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Vascular endothelial growth factor (VEGF) is the predominant pro-angiogenic cytokine in human malignancy, and its expression
correlates with disease recurrence and poor outcomes in patients with colorectal cancer. Recently, expression of vascular endothelial
growth factor receptors (VEGFRs) has been observed on tumours of epithelial origin, including those arising in the colon, but the
molecular mechanisms governing potential VEGF-driven biologic functioning in these tumours are not well characterised. In this
report, we investigated the role of Src family kinases (SFKs) in VEGF-mediated signalling in human colorectal carcinoma (CRC) cell
lines. Vascular endothelial growth factor specifically activated SFKs in HT29 and KM12L4 CRC cell lines. Further, VEGF stimulation
resulted in enhanced cellular migration, which was effectively blocked by pharmacologic inhibition of VEGFR-1 or Src kinase.
Correspondingly, migration studies using siRNA clones with reduced Src expression confirmed the requirement for Src in VEGF-
induced migration in these cells. Furthermore, VEGF treatment enhanced VEGFR-1/SFK complex formation and increased tyrosine
phosphorylation of focal adhesion kinase, p130 cas and paxillin. Finally, we demonstrate that VEGF-induced migration is not due, at
least in part, to VEGF acting as a mitogen. These results suggest that VEGFR-1 promotes migration of tumour cells through a Src-
dependent pathway linked to activation of focal adhesion components that regulate this process.
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Three distinct receptor tyrosine kinases bind vascular endothelial
growth factor (VEGF): vascular endothelial growth factor receptor
(VEGFR)-1 (Flt-1), VEGFR-2 (Flk-1/KDR) and VEGFR-3 (Flt-4).
Vascular endothelial growth factor receptor 1 and VEGFR-2 are
expressed primarily on vascular endothelial cells, while VEGFR-3
is expressed primarily on lymphatic endothelial cells and regulates
lymphangiogenesis (Irrthum et al, 2000). Vascular endothelial
growth factor receptor 2 is believed to be the major mediator of
angiogenesis in human malignancy, as it regulates activation of
downstream effector molecules such as phosphoinositide 3-kinase
and AKT, and potentiates endothelial differentiation, DNA
synthesis and proliferation (Waltenberger et al, 1994; Meyer and
Rahimi, 2003). Vascular endothelial growth factor receptor 1
appears to function as a VEGF ‘sink’ during developmental
vasculogenesis, but may contribute to angiogenesis in pathologic
states such as ischaemia or malignancy (Hiratsuka et al, 1998,
2001; Carmeliet et al, 2001; Hayashibara et al, 2001).

In addition to their expression on endothelial cells, VEGFRs are
also expressed on cells of haematopoietic origin and have recently
been demonstrated on a variety of tumour types, including
prostate, ovarian, melanoma, non-small-cell lung, pancreatic and
colon (Decaussin et al, 1999; Ferrer et al, 1999; Masood et al, 2001).
While the functions of VEGFRs on tumour cells are not completely
understood, the concomitant production of VEGF and VEGFR
expression by tumour cells suggests the possibility that these
receptors mediate biologic functions in tumour cells. Indeed, in
cancers of the breast and skin (melanoma) and in some
leukaemias, VEGF/VEGFR autocrine signalling loops have been
identified (Bellamy et al, 1999; Dias et al, 2000, 2001; Lacal et al,
2000), but the elucidation of the contribution of individual VEGF/
VEGFR family members to biologic functions mediated by
individual receptors is only beginning to emerge. In a recent
work, Wang et al (2004) demonstrated differential regulation of
lymphoma xenografts utilising species-specific receptor antibodies
to VEGFR-1 and VEGFR-2. In that study, targeting tumour-
associated VEGFR-1 (human xenografted cells) increased apopto-
sis and diminished tumour growth, while targeting host (i.e.
murine) VEGFR-2 diminished microvascular density (Wang et al,
2004). Also, inhibition of VEGFRs with a synthetic binding
antagonist inhibited growth in xenograft models of colon and
other tumours (Ueda et al, 2005). Individual receptor ligands
may elicit different biologic responses as well. In PlGF�/� mice,
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VEGF-B (another VEGFR-1 ligand) failed to rescue vascular
development, suggesting that differential responses occur depending
on which ligand binds the receptor in vivo (Carmeliet et al, 2001).

Signalling pathways mediated by VEGFRs in both endothelial
and tumour cells are now being delineated. In endothelial cells, the
Src family kinases (SFKs), Src and Yes are required for VEGF-
induced vascular permeability and survival (Eliceiri et al, 1999).
Likewise, VEGF-induced Src activation and signalling has been
reported in Kaposi’s sarcoma cells (Munshi et al, 2000). However,
the possibility that VEGFRs require SFKs to mediate their biologic
effects in other tumours has not been established.

When bound to receptor protein tyrosine kinases, SFKs become
activated. Activation of SFKs has been implicated in progression
and metastasis of a variety of solid tumours (reviewed by Summy
and Gallick, 2003). Experiments in colorectal cancer have
demonstrated increasing Src kinase activity with progression from
adenoma to dysplasia to carcinoma and, finally, to metastatic
disease (Talamonti et al, 1993), suggesting a role for Src in
regulating colon tumour progression. Additionally, Src kinase
activity and VEGF have both been associated with poor prognosis
in patients with advanced colorectal cancer (Takahashi et al, 1997;
Werther et al, 2000; Allgayer et al, 2002). Thus, the potential of
VEGFRs to signal through SFKs in colorectal cancer may be of
clinical significance.

The purpose of this study was to determine whether SFKs must
be activated in order for VEGFRs to mediate biologic effects. We
tested the effects of VEGFR signalling through SFKs on cellular
migration and proliferation in human colorectal cancer cells. We
found that migration, but not proliferation, was significantly
increased, suggesting the potential role of VEGFR-1 expression in
tumour progression in these cells.

MATERIALS AND METHODS

Cell culture

HT29 cells derived from a human colon adenocarcinoma were
maintained as a subconfluent monolayer in Dulbecco’s modified
Eagle’s medium (DMEM/F12) with Earle’s salts and 2 mM

glutamine (Life Technologies, Inc., Grand Island, NY, USA)
supplemented with 10% foetal bovine serum (Hyclone Labora-
tories, Logan, UT, USA) without antibiotics and incubated in 5%
CO2/95% air at 371C. Highly metastatic KM12L4 human colorectal
carcinoma (CRC) cells were kindly provided by IJ Fidler, PhD,
DVM (The University of Texas MD Anderson Cancer Center,
Houston, TX, USA). Cells were cultured and maintained in
minimal essential medium (MEM) supplemented with 10% foetal
bovine serum (Hyclone Laboratories), 2 U ml�1 of a penicillin–
streptomycin mixture (Flow Laboratories, Rockville, MD, USA),
vitamins (Life Technologies, Inc., Grand Island, NY, USA), 1 mM

sodium pyruvate, 2 mM L-glutamine and nonessential amino acids,
and incubated in 5% CO2/95% air at 371C.

Creation of siRNA expression plasmids silencing Src gene
expression

SiRNA expression plasmids were created using the Ambion
pSilencer 1.0-U6 (Austin, TX, USA) according to the manufac-
turer’s directions. c-Src specific target sequences were designed
using the Ambion siRNA web design tool. The two target
sequences utilised were (52–71 bp) 50-AACAAGAG CAAGCC
CAAGGAT-30 and (226– 244 bp) 50-AAGCTGTTCGGAGGCTT
CAAC-30. Oligonucleotides corresponding to these sequences with
flanking Apa1 (50) and EcoR1 (30) ends were purchased from
Invitrogen/Life Technology (Carlsbad, CA, USA) and ligated into
the expression plasmid at compatible sites. Constructs were
confirmed by DNA sequencing. HT29 cells were then transfected

with 500 ng of each siRNA plasmid and 100 ng of pcDNA G418
resistance promoter-less plasmid for selection of transfectants.
Cells were then grown in selective media containing G418 as
described previously (Ahmad et al, 2001). Negative controls were
transfected with empty vector target sequences and pcDNA
plasmids at identical concentrations. Total c-Src expression levels
in siRNA clones were determined by Western blot analysis.

Inhibitors/recombinant growth factors

The novel, selective, potent Src kinase inhibitor, AP23464 (O’Hare
et al, 2004; Brunton et al, 2005; Corbin et al, 2005; Summy et al,
2005), or the commercially available Src kinase inhibitor, 4-amino-
5-(4-chlorophenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine (PP2)
(Calbiochem, San Diego, CA, USA) suspended in 1% dimethyl
sulphoxide (DMSO) at desired concentrations and the VEGFR-1
monoclonal blocking antibody IMC-18F1 were used in this study.
The recombinant human growth factors VEGF-A and VEGF-B
(R&D Systems, Minneapolis, MN, USA) were used at 10 and
50 ng ml�1, respectively, unless noted otherwise.

Cell lysis

Cells in log growth phase at 50% confluency were serum starved
overnight and exposed to the VEGFR-1 blocking antibody IMC-
18F1 (20 mg ml�1), or AP23464 (1 mM) was added to culture media
for 1 h at 371C. Recombinant VEGF-A or -B or PBS control was
then added at the desired concentration, and, at the desired time,
cells were rinsed twice with ice-cold PBS and then lysed with RIPA-
B lysis buffer (20 mM sodium phosphate, 150 mM NaCl, 5 mM

EDTA, 1% Triton X-100, 0.5% sodium deoxycholate) supplemen-
ted with one tablet complete mini-EDTA protease inhibitor
cocktail (Roche Diagnostic, Manheim, Germany) and 1 mM sodium
orthovanadate (pH 7.4). Cells were harvested with the aid of a
rubber policeman, clarified by centrifugation at 13 000 g for 15 min
at 41C, and prepared for Western blot analysis or immunopreci-
pitation, as described previously (Windham et al, 2002).

Immunodepletion assay

Cleared cell lysates (250mg protein) were incubated overnight at
41C with 10ml anti-VEGFR-1 antibody (Oncogene Research
Products, Cambridge, MA, USA) or 10 ml antimouse IgG (Organon
Teknika, Durham, NC, USA). Immune complexes were formed by
the addition of 50 ml protein A:G agarose beads for 2 h at 41C. The
remaining soluble lysates were centrifuged at 13 000 g for 2 min
and the supernatants were collected for immunoblotting.

Immunoprecipitation and immune complex kinase assay

Cleared cell lysates (500mg protein) were incubated overnight at
41C with 10 ml of Src monoclonal antibody 327 (Oncogene
Research Products, Cambridge, MA, USA), 10 ml Yes antibody
1B7 (WAKO Biologicals, Richmond, VA, USA) or 6 ml focal
adhesion kinase (FAK) antibody (clone 2A7, Upstate Biotechno-
logy, Lake Placid, NY, USA). Immune complex kinase assays were
performed as described previously (Windham et al, 2002). Briefly,
immune complexes were formed by the addition of 10 ml of rabbit
antimouse IgG (Organon Teknika, Durham, NC, USA) for 2 h,
followed by 50 ml of 10% (v v�1) formalin-fixed Pansorbin
(Staphylococcus aureus, Cowan strain; Calbiochem, La Jolla, CA,
USA) for 60 min. Pellets were then washed three times in a buffer
consisting of 0.1% Triton X-100, 150 mM NaCl and 10 mM sodium
phosphate. Reactions were initiated at 221C by the addition of
10 mCi of [g32P]ATP, 10 mM Mg2þ and 100mM sodium ortho-
vanadate in 20 mM HEPES buffer to each sample. To analyse
phosphorylation of an exogenous substrate, 10 mg of rabbit muscle
enolase (Sigma-Aldrich, St Louis, MO, USA) was added to the
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reaction buffer. After 10 min, reactions were terminated by the
addition of SDS sample buffer. Proteins were separated by SDS–
PAGE on 8% polyacrylamide gels, and radioactive proteins were
detected by autoradiography.

Immunoblotting

Proteins (50mg) from clarified cell lysates were separated via 8%
SDS– PAGE and electroblotted onto polyvinylidene difluoride
membranes (Amersham Corp., Chicago, IL, USA). The membranes
were blocked with Tris-buffered saline/Tween (0.15)þ 5% dried
milk for 30 min at room temperature and probed with the desired
primary antibody diluted 1 : 1000 in blocking buffer overnight at
41C. Membranes were probed with antibodies to Src mAb#327
(Oncogene Research Products), Yes Ab 1B7 (WAKO Biologicals),
phospho FAKY397 (Biosource International, Camarillo, CA, USA),
phospho FAKY861 (Biosource International), FAK (BD Transduc-
tion, San Jose, CA, USA), Akt (5G3, Cell Signaling Technology,
Beverly, MA, USA), phospho-AktS473 (Cell Signaling Technology),
p42/44 Erk MAPK (Cell Signaling Technology), phospho-p42/44
ErkT202/Y204 (Cell Signaling Technology), VEGFR-1 (Oncogene
Research Products), paxillin (Cell Signaling Technology), phos-
pho-paxillinY118 (Cell Signaling Technology), p130cas (BD Trans-
duction), phospho-p130cas/Y165 (Cell Signaling Technology),
phosphotyrosine (4G10, Upstate, Lake Placid, New York, NY,
USA) and vinculin (Sigma-Aldrich). Primary antibody incubation
was followed by incubation with a horseradish peroxidase-
conjugated secondary antibody (Bio-Rad goat anti-mouse, sheep
anti-rabbit or rabbit anti-goat; Bio-Rad laboratories, Hercules, CA,
USA) diluted 1 : 3000 in blocking buffer for 1 h at room
temperature. Proteins were visualised with electrochemilumines-
cence detection reagents (Perkin-Elmer, Boston, MA, USA) and
detected with autoradiography.

Proliferation assay

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(M2128) (Sigma Chemical Corp., St Louis, MO, USA) was prepared
by dissolving 5 mg M2128 in 1 ml PBS. The solution was protected
from light and stored at 41C. To determine proliferation, HT29
cells (1.5� 103 cells) were seeded into 96-well plates in quintupli-
cate and allowed to adhere overnight in 10% complete DMEM/F12.
The medium was then removed and replaced with 0.2 ml of media
containing VEGF-A supplemented with solvent control, IMC-18F1
or AP23464 and allowed to incubate at 371C. At the desired time
point, 50 ml of prepared MTT solution was added to each well and
incubated at 371C for 2 h. The media was removed carefully and
the cells were solubilised in 0.2 ml DMSO. Plates were read using
spectrophotometric analysis at a wavelength of 570 nm using the
TECAN Genios plate reader and Magellan version 4.0 software.
Results are representative of three independent experiments.

Migration assay

The modified Boyden chamber migration assay was used as
described previously (Minard et al, 2005). Cells (2.5� 105 cells)
were suspended in the upper well of the migration chamber
(control inserts, 8 mm pore size; Becton-Dickinson, Bedford, MA,
USA) in 0.5 ml of serum-free media. The lower chamber was filled
with 0.75 ml of media with VEGF-A (10 ng ml�1) supplemented
with DMSO control, IMC-18F1 (20mg ml�1) or AP23464 (1 mM).
After 72 h of incubation, the nonmigratory colon carcinoma cells
on the upper filter surface were removed with a cotton swab, and
cells that had migrated to the lower filter were fixed and stained
with HEMA 3 (Biochemical Sciences, Swedesboro, NJ, USA)
according to the manufacturer’s instructions. The migratory cells
were counted under a microscope at � 100 magnification. Cell
images were obtained using a Sony PXC-990 3CCD colour video

camera (Sony of America, New York, NY, USA). Cells were
counted in five random fields per insert in triplicate.

Statistical analyses

Statistical differences among groups were examined using the
two-tailed Student’s t-test. Po0.05 was considered statistically
significant.

RESULTS

VEGF induces SFK activation in human CRC cells

A variety of growth factors are known to induce SFK activation in
endothelial cells. We examined HT29 and KM12L4 human CRC
cells to determine whether Src and Yes, the SFK members
principally expressed in these cells (Cartwright et al, 1989; Park
et al, 1993), are activated by VEGF-A. As measured by immune
complex kinase assay, treatment of HT29 cells with VEGF-A
(10 ng ml�1) increased both Src and Yes kinase activity in a time-
dependent manner (Figure 1A). Maximal activation (B2.5-fold
increase) was observed within 15 min, which is consistent with Src
activation by a number of ligands. Src expression did not change
during the time period analysed, consistent with our postulate that
VEGF-A increases specific activity of these SFKs. As shown in
Figure 1B, VEGF-A also activates SFKs in a dose-dependent
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Figure 1 Effect of VEGF on SFK activity in human CRC cell lines. (A)
Serum-starved HT29 cells at 50% confluency were untreated (0) or
stimulated with VEGF-A for 5, 10 and 15 min. Cell lysates were
immunoprecipitated with anti-Src or anti-Yes antibodies and subjected to
immune complex kinase assays (top two panels) or Western blotting with
the phospho-specific anti-Src Y416 antibody. Western blotting (following
immunoprecipitation) with anti-Src antibody demonstrates equivalent total
Src expression (bottom panel). (B) Serum-starved HT29 cells at 50%
confluency were untreated (0) or stimulated with indicated concentrations
of VEGF-A for 15 min. Cell lysates were immunoprecipitated with anti-Src
or anti-Yes antibodies and subjected to immune complex kinase assay. (C)
KM12L4 cell lysates were prepared and immunoblotted with SrcY416
antibodies and stripped and reprobed with total Src antibodies as described
above.
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manner in HT29 cells, with maximal kinase activation observed at
25 ng ml�1. Likewise, treatment of KM12L4 human CRC cells with
VEGF-A (10 ng ml�1) induced a similar increase in SFK activation
(Figure 1C) as that observed in HT29 cells.

VEGF-induced SFK activation occurs through VEGFR-1 in
HT29 cells

As reported previously, HT29 cells express VEGFR-1 but not
VEGFR-2 or VEGFR-3 (Fan et al, 2005). To demonstrate VEGFR-1
activation and specificity of the monoclonal VEGFR-1 blocking
antibody, IMC-18F1, tyrosine phosphorylation of VEGFR-1 was
determined by Western blotting. As presented in Figure 2A, VEGF-
A treatment resulted in marked increase in tyrosine phosphoryla-
tion of a 180 kDa cellular protein, which was effectively blocked by
pretreatment with IMC-18F1, confirming the ability of IMC-18F1
to inhibit VEGFR-1 activation without altering VEGFR-1 expres-
sion levels. Next, to determine whether activation of SFKs was
mediated by VEGFR-1, SFK activity with VEGF-A (ligand for both
VEGFR-1 and -2) and the VEGFR-1 specific ligand VEGF-B was
examined in the presence or absence of IMC-18F1. As shown in
Figure 2B and C, VEGF-A and -B induced similar SFK activation at
the doses indicated; however, pre-incubation of HT29 cells with
IMC-18F1 (20mg ml�1) abrogated Src and Yes activation by both
VEGF-A and -B, demonstrating that functional VEGFR-1 is
required for VEGF-mediated SFK activation.

Increased activity of SFKs usually results from direct association
with the cognate receptor. To determine whether VEGF induces
SFK/VEGFR-1 complexes, co-immunoprecipitation experiments
were performed with VEGF stimulation in the presence or absence
of VEGFR-1 blocking antibody. As demonstrated in Figure 2D,
VEGF greatly enhanced SFK/VEGFR-1 complex formation, and
this association was effectively blocked by pretreatment with IMC-
18F1. Immune complexes were not detectable when using an
irrelevant IgG antibody (data not shown). Taken together, these
results suggest that increased SFK activity may result from direct
interaction with VEGFR-1, though other mechanisms might
account for increased Src activity as well.

VEGF induces migration of human CRC cells

Src family members have been implicated in numerous biologic
activities, including proliferation and migration (reviewed by
Brown and Cooper, 1996; Thomas and Brugge, 1997). To identify
the potential biologic effects mediated by VEGFR-1 expression, we
first assessed cellular migration in response to VEGF-A, utilising a
modified Boyden chamber as described in Materials and Methods
(Figure 3). As demonstrated in Figures 3B and D, VEGF-A
treatment of HT29 and KM12L4 human CRC cells resulted in a
five- and three-fold increases in cellular migration, respectively,

over nontreated control cells (Po0.001). Pharmacologic blockade
of VEGFR-1 with IMC-18F1 or Src kinase inhibition with AP23464
or PP2 completely inhibited VEGF-induced migration in both cell
lines (Po0.001), again demonstrating the requirement of SFK
activation through VEGFR-1 in this process.

Effects of Src-targeted siRNA on VEGF-induced migration
of CRC

To independently confirm the requirement for Src in mediating
VEGF-A-induced migration, the ability of this ligand to affect
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Figure 2 Requirement for VEGFR-1 for Src activation by VEGF-A and
VEGF-B. (A) Lysates from VEGF-treated cells in the presence or absence of
the VEGFR-1 blocking antibody, IMC-18F1, following immunodepletion
with anti-VEGFR-1 antibody (first lane) or nonspecific IgG (second and
third lanes) were prepared, and the resultant supernatants were subjected
to Western blotting with anti-phosphotyrosine antibody or anti-VEGFR-1
antibody. (B, C) Serum-starved HT29 cells at 50% confluency were
pretreated with IMC-18F1 or PBS control for 1 h and were untreated (0)
or stimulated with VEGF-A or VEGF-B for 10, 15 and 30 min. Cell lysates
were immunoprecipitated with anti-Src or anti-Yes antibodies and
subjected to immune complex kinase assay or subjected to Western
blotting with anti-Src, anti-Yes or anti-VEGFR-1 antibodies to demonstrate
the lack of effect on expression of these proteins. (D) Lysates from VEGF-
A-treated cells in the presence or absence or IMC-18F1 were
immunoprecipitated with anti-VEGFR-1 antibody. The resultant immuno-
precipitates were run on SDS–PAGE and subjected to Western blotting
with antibodies to Src, Yes or VEGFR-1.
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migration in HT29 clones reduced in Src by stable expression of an
antisense expression vector was determined. As shown in
Figure 4A, two independent clones (siRNA cl.18 and 23) were
reduced by more than 80% in Src expression. These cells were
considerably reduced in their migratory abilities (Figure 4B),
consistent with Src being important in cellular migration, and
addition of VEGF-A did not increase migratory capability of these
cells (Figure 4C), providing further evidence that VEGF mediates
migration through Src activation. Basal proliferation of these cells
as determined by MTT assay did not differ significantly from
nontransfected parental cells (data not shown).

VEGF activates FAK, p130cas and paxillin in HT29 cells

In epithelial and fibroblast cells, migration is regulated, in part, by
activation of FAK. Recent studies in endothelial cells have
implicated FAK as required for VEGFR-1-induced tubulogenesis
(Maru et al, 2001). Src/FAK activation then leads to phosphoryla-
tion of both paxillin and p130cas. To determine if FAK were
activated upon treatment of HT29 cells with VEGF, both FAK
immune complex kinase assays and Western blot analysis for
specific FAK phosphorylation sites were performed as described in
Materials and Methods. As presented in Figure 5A, VEGF
treatment of HT29 cells increased both autophosphorylation of
FAK and phosphorylation of the exogenous substrate enolase two-
fold at 30 min. As enolase phosphorylation may also result from
Src being immunoprecipitated in the immune complexes, we
directly examined phosphorylation of Y861 and Y397 in response
to VEGF stimulation of HT29 cells. Phosphorylation of Y861, and
to a lesser extent Y397, was increased, and these increases were
blocked by prior addition of IMC-18F1. These findings are
consistent with previous experimental work in VEGFR-1 over-
expressing fibroblasts (Maru et al, 2001) and suggest crosstalk
between VEGFR-1 and FAK in HT29 cells. As shown in Figure 5B
and C, VEGF treatment of HT29 cells also increased tyrosine
phosphorylation of both paxillin and p130cas. Maximal phosphor-
ylation occurred within 15 –30 min, consistent with the kinetics of
Src and Yes activation. Pretreatment of HT29 cells with IMC-18F1
effectively blocked FAK, paxillin and p130cas phosphorylation,
confirming the requirement of VEGFR-1 for VEGF-induced
activation of these substrates. Together, these results suggest that
a VEGFR-1/SFK complex interacts with components of focal
adhesions, thus mediating cellular migration in HT29 cells.

VEGF does not induce proliferation in HT29 cells

Finally, to determine if VEGF-induced migration could be
accounted for, at least in part, by VEGF acting as a mitogen, we
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loading control. Parental HT29, siRNA control, siRNA cl. 18 and siRNA cl.
23 cells were placed in a modified Boyden chamber containing VEGF-A
(10 ng ml�1) or 10% FBS for 72 h. (B) Representative photos of VEGF-A-
treated cells (� 100 magnification). (C) Quantitation of migrated cells.
*Po0.001 vs VEGF-treated siRNA control.
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examined the effect of VEGF-A stimulation on proliferation of
HT29 cells. As shown in Figure 6, exogenous VEGF-A had no effect
on HT29 cell proliferation, as determined by MTT assay. Likewise,
pretreatment of HT29 cells with IMC-18F1 did not decrease
proliferation. Consistent with these findings, VEGF-A treatment of
HT29 cells induced minimal to no activation of Erk 1/2 or Akt, as
assessed by Western blotting for phosphorylated (active) forms of
these signalling enzymes (data not shown).

DISCUSSION

Our findings of VEGF-induced SFK activation and enhanced
cellular migration in human CRC cells demonstrate that functional
VEGFR-1 mediates intracellular signalling and biologic behaviour
in these cells. Src family kinase activation in response to VEGF has
been observed in cells of endothelial origin expressing VEGFRs,
and SFK members have been shown to associate with VEGFRs
upon activation (Chou et al, 2002). In contrast to work in
endothelial cells where Src preferentially associates with VEGFR-2
and Yes and Fyn with VEGFR-1, we observed Src and Yes kinase
complex formation with VEGFR-1 upon VEGF stimulation,
suggesting that at least in these tumour cells, association of SFKs
with VEGFR-1 may be more promiscuous than in normal
endothelial cells.

The ability of VEGF to mediate particular biologic functions
appears to be cell type specific, as does expression of VEGF
receptor subtypes. Many cell types exhibiting increased prolifera-
tion in response to VEGF express both VEGFR-1 and -2, or are of
nonepithelial origin. The significance of aberrant expression of
VEGFR-1 alone on tumours of epithelial origin remains unclear,
but a recently published work found a similar lack of proliferation
in VEGF-stimulated colon cancer cells expressing VEGFR-1 (Fan
et al, 2005).

Interestingly, we observed a robust increase in cellular migra-
tion and tyrosine phosphorylation of FAK, paxillin and p130cas in
CRC cells with VEGF stimulation, which appears to require
VEGFR-1. This is consistent with prior reports suggesting that
VEGFR-1 regulates cellular migration, while VEGFR-2 mediates
activation of the MAPK pathway and cellular proliferation
(Barleon et al, 1996). Further, our finding of VEGF-induced FAK
phosphorylation, resulting in its increased activation, is consistent
with previous studies on VEGFR-1-overexpressing fibroblasts
(Maru et al, 2001). This result suggests an interaction between
VEGFR-1 and FAK in HT29 cells. Whether this interaction is direct
or indirect remains to be determined.

Vascular endothelial growth factor is a pleuripotent cytokine
that induces angiogenesis, proliferation, migration, differentiation
and vascular permeability in endothelial cells (Leung et al, 1989;
Millauer et al, 1993; Neufeld et al, 1999). It is secreted by most, if
not all solid tumours, including those arising in colon, where it is
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Figure 5 Effects of VEGF on phosphorylation of FAK, p130cas and
paxillin in CRC. Serum-starved HT29 cells at 50% confluency were
pretreated with the VEGFR-1 blocking antibody (IMC-18F1) or PBS control
for 1 h and were untreated (0) or stimulated with VEGF-A for 10, 15 and
30 min. Cell lysates were immunoprecipitated with anti-FAK antibody and
subjected to immune complex kinase assay with enolase as an exogenous
substrate or subjected to Western blotting with anti-phospho-FAK Y861,
anti-phospho-FAK Y397 or anti-FAK antibodies as indicated (A), run on
SDS–PAGE and subjected to Western blotting with anti-phospho-p130cas

or anti-p130cas antibodies (B) or subjected to Western blotting with anti-
phospho-paxillin or anti-paxillin antibodies (C). Western blot for vinculin is
included to demonstrate equivalent protein loading.
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Figure 6 Effects of VEGF on CRC proliferation. HT29 cells (2� 103) in
96-well plates in serum-free media were untreated or treated with VEGF-A
(10 ng ml�1) in the presence of AP23464 (1 mM) or IMC-18F1 (20 mg ml�1)
and proliferation was determined by MTT assay as described in Materials
and Methods. Bars represent standard error of the mean. Results are
representative of three independent experiments.
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Figure 7 Model by which Src and VEGF contribute to tumour
progression and metastasis through activities in both tumour and
tumour-associated endothelial cells. In tumour cells (left) Src activation is
frequent, resulting from overexpression of growth factor receptors, FAK
and deregulated transcription (A). Src activation increases VEGF expres-
sion from tumour cells (B), leading to binding of VEGFR-1 (C), association
with and further activation of Src (D), and the subsequent autocrine loop
contributes to tumour cell migration through FAK activation (E). Vascular
endothelial growth factor produced by tumour cells also binds VEGF
receptors on endothelial cells (F), leading to association and activation of
Src in these cells (G) and leading to increased permeability through VE
cadherin phosphorylation affecting tumour cell extravasation (H), a process
critical for permeability and tumour cell extravasation (I). Thus, inhibitors of
VEGF, VEGFR-1 and Src may have therapeutic efficacy due to their effects
in both normal and tumour cells.
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the principal mediator of tumour angiogenesis and its expression
correlates with both disease recurrence and poor prognosis
(Takahashi et al, 1997; Werther et al, 2000). As anti-VEGF therapy
has demonstrated efficacy in patients with advanced CRC (Hurwitz
et al, 2004), further study of VEGF/VEGFR interactions in
endothelial and, perhaps, tumour cells is warranted (Figure 7).

Here we have shown that VEGFR-1 participates in intracellular
signal transduction and mediates biologic activity, specifically
cellular migration, in human CRC cells. The expression of this
receptor protein tyrosine kinase in tumour cells may further
amplify signalling pathways already activated in colon tumour
cells. Thus, VEGFR-mediated signalling offers novel targets for
therapeutic interventions, either by targeting the receptor itself or
important downstream mediators, such as Src. As Src activity has
been shown to regulate VEGF expression, particularly under
hypoxic conditions, in CRC cells (Ellis et al, 1998), the existence of
an autocrine signalling loop capable of enhancing tumour survival
and progression is intriguing. Delineating the mechanisms by

which individual receptor tyrosine kinases mediate biologic
activity in tumour cells is crucial for defining tumour-specific
targets for optimal therapy. As recent work has demonstrated the
presence of VEGFR-1 in multiple colon cancer cell lines and in
both primary and metastatic tumour samples (Fan et al, 2005),
VEGFR-1 may be a relevant clinical target, not only for its
expression in endothelial cells but also for its expression/function
in tumour cells.

ACKNOWLEDGEMENTS

This research was supported in part by NIH U54 CA 090810 (GEG),
NIH R01 CA 112390 (LEM), The Lockton Fund for Pancreatic
Research (LME, GEG), NIH T32 CA 09599 (DPL, JGT) and The
Eleanor B Pillsbury Fellowship-University of Illinois Hospital
(JGT).

REFERENCES

Ahmad SA, Liu W, Jung YD, Fan F, Wilson M, Reinmuth N, Shaheen RM,
Bucana CD, Ellis LM (2001) The effects of angiopoietin-1 and -2 on
tumor growth and angiogenesis in human colon cancer. Cancer Res 61:
1255 – 1259

Allgayer H, Boyd DD, Heiss MM, Abdalla EK, Curley SA, Gallick GE (2002)
Activation of Src kinase in primary colorectal carcinoma: an indicator of
poor clinical prognosis. Cancer 94: 344 – 351

Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D (1996)
Migration of human monocytes in response to vascular endothelial
growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87:
3336 – 3343

Bellamy WT, Richter L, Frutiger Y, Grogan TM (1999) Expression of
vascular endothelial growth factor and its receptors in hematopoietic
malignancies. Cancer Res 59: 728 – 733

Brown MT, Cooper JA (1996) Regulation, substrates and functions of src.
Biochim Biophys Acta Rev Cancer 1287: 121 – 149

Brunton VG, Avizienyte E, Fincham VJ, Serrels B, Metcalf III CA, Sawyer
TK, Frame MC (2005) Identification of Src-specific phosphorylation site
on focal adhesion kinase: dissection of the role of Src SH2 and catalytic
functions and their consequences for tumor cell behavior. Cancer Res 65:
1335 – 1342

Carmeliet P, Moons L, Luttun A (2001) Synergism between vascular
endothelial growth factor and placental growth factor contributes to
angiogenesis and plasma extravasation in pathological conditions. Nat
Med 7: 575 – 583

Cartwright CA, Kamps MP, Meisler AI, Pipas JM, Eckhart W (1989) pp60c-
src activation in human colon carcinoma. J Clin Invest 83: 2025 – 2033

Chou MT, Wang J, Fujita DJ (2002) Src kinase becomes preferentially
associated with the VEGFR, KDR/Flk-1, following VEGF stimulation of
vascular endothelial cells. BMC Biochem 3: 32

Corbin AS, Demehri S, Griswold IJ, Wang Y, Metcalf III CA,
Sundaramoorthi R, Shakespeare WC, Snodgrass J, Wardwell S,
Dalgarno D, Iuliucci J, Sawyer T, Heinrich MC, Druker BJ, Deininger
MW (2005) In vitro and in vivo activity of ATP-based kinase inhibitors
AP23464 and AP23848 against activation loop mutants of Kit. Blood 106:
227 – 234

Decaussin M, Sartelet H, Robert C, Moro D, Claraz C, Brambilla C,
Brambilla E (1999) Expression of vascular endothelial growth factor
(VEGF) and its two receptors (VEGF-R1-Flt1 and VEGF-R2-Flk1/KDR)
in non-small cell lung carcinomas (NSCLCs): correlation with angiogen-
esis and survival. J Pathol 188: 369 – 377

Dias S, Hattori K, Heissig B, Zhu Z, Wu Y, Witte L, Hicklin DJ, Tateno M,
Bohlen P, Moore MA, Rafii S (2001) Inhibition of both paracrine and
autocrine VEGF/ VEGFR-2 signaling pathways is essential to induce
long-term remission of xenotransplanted human leukemias. Proc Natl
Acad Sci USA 98: 10857 – 10862

Dias S, Hattori K, Zhu Z, Heissig B, Choy M, Lane W, Wu Y, Chadburn A,
Hyjek E, Gill M, Hicklin DJ, Witte L, Moore MA, Rafii S (2000) Autocrine
stimulation of VEGFR-2 activates human leukemic cell growth and
migration. J Clin Invest 106: 511 – 521

Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA (1999)
Selective requirement for Src kinases during VEGF-induced angiogenesis
and vascular permeability. Mol Cell 4: 915 – 924

Ellis LM, Staley CA, Liu W, Fleming RY, Parikh NU, Bucana CD, Gallick GE
(1998) Down-regulation of vascular endothelial growth factor in a human
colon carcinoma cell line transfected with an antisense expression vector
specific for c-src. J Biol Chem 273: 1052 – 1057

Fan F, Wey JS, McCarty MF, Belcheva A, Liu W, Bauer TW, Somcio RJ, Wu
Y, Hooper A, Hicklin DJ, Ellis LM (2005) Expression and function of
vascular endothelial growth factor receptor-1 on human colorectal
cancer cells. Oncogene 16: 2647 – 2653

Ferrer FA, Miller LJ, Lindquist R, Kowalczyk P, Laudone VP, Albertsen PC,
Kreutzer DL (1999) Expression of vascular endothelial growth factor
receptors in human prostate cancer. Urology 54: 567 – 572

Hayashibara T, Yamada Y, Miyanishi T, Mori H, Joh T, Maeda T, Mori N,
Maita T, Kamihira S, Tomonaga M (2001) Vascular endothelial growth
factor and cellular chemotaxis: a possible autocrine pathway in adult
T-cell leukemia cell invasion. Clin Cancer Res 7: 2719 – 2726

Hiratsuka S, Maru Y, Okada A, Seiki M, Noda T, Shibuya M (2001)
Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor
receptor-1) in pathological angiogenesis. Cancer Res 61: 1207 – 1213

Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M (1998) Flt-1 lacking the
tyrosine kinase domain is sufficient for normal development and
angiogenesis in mice. Proc Natl Acad Sci USA 95: 9349 – 9354

Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim
W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers
B, Ross R, Kabbinavar F (2004) Bevacizumab plus irinotecan,
fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J
Med 350: 2335 – 2342

Irrthum A, Karkkainen MJ, Devriendt K, Alitalo K, Vikkula M (2000)
Congenital hereditary lymphedema caused by a mutation that inactivates
VEGFR3 tyrosine kinase. Am J Hum Genet 67: 295 – 301

Lacal PM, Failla CM, Pagani E, Odorisio T, Schietroma C, Falcinelli S,
Zambruno G, D’Atri S (2000) Human melanoma cells secrete and
respond to placenta growth factor and vascular endothelial growth
factor. J Invest Dermatol 115: 1000 – 1007

Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989)
Vascular endothelial growth factor is a secreted angiogenic mitogen.
Science 246: 1306 – 1309

Maru Y, Hanks SK, Shibuya M (2001) The tubulogenic activity associated
with an activated form of Flt-1 kinase is dependent on focal adhesion
kinase. Biochim Biophys Acta 1540: 147 – 153

Masood R, Cai J, Zheng T, Smith DL, Hinton DR, Gill PS (2001) Vascular
endothelial growth factor (VEGF) is an autocrine growth factor for VEGF
receptor-positive human tumors. Blood 98: 1904 – 1913

Meyer RD, Rahimi N (2003) Comparative structure – function analysis of
VEGFR-1 and VEGFR-2: What have we learned from chimeric systems?
Ann N Y Acad Sci 995: 200 – 207

Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NP, Risau
W, Ullrich A (1993) High affinity VEGF binding and developmental

VEGFR-1-mediated signalling in colorectal cancer

DP Lesslie III et al

1716

British Journal of Cancer (2006) 94(11), 1710 – 1717 & 2006 Cancer Research UK

M
o

le
c
u

la
r

D
ia

g
n

o
stic

s



expression suggest Flk-1 as a major regulator of vasculogenesis and
angiogenesis. Cell 72: 835 – 846

Minard ME, Herynk MH, Collard JG, Gallick GE (2005) The guanine
nucleotide exchange factor Tiam1 increases colon carcinoma growth at
metastatic sites in an orthotopic nude mouse model. Oncogene 24: 2568 –
2573

Munshi N, Groopman JE, Gill PS, Ganju RK (2000) c-Src mediates
mitogenic signals and associates with cytoskeletal proteins upon
vascular endothelial growth factor stimulation in Kaposi’s sarcoma cells.
J Immunol 164: 1169 – 1174

Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular
endothelial growth factor (VEGF) and its receptors. FASEB J 13: 9 – 22

O’Hare T, Pollock R, Stoffregen EP, Keats JA, Abdullah OM, Moseson EM,
Rivera VM, Tang H, Metcalf III CA, Bohacek RS, Wang Y,
Sundaramoorthi R, Shakespeare WC, Dalgarno D, Clackson T,
Sawyer TK, Deininger MW, Druker BJ (2004) Inhibition of
wild-type and mutant Bcr – Abl by AP23464, a potent ATP-based
oncogenic protein kinase inhibitor: implications for CML. Blood 104:
2532 – 2539

Park J, Meisler AI, Cartwright CA (1993) c-Yes tyrosine kinase activity in
human colon carcinoma. Oncogene 8: 2627 – 2635

Summy JM, Gallick GE (2003) Src family kinases in tumor progression and
metastasis. Cancer Metastasis Rev 22: 337 – 358

Summy JM, Trevino JG, Lesslie DP, Baker CH, Shakespeare WC, Wang Y,
Sundaramoorthi R, Metcalf III CA, Keats JA, Sawyer TK, Gallick GE
(2005) AP23846, a novel and highly potent Src family kinase inhibitor,
reduces vascular endothelial growth factor and interleukin-8 expression

in human solid tumor cell lines and abrogates downstream angiogenic
processes. Mol Cancer Ther 4: 1900 – 1911

Takahashi Y, Tucker SL, Kitadai Y, Koura AN, Bucana CD, Cleary KR, Ellis
LM (1997) Vessel counts and expression of vascular endothelial growth
factor as prognostic factors in node-negative colon cancer. Arch Surg
132: 541 – 546

Talamonti MS, Roh MS, Curley SA, Gallick GE (1993) Increase in activity
and level of pp60c-src in progressive stages of human colorectal cancer.
J Clin Invest 91: 53 – 60

Thomas SM, Brugge JS (1997) Cellular functions regulated by Src family
kinases. Annu Rev Cell Dev Biol 13: 513 – 609

Ueda Y, Yamagishi T, Samata K, Hirayama N, Aozuka Y, Tanaka M,
Nakaike S, Saiki I (2005) Antitumor effects of synthetic VEGF-receptor
binding antagonist, VGA1155. Anticancer Res 25: 3973 – 3977

Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH (1994)
Different signal transduction properties of KDR and Flt1, two receptors for
vascular endothelial growth factor. J Biol Chem 269: 26988 – 26995

Wang ES, Teruya-Feldstein J, Wu Y, Zhu Z, Hicklin DJ, Moore MA (2004)
Targeting autocrine and paracrine VEGF receptor pathways inhibits
human lymphoma xenografts in vivo. Blood 104: 2893 – 2902

Werther K, Christensen IJ, Brunner N, Nielsen HJ (2000) Soluble vascular
endothelial growth factor levels in patients with primary colorectal
carcinoma. The Danish RANX05 Colorectal Cancer Study Group. Eur J
Surg Oncol 26: 657 – 662

Windham TC, Parikh NU, Siwak DR, Summy JM, McConkey DJ, Kraker AJ,
Gallick GE (2002) Src activation regulates anoikis in human colon tumor
cell lines. Oncogene 21: 7797 – 7807

VEGFR-1-mediated signalling in colorectal cancer

DP Lesslie III et al

1717

British Journal of Cancer (2006) 94(11), 1710 – 1717& 2006 Cancer Research UK

M
o

le
c
u

la
r

D
ia

g
n

o
st

ic
s


