
nutrients

Review

Impact of Blood or Erythrocyte Membrane Fatty
Acids for Disease Risk Prediction: Focusing on
Cardiovascular Disease and Chronic Kidney Disease

Oh Yoen Kim 1,2,† , Su Mi Lee 3,† and Won Suk An 3,*
1 Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea; oykim@dau.ac.kr
2 Center for Silver-targeted Biomaterials, Brain Busan 21 Plus Program, Graduate School, Dong-A University,

Busan 49315, Korea
3 Department of Internal Medicine, Dong-A University, Busan 49201, Korea; promise131@hanmail.net
* Correspondence: anws@dau.ac.kr; Tel.: +82-51-240-2811; Fax: +82-51-242-5852
† O.Y.K. and S.M.L. contributed equally to this work.

Received: 30 August 2018; Accepted: 4 October 2018; Published: 7 October 2018
����������
�������

Abstract: Fatty acids (FAs) are essential nutrients and main constituents of cell membranes that
are involved in the signaling pathway and associated with health conditions. We investigated if
blood or erythrocyte membrane FAs can predict the risk of cardiovascular disease (CVD), chronic
kidney disease (CKD), and related complications. Omega-3 (n-3) FAs are important predictors for
metabolic syndrome, diabetes, CVD, and CKD risks, and the n-3 index is also a good biomarker for
sudden cardiac death in coronary artery disease. Linoleic acid, which is one of the major n-6 FAs
reflecting recent dietary FA intake, may predict CVD risk and mortality in the general population
and patients with CKD. Monounsaturated FAs (MUFAs) are also related to diabetes or diabetic
nephropathy. Oleic acid, a major MUFA, is an emerging marker that is related to acute coronary
syndrome, low glomerular filtration rate, and vascular calcification in patients with CKD, and can
be modified by n-3 FA supplementation. Saturated FAs, trans-FAs, and FA desaturation/elongation
are associated with CVD risk; however, few studies have been conducted on patients with CKD.
In summary, blood or erythrocyte membrane FA measurements are important for CVD and CKD risk
prediction and management. Further studies are needed to elucidate the FAs for their risk predictions.

Keywords: fatty acid; cardiovascular disease; chronic kidney disease; saturated fatty acid;
monounsaturated fatty acid; omega-3 fatty acid; omega-6 fatty acid; trans-fatty acid

1. Introduction

Fatty acids (FAs) are one of the important energy sources and membrane constituents and they
play essential roles in metabolic homeostasis through their functional properties being involved in the
signaling pathways of the body [1,2]. The cell membrane, including the mitochondria, is composed of
several FAs forming the lipid bilayer; thus, changes in FA contents may affect fluidity and affinity of
receptors on the cell membrane and transport of ion and consequently cause cell senescence, apoptosis,
or autophagy [3,4]. Therefore, changes in FA contents of the cell membrane or circulating blood
may be closely involved in several disease conditions. The prevalence of chronic kidney disease
(CKD) is increasing, owing to the increased proportion of elderly individuals and patients diagnosed
with obesity, hypertension, metabolic syndrome (MetS), diabetes, and cardiovascular disease (CVD).
CVD is not only a result of CKD, but also an important cause of CKD. However, the impact of FA
measurement in the blood or erythrocyte membrane for the prediction of CVD and CKD risks is not
clearly elucidated.
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The FA compositions in blood cholesteryl esters, phospholipids, or erythrocytes reflect the dietary
FA composition during the recent 1–3 months, as well as the endogenous conversion of ingested
FAs by desaturation and/or elongation [5,6]. Both dyslipidemia and hyperglycemia may also be
related to the FA compositions of the blood or erythrocyte membrane. It is well known that a higher
omega-3 (n-3) FA intake was associated with a reduced CVD mortality [7]. For several decades,
clinical trials and population-based epidemiological studies have attempted to decipher the effect of
dietary fats and blood or tissue FA, and their combination effect on metabolic disorders, such as MetS
and diabetes, and CVD and its complications, including CKD [8–11]. However, the results are still
controversial. In addition, there are few studies investigating the entire contents of FAs, saturated FA
(SFA), monounsaturated FA (MUFA), n-3 FA, n-6 FA, and trans-FA (TFA) [12]. Therefore, in this review,
we aimed to investigate whether blood or tissue FAs can be a useful predictor for the risk of CVD,
CKD, and related complications.

2. Impact of Dietary FAs on CVD Risk

Dietary guidelines emphasize both the quantity and quality of dietary fat for good health;
for example, the National Cholesterol Education Program-Third Adult Panel (NCEP-ATPIII)
guideline [13], American College of Cardiology (ACC)/American Heart Association (AHA) Cholesterol
Guideline [14], Dietary Reference Intake for Koreans (KDRIs) [15], and guideline for the management of
dyslipidemia by the Korean Society of Lipid and Atherosclerosis in 2015 [16] recommend individuals
to consume SFAs < 7% of the total calorie intake (TCI). These dietary guidelines also suggest the
consumption of at least 1 or 2 oily fishes per week, which provides 250–500 mg of docosahexaenoic
acid (DHA, C22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3) per day. In addition, the KDRIs
recommend a total dietary fat consumption between 15% and 30% of the TCI [15].

Dietary fat intake is related to circulating lipid profiles and CVD-related risk. According to
previous reports, increased SFA intake in relation to TCI is associated with increased total cholesterol
and low-density lipoprotein (LDL) cholesterol levels in the blood by reducing LDL receptor activities
in the cells and tissues [17]; it also increases inflammatory responses by increasing lipopolysaccharide
uptake in the intestine to access the blood stream easily [18,19]. This finding was also partly supported
by the report by Na et al. [20], showing that individuals that were consuming SFAs ≥ 7% of the TCI
showed significantly higher levels of neutrophil gelatinase-associated lipocalin (NGAL), one of the
inflammatory markers and early urinary biomarkers of tubulointerstitial injury, than those consuming
SFAs < 7% of the TCI.

A number of longitudinal and prospective cohort studies have also reported that n-3 FA intake can
be beneficial for CVD mortality reduction [21–23]; blood pressures (BPs); and, circulating triglyceride
levels were significantly reduced by daily consumption of ≥3 g of n-3 long-chain polyunsaturated FAs
(LC-PUFAs) in the form of fish oil, particularly in middle-aged and elderly individuals [23,24]. Conversely,
diastolic BP was lowered by daily intake of DHA increasing up to 0.7 g in the short term; however, the
endothelial function was not altered [25]. A cross-sectional study showed no significant relationship
between n-3 PUFA intake and brachial artery flow-mediated dilation (ba-FMD) [26]. In addition, the
endothelial function expressed by BPs, ba-FMD, and arterial stiffness were not improved by daily n-3
PUFA (1.3–3.0 g) injection for 1–3 months in young and middle-aged individuals [27,28] or by daily
consumption of ≤1 g of n-3 PUFAs for a year in healthy adults [21].

A meta-analysis and systematic review showed that a six-month consumption of a high MUFA
diet (>12% of the total energy content) effectively and significantly reduced the fasting glucose levels
and glycated hemoglobin percentages in adults with cardiometabolic risks, such as type 2 diabetes,
impaired glucose tolerance, insulin resistance (IR), overweight, or obesity [29,30]. However, the effect
of MUFA consumption on cardiometabolic risks is still controversial among studies; therefore, further
evidences from long-term clinical studies and large-scale population-based studies are needed.

A high dietary intake of TFA was associated with a higher risk of CVD in large cohort studies [12,31].
TFAs induce dyslipidemia, including increased LDL cholesterol and decreased high-density lipoprotein
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(HDL) cholesterol levels [32]. Therefore, the Food and Drug Administration in the United States obliges
food manufacturers and fast-food restaurants to indicate the TFA content in food labels, and the KDRIs
also recommend the consumption of TFAs < 1% of the TCI per day [15].

Based on the findings of previous reports, we summarized that the quality and quantity of dietary
fat intake reflect the circulating lipid profiles and CVD risk-related markers (Table 1), and cautiously
suggest that consumption of SFAs < 7% and TFAs < 1% of the TCI, respectively, within the
recommended range of the total fat intake in relation to the TCI might be beneficial for cardiovascular
health. In addition, regarding supplementary PUFA intake, the consumption of LC-PUFAs ≥ 3 g for
≥3 months would be effective in the reduction of CVD risk, including lowering of the circulating
triglyceride levels in healthy individuals; however, further evidence from large-scale long-term clinical
trials is needed to elucidate the optimal amount of consumption for cardiovascular health.

Table 1. Impact of dietary fatty acids (FAs) on cardiovascular disease (CVD) risk and chronic kidney
disease (CKD).

CVD Risk φ
CKD

Non-DM DM

PUFA BP ↓, TG ↓ [23,24] - Albuminuria ↓ [33,34]
GFR decline ↓ [33,34]

n-6 PUFA φφ - - Albuminuria ↓ [33,34]
GFR decline ↓ [33,34]

n-3 PUFA CVD mortality ↓ [7,21–23] - -

ALA - GFR decline ↑ [35] Albuminuria ↓ [33,34]
GFR decline ↓ [33,34]

DHA diastolic BP ↓ [25] - -

MUFA FBG ↓, HbA1c ↓ [29,30] GFR decline ↑ [36] Albuminuria ↓ [33,34]
GFR decline ↓ [33,34]

SFA TC ↑, LDL ↑, LDLR ↓ [17] NGAL ↑ [20] Albuminuria ↑ [37]
GFR decline ↑ [36,37] Albuminuria ↑ [33,38]

TFA CVD ↑ [12,31] LDL ↑, HDL ↓ [32] GFR decline ↑ [37] -
φ CVD risk includes dyslipidemia, inflammation, diabetes; φφ n-6 PUFA indicates linoleic acids. ALA, α-linolenic
acid; BP, blood pressure; CKD, chronic kidney disease; CVD, cardiovascular disease; DHA, docosahexaenoic acid;
DM, diabetes mellitus; FBG, fasting blood glucose; GFR, glomerular filtration rate; HDL, high-density lipoprotein
cholesterol; HbA1c, glycated hemoglobin; LDL, low-density lipoprotein cholesterol; MUFA, monounsaturated fatty
acids; NGAL, neutrophil gelatinase-associated lipocalin; PUFA, poly unsaturated fatty acid; SFA, saturated fatty
acids; TC, total cholesterol; TG, triglyceride; TFA, trans-fatty acids. Arrows pointing up and down indicate the
increase and decreased risks of CVD and CKD, respectively, during study.

3. Impact of Dietary FAs on CKD Risk Prediction

Albuminuria with a normal glomerular filtration rate (GFR) or a GFR of <60 mL/min/1.73 m2

without albuminuria indicates CKD, and both albuminuria and a low GFR also explain an increased
risk of CVD [39]. In fact, increased proteinuria, uncontrolled hypertension, and sustained high
glucose levels in diabetes and dyslipidemia are well-known risk factors for CKD progression [40–43].
Many studies have reported the importance of dietary fat in CKD and CKD progression and have
shown the association between dietary fat content and kidney function assessed by albuminuria or the
GFR [33–35]. A lower intake of PUFAs, linoleic acid (LA, C18:2n-6) and α-linolenic acid (ALA, 18:3n-3),
is related to CKD (24-h urinary albumin excretion of >30 mg and/or GFR of <60 mL/min/1.73 m2) in
patients with type 2 diabetes [33,34]. Significantly higher intake of PUFAs and lower intake of MUFAs
were found in patients with diabetes and CKD than in patients without CKD in a cross-sectional
study [34]. On the contrary, ALA intake was associated with CKD in the Blue Mountains Eye Study
with a total of 2600 participants aged ≥50 years [35]. Increased dietary intake of n-3 FA and fish
significantly reduced the odds ratio of having CKD; however, the FA contents were not measured in
this study [35].

A Mediterranean diet was associated with a decreased incidence of a GFR of <60 mL/min/1.73 m2

in the Northern Manhattan Study that enrolled 900 participants with a nearly normal baseline GFR [11].
However, the risk of hyperkalemia should be notified in patients with advanced CKD or those
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undergoing dialysis. In patients with diabetes, some studies have reported a positive relationship
between the progression of albuminuria and dietary SFA consumption [33,38]. A higher animal fat
intake was positively associated with the presence of albuminuria, while higher intakes of SFA, MUFA,
and animal fat were associated with a decreased estimated GFR in 3448 women during the 11 years of
follow-up of the Nurses’ Health Study [36]. In particular, animal fat was highly correlated with SFA in
this study. An inverse relationship between low-fat dairy food consumption and microalbuminuria
was reported in the Multi-Ethnic Study of Atherosclerosis (MESA) [44]. A higher SFA intake was also
significantly associated with a high incidence of albuminuria in 19,256 participants of the Reasons for
Geographic and Racial Differences in Stroke study [37]. In a subgroup analysis, the consumption of
SFAs and TFAs was associated with a reduced GFR after adjustment for age and energy intake [37].

Further studies are necessary to elucidate the relationship between dietary FA contents and
albuminuria or CKD incidence. It is presumed that consumption of less SFAs and TFAs may prevent
or delay the metabolic disturbances that progress GFR decline or microalbuminuria.

4. Blood or Tissue FAs as Predictors for the Risks of CVD and CKD

The FA compositions in circulating cholesteryl esters, phospholipids, or erythrocytes reflect the dietary
FA composition during the recent 6–12 weeks; particularly, LA and ALA in serum phospholipids
are known as biomarkers of long-term essential FA intake [1,2]. Ingested FAs are also endogenously
converted to other types of FAs by desaturation and/or elongation [5,6]. Numerous studies, including
clinical trials and population-based epidemiological studies, have reported the association of the
consumption of dietary fats and blood or tissue FAs with CVD, CKD, and related risks. Herein,
we summarized the association between FAs in the blood or tissues and the risk of CVD and CKD,
focusing on the role of FAs in the diagnosis and prognosis of CVD and CKD.

4.1. Impact of PUFAs on CVD Risk

n-3 PUFAs were reported to reduce the risk for CVD by modulating the established risk factors
(i.e., dyslipidemia, high BP, central obesity, and inflammation) through multiple relevant molecular
pathways [45]. The risk of type 2 diabetes was negatively associated with erythrocyte membrane n-3
PUFA in a cross-sectional study comparing age- and sex-matched controls [46]. According to previous
reports [45,47,48], the proportions of n-3 PUFAs, particularly DHA in serum phospholipids, were
significantly lower in patients with coronary artery disease (CAD) and particularly in those with MetS
than in controls without CAD [22]. The proportion of DHA in circulating phospholipids was also
inversely associated with CVD risk parameters and arterial stiffness expressed by the brachial-ankle
pulse wave velocity (baPWV) in metabolically healthy men [48]; conversely, a higher proportion of
DHA in the erythrocytes was associated with improved endothelial function, especially in young men
who had some features of IR [6]. In a previous report, DHA and EPA were found to be important FAs
for distinguishing between intracranial atherosclerotic stenosis (ICAS) and no cerebral atherosclerotic
stenosis among patients with stroke [49]. Particularly, the risk of ICAS was inversely associated with
the levels of DHA in blood phospholipids, indicating that the risk might be increased at lower levels
of DHA. It may indicate that sufficient amounts of DHA in the plasma may reduce the risk of ICAS.

The n-3 index, defined as the sum of EPA and DHA contents in the erythrocyte membrane, is a
potential risk factor for sudden cardiac death from CAD [50]. This index was closely related to EPA
and DHA contents in the cardiac tissue and blood phospholipid [50–52]. An n-3 index of >8% was
associated with protection from CAD mortality as compared with an index of <4% in a 10-cohort
meta-analysis [53]. A recent report showed that PUFAs in the red blood cells reflect the phospholipid
PUFA composition of major organs in mice [54]. Therefore, the erythrocyte membrane FA contents can
be an important biomarker for CVD risk.

The level of LA, an essential n-6 FA in serum phospholipids, was significantly lower in patients
with CAD patients and particularly in those with MetS than in controls without CAD [22]. Conversely,
the levels of arachidonic acid (C20:4n-6), dihomo-γ-linolenic acid (DGLA, C20:3n-6), and n-6/n-3
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PUFAs were higher in the serum phospholipids of patients with CAD than in those of healthy
controls [22]. Further, LA was negatively associated and DGLA was positively associated with arterial
stiffness in healthy controls [6]. Interestingly, Iggman et al. [55] showed, for the first time, that adipose
tissue LA, one of the most predictable biomarkers for dietary n-6 PUFA, was associated with a lower
all-cause mortality, with a tendency toward a lower CVD mortality through their 15 year-prospective
cohort study.

Numerous in vitro and in vivo studies have been performed to elucidate how PUFAs, particularly
n-3 PUFAs in the circulation, are involved in the mechanisms against atherosclerotic processes; n-3
PUFAs incorporate to membrane phospholipids and alter the physicochemical properties of membrane
structures, thereby making membrane-associated protein easily localized [45,56] and modulating
cellular inflammatory processes and cell growth or apoptosis through the mitogen-activated protein
kinase signaling or nuclear factor κB pathway [45,57–60]. Particularly, DHA and EPA, which are the
main n-3 PUFAs, significantly reduce the key regulators for cytokine transcription from circulating
immune cells, thereby attenuating the production of inflammatory cytokines, such as interleukin
(IL)-1β and IL-6 [61]. However, there are still controversial or contrary results [62].

Taken together, PUFAs, particularly n-3 FAs in circulating phospholipids or erythrocytes, may be
an indicator for CVD risk and play a protective role against atherosclerotic pathogenesis by controlling
inflammation and oxidative stress in blood and membrane conditions. However, as most studies have
been performed on circulating phospholipids, further studies on erythrocytes and tissues should be
conducted to elucidate the threshold of PUFAs, which would reflect the status of CVD risk.

4.2. Impact of SFAs, MUFAs, FA Desaturation/Elongation and TFA on CVD Risk

As mentioned above, a higher consumption of SFA is associated with abnormal lipid profiles and
pro-inflammatory responses not only in the circulation, but also in the tissues [15,17,18]. Similarly,
SFA composition in serum phospholipids was positively associated with triglyceride levels in
individuals with MetS; for example, high levels of palmitic acid (PA, 16:0) in circulating phospholipids
were observed in IR and MetS patients [47,63].

MUFA was also associated with the onset of type 2 diabetes and CVD risk [64–68]. According
to the report by Cho et al. [63], total MUFA, oleic acid (OA, 18:1n-9), palmitoleic acid (16:1n-7),
and ∆-9-desaturase (D9D, 18:1n-9/18:0 or 16:1n-7/16:0) activity were significantly associated with
early alteration of the fasting glycemic status and suggested as useful markers for predicting the
risk of type 2 diabetes and cardiometabolic diseases. The risk of type 2 diabetes was associated
with erythrocyte membrane PA, OA contents, and ∆-6 desaturase (D6D, 18:3n6/18:2n6) and D9D
(18:1n9/18:0) activities [46]. D9D is known as a rate-limiting enzyme that is responsible for converting
SFA to MUFA, e.g., PA and stearic acid (C18:0) to palmitoleic acid and OA, respectively [63,69]
(Figure 1). In this aspect, D9D could be thought as a cell protector against lipotoxicity caused by
over-accumulated SFAs; however, the products of D9D can also be the substrates for lipid synthesis
(i.e., triglycerides, cholesterol esters, and phospholipids), as well as the major lipid components of
cell membranes [24,48,65]. According to the report by Ortinau et al. [69], inhibition of stearoyl-CoA
desaturase 1 (SCD1, a mouse isoform of D9D) in obese mice improves glucose and insulin tolerance
and attenuates hepatic inflammation; however, these were not observed in lean mice. A prospective
cohort study also showed interesting results that palmitoleic acid in the adipose tissue is significantly
associated with an increased mortality, whereas heptadecanoic acid (17:0) in the adipose tissue was
associated with decreased mortality [12,47]. Therefore, higher conversion from SFAs to MUFAs by
D9Ds might contribute to the development of type 2 diabetes and CVD, which are strongly linked to
obesity and IR [45,61].
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Figure 1. Fatty acids elongation and desaturation pathways. PUFAs, polyunsaturated fatty acids; FAs,
fatty acids.

In addition, the activities of desaturating enzymes, such as ∆-5-desaturase (20:4n-6/20:3n-6),
are decreased, while those of D6D and D9D are increased in patients with obesity and MetS as
compared with healthy controls [45,61]. The activity of DGLA/LA, including that of elongase 5, which
indicates elongation from 18:3n-6 to 20:3n-6, as well as that of D6D, also increased in individuals
with metabolically unhealthy conditions [59]. Higher plasma phospholipid levels of the trans-isomers
of LA (trans-18:2) were associated with a higher risk of fatal CAD and sudden cardiac death in the
elderly [70]. In contrast, higher levels of the trans-isomers of OA (trans-18:1) were associated with a
lower risk of sudden cardiac death in this study. Higher erythrocyte membrane trans-18:2 contents
were also associated with sudden cardiac death [71]. Further studies are needed to investigate the
effects of trans-18:1 and trans-18:2 for CVD risk prediction.

Increased D9D activity and highly accumulated MUFAs, as well as higher proportions of SFAs
and trans-18:2 in the circulation and erythrocyte membrane, may be important indicators for CVD risk.
Particularly, desaturase or elongase activities estimated by the FA ratio can be a convenient indicator
for CVD-related risk.

4.3. Impact of PUFAs on CKD Risk Prediction and Renal Progression

Although the association between dietary fat intake and kidney function has been reported,
investigations with measurements of FA contents in human biological specimens are limited [72–74].
In an Italian population-based cohort study with a three-year follow-up, participants with a higher GFR
had higher levels of total PUFAs, n-3 FAs, and n-6 FAs in the plasma among 931 elderly subjects [72].
The plasma PUFA levels at baseline were inversely associated with urine protein excretion in this
study. In addition, participants with lower plasma PUFA levels at baseline had a higher risk of
developing renal insufficiency (creatinine clearance rate of <60 mL/min) among 398 participants with
a creatinine clearance rate of >60 mL/min during the three-year follow-up. Notably, only the n-3 FA
levels were inversely associated with the risk of developing renal insufficiency or death in this study.
In a randomized, placebo-controlled, two-period crossover trial that employed 4 g/day of n-3 FA
supplementation, increased contents of EPA and DHA in the erythrocyte membrane and decreased
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n-6-to-n-3 FA ratio were found in patients with diabetic nephropathy [73]. There were significant
decreases in the 24-h urinary excretion of albumin, NGAL, and liver FA-binding protein (LFABP)
among participants taking renin-angiotensin-aldosterone system blockers. NGAL and LFABP are early
biomarkers of tubulointerstitial injury [75,76]. This study supports that higher contents of n-3 FAs in the
erythrocyte membrane reflect less tubulointerstitial injury. We also speculate that lower contents of n-3
FAs in the erythrocyte membrane may be related to diabetic nephropathy. After kidney transplantation,
patients with low levels of n-3 FAs in the blood showed faster graft dysfunction than those with high
levels of n-3 FAs [74]. Lower levels of n-3 PUFAs in the plasma were positively associated with the
development of interstitial fibrosis during the first year after transplantation [77]. Therefore, circulating
n-3 FA levels may be a good indicator for kidney function after kidney transplantation. In a recent
study, n-3 FA supplementation attenuated the progression of albuminuria in subjects with type 2
diabetes and CAD [78]. Although this study did not measure the FA contents in the blood or tissues,
it can be assumed that individuals without the attenuated progression of albuminuria may have
increased EPA and DHA contents. Therefore, the measurement of FA contents may reinforce the study
quality, especially in intervention studies.

4.4. Impact of MUFAs on CKD Risk Prediction

The FA contents in the erythrocyte membrane at baseline were compared between healthy
volunteers and patients with diabetes in an n-3 FA supplementation study [79]. Patients with diabetes
showed higher OA contents in the erythrocyte membrane than healthy controls. We speculate that
higher OA contents in the erythrocyte membrane might be related to diabetes or diabetic nephropathy.
The plasma OA level increased with reduced kidney function in 29 patients with CKD stage 3–5 as
compared with that in 10 control subjects [80]. Monounsaturated cis-vaccenic acid (18:1n-7) in plasma
phospholipids was associated with a GFR of <60 mL/min/1.73 m2 in the 2792 participants from the
MESA [81]. However, there are few data explaining that SFAs, FA desaturation/elongation, and TFA
contents are related to albuminuria and CKD incidence. Further studies are needed to elucidate the
relationship between blood or erythrocyte FAs and albuminuria or CKD incidence.

4.5. Impact of FAs on CVD Risk Prediction and Mortality in Patients with CKD

CVD is commonly observed in patients with CKD and the mortality rate is high within the first
90 days of dialysis [82]. In patients undergoing dialysis, DHA in the erythrocyte membrane is inversely
associated with disease mortality [83,84]. The OA content in the erythrocyte membrane was increased
in patients with acute coronary syndrome or in those undergoing dialysis [85–88]; moreover, n-3 FAs
can reduce OA levels in patients undergoing dialysis [89,90]. It is presumed that erythrocyte MUFAs,
including OAs, might be related to CVD risk, and n-3 FAs can favorably control the FA contents in
the erythrocyte membrane under uremic conditions. The blood levels of SFA and MUFA are higher,
and the levels of PUFA are lower in patients undergoing hemodialysis (HD) than in healthy controls;
these findings are associated with lipid disorders and cardiomyopathy [91]. In patients with sudden
cardiac death during the first year of HD, sudden cardiac death has a positive relationship with the
serum levels of SFA and a negative relationship with those of n-3 FA; especially, it showed an inverse
relationship with the levels of DHA [92,93]. Among patients undergoing HD with established CVD,
the serum phospholipid DHA levels were significantly lower in patients with atrial fibrillation than
in those with sinus rhythm [94]. Arteriosclerosis in HD is also an important risk factor for CVD.
The baPWV and blood DHA levels had a negative association in patients without diabetes undergoing
HD [95]. In Swedish patients undergoing dialysis, the plasma LA levels were inversely related to
systemic inflammatory markers, such as IL-6, and all-cause mortality [96]. Conversely, the n-3 FA
levels were not associated with mortality in this study. This finding is presumed because of the high
intake of n-3 FA in the general Swedish population. This study raises the importance of increased
consumption of LA-rich food, such as vegetable oils [96].
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Free FAs, also known as non-esterified FAs, are essential as energy substrates for the myocardium
and can be harmful for cardiac function or structure [97]. Free FA accumulation is associated with CVD
risk and mortality. In a prospective cohort study including 1221 elderly men in Sweden, increased free
FA levels are associated with the risk for cardiovascular mortality in patients with CKD [98]. Even in
patients who underwent kidney transplantation, CVD is still a major cause of post-transplantation
mortality. In a Norwegian cross-sectional study that was conducted on 1990 subjects, the plasma
n-3 FA levels were associated with lower resting heart rate, lower triglyceride level, and higher
HDL level, which may be estimated to lower CVD risk [99]. In recipients of renal transplants, the
plasma phospholipid n-3 FA levels were associated with lower overall and cardiovascular mortalities.
In particular, sudden cardiac death and death from stroke were inversely associated with the n-3 FA
levels in transplanted patients [74].

It is assumed that FA modification via diet or FA supplementation can control CVD risk, including
BP, which is a well-known traditional risk factor for cardiovascular mortality in patients undergoing
dialysis. It is relatively well known that n-3 FAs have a favorable effect on cardiovascular morbidity and
mortality, although some studies did not show a reduced CVD risk after n-3 FA supplementation [100,101].
In particular, the AHA recommends that patients with CKD and heart diseases consume at least 1 g of
n-3 FA. Further large-scale prospective studies are necessary.

4.6. Impact of FAs on Vascular Calcification Prediction in Patients with CKD

Vascular calcification (VC) reflects vascular aging in the elderly [102]. It also increases the risk of
morbidity and mortality and it is commonly found, especially in patients with CKD [103]. This is an
active process in which the vascular smooth muscle cells differentiate into osteoblast-like cells; it is
induced by lipotoxicity, inorganic phosphate, inflammatory cytokines, and oxidative stress [104–107].
The reduction of klotho, an aging-related protein, is considered to be one of the causes of VC in
CKD [108]. SCD1 is associated with FA synthesis. The lack of klotho inhibits the expression of
SCD and eventually leads to VC [109]. A positive relationship between SFA accumulation and VC
was reported [110]. Arterial medial calcification induced by warfarin in Sprague-Dawley rats was
reduced after EPA supplementation (1 g/kg/day) [111]. Among patients undergoing HD, the OA and
MUFA contents in the erythrocyte membrane were significantly higher in patients with significant VC
scores than in those without significant VC scores [88]. However, the EPA and DHA contents in the
erythrocyte membrane were not different between the two groups. To date, no study has investigated
the role of the FA contents in VC in patients that were treated with peritoneal dialysis (PD). However,
even in patients undergoing PD, VC occurs frequently, as in those undergoing HD; it can be presumed
that there is a change in the FA levels with the presence of VC based on the fact that the contents of
erythrocyte membrane FAs, such as SFA and OA, have changed before and after taking n-3 FA [90].
Further large-scale prospective studies are needed to evaluate the role of the FA contents in VC in
patients with CKD.

5. Conclusions

Dietary intake is surveyed as one of the major health assessment parameters; however, it may not
always accurately reflect the status of chronically ill patients or elderly individuals. Many previous
studies have reported the association of the FA contents in the blood or erythrocyte membrane with
dietary FA intake or the risk of CVD and CKD, as summarized in Table 2. The properties of FAs
(i.e., chain length, desaturation, or saturation) in blood or erythrocyte membrane affect cell membrane
fluidity, affinity of the receptors, transport of ions, oxidative stress, and inflammatory response, which
are closely associated with cell death and survivals. Consequently, these phenomena can directly have
effects on vascular condition such as blood flow, glycemic status, stiffness, and calcification. Notably,
measurements of FAs in the blood or erythrocyte membrane provide information on the essential FAs
that are needed in deficient conditions as well as on avoidance of high contents of unfavorable FAs.
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Table 2. Blood or erythrocyte FAs as predictors for risks of CVD and CKD.

CVD CKD

DM or DL
or MetS AS ICAS or

CAD Mortality
Proteinuria

or GFR
Decline

VC CVD Mortality

PUFA ↓ [34,72,73] ↓ [91]
n-6
LA ↓ [6,48] φ ↓ [49] ↓ [55] ↓ [34] ↓ [96]

trans-LA ↑ [70] ↑ [70,71]
DGLA ↑ [6,48]

n-3 ↓ [46] ↓ [74] ↓ [92,93]
ALA ↓ [34]
DHA ↓ [46] ↓ [48] φ ↓ [49] ↓ [95] φ ↓ [94] ↓ [83,84,92,93]
EPA ↓ [46] ↓ [111]

n-3 index ↓ [46] ↓ [50,53]
MUFA ↑ [46,63] ↑ [88] ↑ [91]

OA ↑ [46,63] ↑ [53] ↑ [88]
trans-OA ↓ [70]

Palmitoleic acid ↑ [46,63]
SFA ↑ [18,63] ↑ [110] ↑ [91] ↑ [92,93]

∆-6-desaturase ↑ [46,63]
∆-9-desaturase ↑ [46,63]
φ Pulse wave velocity was used to evaluate the AS or VC. ALA, α-linolenic acid; AS, Arterial stiffness; CAD,
coronary artery disease; CKD, chronic kidney disease; CVD, cardiovascular disease; DM, diabetes mellitus;
DGLA, dihomo-γ-linolenic acid; DHA, docosahexaenoic acid; DL, dyslipidemia; EPA, eicosapentaenoic acid; GFR,
glomerular filtration rate; ICAS, intracranial atherosclerotic stenosis; LA, linoleic acid; MUFA, monounsaturated
fatty acids; MetS, metabolic syndrome; n-3 index, omega-3 index; OA, oleic acid; PUFA, poly unsaturated fatty
acid; SFA, saturated fatty acids; VC, vascular calcification. Arrows pointing up and down indicate the increase and
decreased risks of CVD and CKD, respectively, during study.Nutrients 2018, 10, x FOR PEER REVIEW  10 of 16 
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Figure 2. Possible mechanisms: blood or erythrocytes fatty acids as an indicator for cardiovascular
disease and chronic kidney disease risk prediction. FA, fatty acids; OA, oleic acid; BP, blood pressure;
LA, linoleic acid; GFR, glomerular filtration rate; CVD, cardiovascular disease; CAD, coronary artery
disease; CKD, chronic kidney disease; VC, vascular calcification.

Therefore, FA measurements in the blood or erythrocyte membrane can be useful for prediction
and management of CVD and CKD risks. This review presents that n-3 FAs and LA in the blood or
erythrocyte membrane can be used as positive parameters that play beneficial roles in the reduction of
CVD and CKD risks, but SFA and OA contents can be negative parameters which increase the risks of
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CVD and CKD (Figure 2). This review will be the base for future studies confirming the FAs for the
prediction of the risk of CVD, CKD, and related complications.
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