timing between steps, and did not incorporate foot velocity

Table 1. Participant demographics in means and (standard deviations).

Group N Age (yr) Height (cm) Mass (kg) Sex Mini-Mental State Exam score Typical Speed (m/s) Longer Step at Baseline

No Feedback 10 21 (1) 169.9 (9.7) 75.1 (18.8) 4 M 29 (1) 1.03 (0.13) 6 Right leg

Temporal Feedback 10 20 (1) 173.4 (7.5) 78.0 (15.9) 4 M 29 (1) 1.07 (0.13) 5 Right leg

Spatial Feedback 9 21 (2) 168.0 (7.1) 74.1 (14.9) 3 M 29 (1) 1.04 (0.09) 4 Right leg

Longer Step at Baseline = the leg that naturally exhibited a larger step length when walking at 0.75 m/s tied, which was the leg on the slow belt during adaptation and

readaptation.

https://doi.org/10.1371/journal.pone.0247706.t001

Table 2. Main effects and interactions of the analysis of variances.

Summary of Mixed Model 3 x 6 Multivariate ANOVA for Magnitude of Step Length Difference, Step Position Asymmetry, and Step Timing Asymmetry

Group Epoch F(15,353.753) = 129.995, <0.001 Epoch × Group F(30,376.381) = 1.840, 0.005

Step Length Difference F(2,26) = 0.188, 0.829 F(2.798,72.751) = 248.918, <0.001 F(5.596,72.751) = 2.518, 0.032

η2p = 0.014 η2p = 0.905 η2p = 0.162
Step Position Asymmetry F(2,26) = 0.694, 0.508 F(2.900,75.388) = 22.922, <0.001 F(5.799,75.388) = 2.722, 0.020

η2p = 0.051 η2p = 0.469 η2p = 0.173
Step Timing Asymmetry F(2,26) = 1.672, 0.207 F(2.171,56.449) = 35.389, <0.001 F(4.342,56.449) = 1.439, 0.230

η2p = 0.114 η2p = 0.576 η2p = 0.100

Summary of Mixed Model 3 x 3 Multivariate ANOVA for Steps to Plateau in Step Length Difference, Step Position Asymmetry, and Step Timing Asymmetry

Group Condition F(6,100) = 5.824, <0.001 Condition × Group F(12,132.579) = 1.100, 0.365

Step Length Difference F(2,26) = 0.834, 0.446 F(1.428,37.131) = 13.105, <0.001 F(2.856,37.131) = 1.760, 0.174

η2p = 0.060 η2p = 0.335 η2p = 0.119

Step Position Asymmetry F(2,26) = 0.523, 0.599 F(1.366,35.510) = 4.255, 0.035 F(2.732, 35.510) = 1.428, 0.252

η2p = 0.039 η2p = 0.141 η2p = 0.099

Step Timing Asymmetry F(2,26) = 0.619, 0.546 F(1.093,28.429) = 9.715, 0.003 F(2.187, 28.429) = 0.173, 0.859

η2p = 0.045 η2p = 0.272 η2p = 0.013

Data are presented as F(df1,df2) = F-value, p-value. Boldfaced p-values indicate statistical significance at the multivariate or univariate follow-up level. Effect size (η2
p) is

reported for each effect.

https://doi.org/10.1371/journal.pone.0247706.t002
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into the timing parameter. We also did not include measurement of the velocity contribution

to step length difference, which is largely indicative of the belt speed differences [9]. Therefore,

it is not incongruous to observe aftereffects in step position but not in step length difference.

We did not observe group differences in step length difference, step timing asymmetry, nor

step position asymmetry during adaptation. Although we interpreted this finding to mean that

the feedback provided resulted in gait adaptation similar to adaptation without feedback, it is

possible that participants simply ignored the feedback and instead adapted normally to the

SBT. However, we found that healthy young adults can respond to this feedback during gait

adaptation considering two key results. First, participants reported explicitly modifying their

step timing or step position based on the feedback and targets provided and reported engage-

ment in the feedback for the duration of the SBT condition. Second, plateau values were not

Fig 2. Step length difference, step timing asymmetry, and step position asymmetry during adaptation, deadaptation, and readaptation. Red lines

indicate the No Feedback group, green lines indicate the Temporal Feedback group, and purple lines indicate the Spatial Feedback Group. Shaded areas

surrounding lines indicate SEM. Box plots before and after the line graphs indicate early and plateau values for each group, respectively, where lines

indicate the medians and the upper and lower quartiles, crosshairs indicate the means, and whiskers indicate the minimum and maximum. Shaded

rectangles in Adaptation Step Timing Asymmetry and Adaptation Step Position Asymmetry indicate the targeted asymmetry for step timing and step

position, respectively.

https://doi.org/10.1371/journal.pone.0247706.g002
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different across groups indicating that step timing and position plateau values were correctly

calculated, and participants were able to achieve those values while stepping on-target for 86%

(Temporal Feedback) and 77% (Spatial Feedback) of the total steps. Despite our confidence in

the validity of the results of the visual feedback, future work should consider alternative

hypotheses, such as participants ignoring the feedback. Future work should replicate these

results in healthy young adults at different belt speed ratios (e.g., 3:1) and magnitudes (e.g., 1.5

and 0.75 m/s) to determine if the current visual feedback would induce different spatiotempo-

ral stepping strategies during larger perturbations.

Considering that adaptation did not differ due to temporal or spatial feedback, healthy indi-

viduals may continue to use proprioceptive feedback from the treadmill even when explicit

visual feedback is provided. Populations with impaired proprioception or altered spatiotempo-

ral mechanics may benefit from visual feedback during gait adaptation. For example, people

with Parkinson’s disease demonstrate impairment in the proprioceptive system [32, 33], and

Fig 3. Bar graphs and individual values for A) step length difference, B) step timing asymmetry, and C) step position asymmetry during

adaptation, deadaptation, and readaptation. Red bars (circles) indicate the No Feedback group, green bars (squares) indicate the Temporal Feedback

group, and purple bars (triangles) indicate the Spatial Feedback Group. Individual points are plotted for all. Error bars indicate SEM. Asterisks indicate

condition differences, ��p<0.01.

https://doi.org/10.1371/journal.pone.0247706.g003

Fig 4. The number of steps it took to reach a plateau in of A) step length difference, B) step timing asymmetry, and C) step position asymmetry

during adaptation, deadaptation, and readaptation. Red boxes (circles) indicate the No Feedback group, green boxes (squares) indicate the Temporal

Feedback group, and purple boxes (triangles) indicate the Spatial Feedback Group. Lines indicate the medians and the upper and lower quartiles,

crosshairs indicate the means, and whiskers indicate the minimum and maximum. Individual points are plotted for all. Asterisks indicate condition

differences, �p<0.05, ��p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.pone.0247706.g004
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people with essential tremor demonstrate impairment in temporal gait adaptation [22]. In

such populations with existing impairments, visual feedback during gait adaptation may be

beneficial. In fact, visual feedback is known to improve gait in people with Parkinson’s disease

(see Muthukrishnan et. al. for a review [34]). Future work should study the efficacy of visual

feedback on gait adaptation in populations with impaired proprioception or altered spatiotem-

poral mechanics, such as people with Parkinson’s disease [32, 33], moderate to severe cerebel-

lar ataxia [21], a history of stroke [9, 20], and essential tremor [22].

There was no difference in the number of steps to plateau between groups for step length

difference, step timing asymmetry, or step position asymmetry during adaptation, deadapta-

tion, or readaptation. We sampled healthy young adults that adapted step length difference

quickly–on average, in 65 ± 54 strides. This rate of adaptation is comparable to that observed

in previous studies. Although Roemmich et. al. [31] did not measure rate of adaptation, adap-

tation in the feedback group was deemed faster than in the no-feedback group due to a smaller

step length difference over the first 6–200 steps (~3–100 strides). Conversely, Malone and Bas-

tian reported that step length difference and spatial control adapted within about 200 strides in

a no-feedback group, while temporal control adapted within about 100 strides [15]. These val-

ues are about three times the observed rate in the current study; however, it is imperative to

note methodological differences. The current study determined that a plateau was attained

when the magnitude of the variable in question was within two standard deviations of the pla-

teau, whereas Malone and Bastian determined a plateau was attained when the value was

within one standard deviation of the plateau. Additionally, we augmented participants’ base-

line asymmetry, which may have led to higher early step length difference than if we had not

augmented baseline error. A higher initial magnitude of asymmetry likely requires more steps

to reach a plateau than does a lower initial asymmetry.

Neither type of visual feedback affected step timing. The lack of difference in step timing

asymmetry between groups during early adaptation indicates that when given no feedback and

when given spatial feedback, healthy young adults adjust their step timing relatively quickly,

no differently than if given temporal feedback. Likewise, we did not observe differences due to

temporal feedback in the aftereffects or readaptation in step timing. The finding that spatial

feedback does not affect the adaptation of step timing replicates findings by prior studies [13,

14], adding to the assertion that adaptation of step position can be controlled without affecting

the adaptation of step timing.

Our robust effect of the manipulation of step timing on step position is notable and rein-

forces two recent studies [13, 16]. Specifically, during early deadaptation the effect size in step

position between the No Feedback and Temporal Feedback groups was 1.49, indicating that

the two groups differed by almost one and a half standard deviations. Therefore, there is a

strong effect of temporal feedback during adaptation on step position during deadaptation.

Darmohray and colleagues lesioned the interpose cerebellar nuclei in rats that subsequently

walked on an SBT [16]. In those rats, temporal gait adaptation was reduced and spatial gait

deadaptation was reduced. In both the current study and that from Darmohray and colleagues,

manipulation of temporal features during adaptation led to altered spatial features during

deadaptation. Gonzalez-Rubio and colleagues studied human gait adaptation using a visual

feedback similar to the one in the current study but provided symmetric visual targets to

restrict step timing or position adaptation [13]. When step timing was restricted from adapt-

ing, step position adaptation was also reduced, again exemplifying the effect on spatial gait fea-

tures of temporal manipulation [13]. Taken together, these prior studies and the current study

suggest that manipulation of temporal gait adaptation affects spatial locomotor learning, but

spatial adaptation may be independently manipulated [10, 14].
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Given that step position can be directly mapped to physical space and timing cannot, the

visual feedback differences should be considered. Participants demonstrate negative asyn-

chrony and high variability in step timing when walking to a visual metronome [35]. Step tim-

ing is also made more complex in that it can be manipulated by altering the timing of either

stance or swing phase of the stepping leg. Participants may have implicitly retained spatial

adaptation when provided explicit temporal feedback. Indeed, implicit acquisition of a motor

skill leads to higher retention than explicit acquisition [36]. During walking, the implicit adap-

tation of step length leads to higher aftereffects [37]. However, our participants demonstrated

opposite effects from what would be expected if they had implicitly learned step position when

given temporal feedback; we noted reduced aftereffects in step position, not increased afteref-

fects. Alternatively, participants may have relied on explicit, voluntary step timing control to

achieve step position, and when that explicit feedback disappeared, so too did the voluntary

step position strategy. In this case, the effect of asymmetric temporal feedback on step position

may not carry over into subsequent walking conditions unless feedback is continually

provided.

This study is not without limitations. There was a discrepancy in target accuracy between

groups, where the Temporal Feedback group stepped on-target more frequently than the Spa-

tial Feedback group (86% ± 9% compared to 77% ± 7%). Although the mean difference was

only 9.4% of the total steps taken (113 steps of 1200 steps), the difference between group accu-

racy might influence results. Additionally, the chosen step timing and step position targets

may not truly reflect the desired “end goal” of the fast and slow legs. However, there were no

differences in step timing or position adaptation plateaus between the No Feedback group and

the Feedback groups. Therefore, it appears that the chosen targets led participants to a similar

final walking pattern as they implicitly would reach walking 1200 steps with no feedback.

Although our sample size is at the higher end of similar studies on the effects of visual feedback

on gait adaptation, it is still relatively small and that may affect our results. Finally, although

there was a consistent number of researchers involved in every data collection, there were up

to four uninvolved researchers present during some data collections, processing data. We do

not believe these uninvolved researchers influenced the data. However, as there is no current

understanding of the effect of non-observers on gait, it is possible these uninvolved researchers

influenced our study.

Conclusions

Healthy young adults can respond to asymmetric temporal and spatial feedback during gait

adaptation without altering step length difference, step timing asymmetry, and step position

asymmetry. Walking with asymmetric temporal feedback results in smaller aftereffects in step

position compared to walking without feedback, supporting the idea that temporal gait adapta-

tion may not be manipulated without also affecting spatial adaptation.
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