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ABSTRACT

Interactions between cancer cells and immune cells in the tumor microenvironment influence tumor growth and can contribute to the
response to cancer immunotherapies. It is difficult to gain mechanistic insights into the effects of cell–cell interactions in tumors using a
purely experimental approach. However, computational modeling enables quantitative investigation of the tumor microenvironment, and
agent-based modeling, in particular, provides relevant biological insights into the spatial and temporal evolution of tumors. Here, we develop
a novel agent-based model (ABM) to predict the consequences of intercellular interactions. Furthermore, we leverage our prior work that pre-
dicts the transitions of CD8þ T cells from a naïve state to a terminally differentiated state using Boolean modeling. Given the details incorpo-
rated to predict T cell state, we apply the integrated Boolean–ABM framework to study how the properties of CD8þ T cells influence the
composition and spatial organization of tumors and the efficacy of an immune checkpoint blockade. Overall, we present a mechanistic under-
standing of tumor evolution that can be leveraged to study targeted immunotherapeutic strategies.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0205996

INTRODUCTION

The tumor microenvironment (TME) is a complex ecosystem
comprised of many different cell types, including cancer cells and
immune cells. It has long been shown that the immune system plays a
pivotal role in tumor development.1–4 Although immune cells can
detect malignant cells as “not-self” and then eliminate them, tumors
are still able to grow and escape the immune system. In fact, in several
cancer types, the TME has been shown to strongly contribute to the
immunosuppressive state of the tumor.5,6 Furthermore, several studies
point to the importance of the spatial location of stromal and immune
cells in predicting prognosis and treatment response.7,8 Thus, by con-
sidering the composition and spatial structure of tumors, it may be
possible to better understand the factors that drive tumor progression
and the efficacy of anti-cancer treatments.9

Given its complexity, efforts to extensively explore the TME using
in vitro and in vivomodels alone are intractable. Fortunately, computa-
tional modeling is a useful approach to study the TME and understand
how individual cell–cell interactions and changes at the molecular and

cellular levels influence tumor growth and response to treatment.10

For example, computational models have been used to better under-
stand the interactions within the TME and predict how to improve
immune-based cancer therapies.11 A range of computational models
have been developed to study various aspects of the TME and immu-
notherapy.12–15 Agent-based models (ABMs) have proven to be partic-
ularly useful,16–18 as they predict the spatial and temporal evolution of
tumors and can simulate tumor behavior for a range of different con-
ditions that are difficult and time-consuming to study using a purely
experimental approach. Many ABMs exist and enable quantitative
exploration of the TME. The level of detail included in the model
depends on the specific question being addressed. For example, many
ABMs use an entirely phenomenological framework to determine the
cells’ behaviors.17,18 There are also examples of ABMs that embed net-
works inside of the agents to account for the role of intracellular fea-
tures on cell behaviors.19–21 Here, we aim to study how transcriptional
regulation of CD8þ T cells influences the cells’ state and properties
such as killing ability and survival. Thus, we build on our prior work
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using biophysical agent-based modeling to simulate tumor growth22–24

in a hybrid modeling framework by integrating our published Boolean
model25 of a gene regulatory network (GRN) with our existing rule-
based ABM. The Boolean model simulates T cell evolution along a
pseudo time trajectory providing valuable insight into transcriptional-
level processes that influence emergent outcomes. This would not be
possible with an ABM that only includes a rule-based approach to
inform a cell’s decision to proliferate, change phenotypic states, or
induce cell killing. We predict the evolution of phenotypic T cell states,
informed by the GRN encoded in the Boolean model. We consider
three T cell states (naïve, pro-memory, and exhausted), which each
have distinct properties. We apply the integrated model to study how
CD8þ T cell state and properties influence tumor composition and
spatial organization. Furthermore, we simulate immunotherapy via
blockade of programmed cell death protein 1 (PD1), which is actively
being pursued as a target to control tumor growth.26,27 By accounting
for the GRN governing T cell behavior, which influences cell–cell
interactions, we provide a mechanistic view of tumor evolution and a
framework for predicting how tumor growth can be controlled via
genetic alterations of T cells. Our model enables exploration of how
targeted genetic alterations affect the TME.

RESULTS

We developed an ABM that captures the emergent outcomes
associated with the interactions between cancer cells, cytotoxic CD8þ

T cells, CD4þ T cells (T helper and T regulatory cells), and macro-
phages classed into three phenotypes (M0, M1, and M2). Cytotoxic
CD8þ T cells can be in a pro-memory state or an exhausted state that
has a higher probability of dying and is less cytotoxic compared to
pro-memory CD8þ T cells. The cells and their interactions are
depicted in Fig. 1. We include the cells’ impact on differentiation and
state changes [Fig. 1(a)]. Cancer cells and CD4þ T cells influence mac-
rophage differentiation from the naïve state. Cancer cells and M2 mac-
rophages influence differentiation of CD4þ T cells into T regulatory
cells. The model also accounts for how other cells influence the killing
ability and proliferation of CD8þ T cells [Figs. 1(b) and 1(c)].

Here, we use a novel model of tumor growth that integrates a
GRN of CD8þ T cell states (predicted by a Boolean model) into an
ABM that predicts cell-level behaviors and cell–cell interactions. This
model leverages our prior work in simulating T cell state transitions.25

Additionally, the ABM represents a significant expansion of our pub-
lished modeling of cell–cell interactions within the tumor microenvi-
ronment.22–24 We apply the novel modeling framework to simulate
tumor growth, with varying CD8þ T cell properties. We collect the
two-dimensional position of cancer cells, T cells, and macrophages in
an off-lattice setting, as well as cell-specific properties (radius, differen-
tiation state, PDL-1 concentration in the case of cancer cells). We
model TME evolution over a time period of 24 days starting from a
small tumor mass located at the origin, and simulation data are logged
once at the end of each simulated day. The model and its implementa-
tion are described in detail in the Methods section.

The rate of CD81 T cell recruitment alters the number
of cancer cells and relative proportions of immune cell
subsets

We utilized this model and considered the baseline values for the
probabilities of CD8þ T cell death and cancer cell killing and

investigated the effects of the rate of CD8þ T cell recruitment. Overall,
the model predicts tumor escape and the presence of pro-tumor
immune cells for these CD8þ T cell properties. Panel (a) of Figs. 2 and
3 shows the number of cancer cells over time averaged over ten simu-
lation replicates with a baseline and high CD8þ T cell recruitment,
respectively, as well as the standard deviation. The model predicts that
higher CD8þ T cell recruitment leads to fewer cancer cells (26 472 and
19591 for base and high recruitment rates, respectively, at the end of
the model simulation).

As shown in Figs. 2 and 3, the final numbers of macrophages are
predicted to be slightly lower for high CD8þ T cell recruitment (8169
and 6664 macrophages for base and high recruitment rate, respec-
tively). Furthermore, we can analyze the proportion of different types
of a given cell type at the end of the simulation. Specifically, we define
the macrophage compartment as consisting of macrophages in their
naïve state (M0) as well as differentiated states (M1 and M2). The T
cell compartment consists of CD8þ T cells in their naïve, pro-memory,
and exhausted states as well as CD4þ T cells as T-helper or T-
regulatory cells. We find the final relative proportion of macrophage
types is only moderately impacted by the CD8þ T cell recruitment rate
(Fig. 4). Specifically, pro-tumor macrophages comprise 79% of the
macrophage population for baseline T cell recruitment, compared to
84% for fast T cell recruitment.

Furthermore, the number of exhausted CD8þ T cells increases by
nearly fourfold (from 668 to 2641 for base and high T cell recruitment,
respectively). This corresponds to differences in the relative

FIG. 1. Schematic of cell–cell interactions included in the ABM. (a) Cell state
changes. (b) CD8þ T cell-mediated cancer cell killing. (c) CD8þ T cell proliferation.
Solid lines indicate cell state transitions. Dashed lines indicate how cells influence
one another: arrowhead, promotion; and bar, inhibition.
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proportions of T cell subsets: 31% of CD8þ T cells are in an exhausted
state for a base recruitment rate, compared to 63% for a high recruit-
ment rate (Fig. 5). In addition, CD4þ T helper cells comprise 19% of
the T cell compartment for baseline T cell recruitment, but only 7%
for high T cell recruitment. These changes in the subsets of immune
cells make sense, as faster CD8þ T cell recruitment enables more T
cells to enter the tumor; however, those T rapidly evolve toward the
exhausted state. A larger proportion of exhausted CD8þ T cells

corresponds to fewer CD4þ helper cells, leading to fewer anti-tumor
(M1) macrophages, due to T cell–macrophage interactions. We note
that across both CD8þ T cell recruitment rates, naïve and pro-
memory T cells represent less than 10% of the T cell compartment.

A useful feature of ABMs is their ability to predict the spatial
organization of the cell populations being modeled. Thus, in addition
to considering the time courses of the cell populations, we also exam-
ined the spatial layout at the end of the time course (Fig. 6) and over

FIG. 2. Time courses of cell counts for various CD8þ T cell properties, with base CD8þ T cell recruitment rate. dp, probability of CD8þ T cell death; kp, probability of CD8þ T
cell-mediated cancer cell killing. Note that the y-axes limits are set to enable direct comparison with Figs. 3, 8, and S2.

FIG. 3. Time courses of cell counts for various CD8þ T cell properties, with high CD8þ T cell recruitment rate. dp, probability of CD8þ T cell death; kp, probability of CD8þ T
cell-mediated cancer cell killing. Note that the y-axes limits are set to enable direct comparison with Figs. 2, 8, and S2.
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time (supplementary material, Movies 1 and 2). The predictions show
that for both CD8þ T cell recruitment rates considered, there is mini-
mal infiltration of CD8þ T cells, as they remain at the periphery of the
tumor. This aligns with the concept of most tumors being classified as
immunologically “cold,” defined as having low T cell infiltration.28 The
tumor periphery is also rich in macrophages. Additionally, there is
moderate infiltration of macrophages into the tumor, and there is
slightly less macrophage infiltration for the case of baseline CD8þ T
cell recruitment rate. The model predicts that the average distance of

macrophages from the tumor center is 1839 and 1544lm for base and
high recruitment rate, respectively (Table S1). Note that shorter dis-
tance from tumor center indicates more infiltration.

When CD81 T cell recruitment is kept at a baseline, T
cell death and cytotoxicity have differential effects on
the number of cancer cells and the proportion of
immune cells

The model predicts that the size of the cancer cell population is
largely insensitive to the CD8þ T cell properties investigated. Here, we
return to the analysis of the time courses shown in Fig. 2. The number

FIG. 4. Relative proportions of macrophages at the end of the model simulation for
various CD8þ T cell properties. (a) Base CD8þ T cell recruitment rate. (b) High
CD8þ T cell recruitment rate. dp, probability of CD8þ T cell death; kp, probability of
CD8þ T cell-mediated cancer cell killing.

FIG. 5. Relative proportions of T cells at the end of the model simulation for vari-
ous CD8þ T cell properties. (a) Base CD8þ T cell recruitment rate. (b) High CD8þ

T cell recruitment rate. dp, probability of CD8þ T cell death; kp, probability of
CD8þ T cell-mediated cancer cell killing.

FIG. 6. Representative tumor spatial lay-
outs for baseline model at the end of the
simulation. (a) Base CD8þ T cell recruit-
ment rate. (b) High CD8þ T cell recruit-
ment rate.
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of cancer cells increases exponentially for both low and high probabil-
ity of CD8þ T cell death, as well as the two probabilities of T cell-
mediated cancer cell killing [Figs. 2(b)–2(e), top row]. Furthermore,
the number of cancer cells present at the end of the simulation is
approximately the same across all conditions. Similarly, the spatial
organization of the tumor is consistent across CD8þ T cell properties
(supplementary material, Fig. S1).

In comparison, the number and relative proportions of macro-
phages depend on CD8þ T cell properties. The model predicts
increases in the number of pro-tumor macrophages over time for all
four conditions [Figs. 2(b)–2(e), middle row]. When CD8þ T cells
have a low probability of cell-mediated cancer killing, M2 cells
comprise 68%–80% of the macrophage compartment (Fig. 4).
However, there are more M2 cells when the CD8þ T cells have a high
probability of T cell-mediated cancer cell killing, comprising 83%–85%
of macrophages, for high or low probability of CD8þ T cell death,
respectively.

As anticipated, the probability of CD8þ T cell death and the
probability of inducing cancer cell killing influence the number of T
cells [Figs. 2(b)–2(e), bottom row] and relative proportion of T cells in
the tumor (Fig. 5). When CD8þ T cells have a low probability of cell
death, exhausted CD8þ T cells, Tregs, and CD4þ T helper cells make
up approximately 62%, 21%–25%, and 9%–12% of the T cell popula-
tion, respectively. In contrast, with high probability of CD8þ T cell
death, the proportion of exhausted CD8þ T cell death is limited to 6%
of all T cells. Having a smaller relative proportion of exhausted T cells
corresponds to greater fractions of Tregs and T helper cells, ranging
61%–69% and 21%–28%, respectively, depending on the probability of
T cell-mediated cancer cell killing. Again, these results can be traced to
the cell–cell interactions included in the model. Having fewer pro-
tumor macrophages (in the condition of high probability of T cell
death) corresponds to more CD4þ T helper cells, which promotes dif-
ferentiation of naïve macrophages into the anti-tumor state (M1).

Overall, the model predicts that with a baseline recruitment of
CD8þ T cells, varying the properties of the CD8þ T cells influences
the number and proportions of immune cells, with only a minimal
effect on the number of cancer cells. This is not an intuitive result,
demonstrating the utility of a systems-level model of the tumor
microenvironment.

High CD81 T cell recruitment permits tumor control
and increases the relative size of the anti-tumor
immune cell population

Across a range of values for the probability of CD8þ T cell death
and cancer cell killing probability, the final number of cancer cells is
lower for fast CD8þ T cell recruitment, compared to the baseline
recruitment rate (Figs. 2 and 3, top row). One exception is the condi-
tion of a high probability of CD8þ T cell death combined with a low
probability of T cell-mediated killing [panel (d) in Figs. 2 and 3], as
compared to the baseline rate of CD8þ T cell recruitment.

The faster rate of CD8þ T cell recruitment is predicted to influ-
ence the absolute number and relative proportions of macrophage and
T cell subsets in the tumor. For all four conditions, the number of pro-
tumor macrophages is lower when T cell recruitment is high (Figs. 2
and 3, middle row). Additionally, anti-tumor macrophages comprise a
larger fraction of the macrophage population (4%–10% and 3%–
8% for high and base recruitment rates, respectively), as shown in

Fig. 4. Furthermore, increasing CD8þ T cell recruitment leads to a
larger number (Figs. 2 and 3, middle row) and a greater proportion
(Fig. 5) of exhausted CD8þ T cells across all conditions. For example,
exhausted CD8þ T cells comprise 31% for the base T cell recruitment
rate, compared to 63% for the case of high recruitment. These changes
correspond to a smaller fraction of Tregs and greater percentage of
pro-memory CD8þ T cells. Altogether, the model predicts that higher
CD8þ T cell recruitment increases the proportion of anti-tumor
immune cells (M1 and pro-memory CD8þ T cells), concomitant with
a decrease in the relative size of the anti-tumor T cell population
(Tregs) and a nominal average decrease in anti-tumor macrophages
(M2).

The spatial layout of the tumor further demonstrates the effect of
increased CD8þ T cell recruitment (Fig. 7). A comparison of the spatial
organization of the tumor for base and high recruitment rates for a rep-
resentative model output shows fewer cancer cells, with the exception
of the case for the high probability of CD8þ T cell death combined
with low probability of T cell-mediated killing [Figs. 7(c) and 7(g)].
The tumors appear smaller, and we can visually appreciate the presence
of substantially more exhausted CD8þ T cells (colored blue).
Additionally, there is greater infiltration of immune cells into the tumor
when CD8þ T cells are recruited at a faster rate and have a low proba-
bility of death [Figs. 7(e) and 7(g) and Table S1].

PD1 blockade increases the number of pro-memory
CD81 T cells and enables better tumor control when T
cell recruitment is high

Finally, we considered the effects of altering the intracellular
GRN of CD8þ T cells compared to the baseline model (termed wild-
type, or “WT”). In particular, we simulated inhibition of PD1.
Experimental studies demonstrate that blocking the PD1 pathway in
naïve CD8þ T cells during differentiation can alter the cell state transi-
tions. As in our previous work, we implement the PD1 blockade by
removing the ability of NFATC1 to activate PD1 in the Boolean model
of the CD8þ T cell GRN.

When CD8þ T cells are recruited to the tumor at the base rate,
the model predicts that inhibiting PD1 strongly decreases the absolute
number of exhausted CD8þ T cells, versus the WT case (compare the
bottom rows of Figs. 2 and S1). Additionally, PD1 blockade signifi-
cantly increases the proportion of pro-memory CD8þ T cells [compare
Fig. 5(a) to Fig. S1(b)]. Despite altering the composition of the T cell
population, when CD8þ T cell recruitment is at a baseline, a PD1
blockade does not affect the number of tumor cells or macrophages
(compare the top two rows in Figs. 2 and S2). PD1 blockade also fails
to alter the relative proportions of macrophages at the end of the
model simulation [compare Fig. 4(a) to Fig. S1(a)].

In contrast, with higher CD8þ T cell recruitment, the model pre-
dicts that PD1 blockade can lead to smaller tumors compared to WT
with high T cell recruitment. In particular, for the base and low values
of the probability of CD8þ T cells considered, the numbers of tumor
cells and pro-tumor macrophages are predicted to be lower than WT
(compare the top two rows in Figs. 3 and 8). For example, with the
baseline values for the probability of CD8þ T cell death and T cell-
mediated cancer cell killing, the number of cancer cells is 19591 and
17036 for the WT and PD1 blockade, respectively. However, the num-
ber of cancer cells also depends on CD8þ T cell properties, even lead-
ing to more cancer cells with PD1 blockade. For example, when the
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CD8þ T cell death probability and killing probability are low, there are
18 245 and 20 867 cancer cells for WT and PD1 blockade, respectively.
Interestingly, while the absolute numbers of M2 cells can decrease with
PD1 blockade (compare the bottom row of Figs. 3 and 8), this does not

always correspond to a change in the final relative proportion of macro-
phages [compare Figs. 4(b) and 9(a)].

In contrast, PD1 blockade consistently increases the fraction of
pro-memory CD8þ T cells [compare Figs. 5(b) and 9(b)]. The

FIG. 7. Representative tumor spatial layouts for various CD8þ T cell properties at the end of the simulation. (Left) Base CD8þ T cell recruitment rate. (Right) High CD8þ T cell
recruitment rate. dp, probability of CD8þ T cell death; kp, probability of CD8þ T cell-mediated cancer cell killing. Gray, cancer cell; green, macrophage; red, CD4þ T cell; and
blue, CD8þ T cell.

FIG. 8. Time courses of cell counts for various CD8þ T cell properties, with high CD8þ T cell recruitment rate and PD1 blockade implemented. dp, probability of CD8þ T cell
death; kp, probability of CD8þ T cell-mediated cancer cell killing. Note that the y-axes limits are set to enable direct comparison with Figs. 2, 3, and S2.
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condition of having a low probability of CD8þ T cell death and high
probability of T cell-mediated killing is an exemplary case. Here, the
percentages of T cells in the pro-memory state at the end of the model
simulation are 6% and 40%, respectively, for the WT and PD1 block-
ade cases. Visual inspection of the spatial layouts also demonstrates the
effect of PD1 blockade (Fig. S4). We note that for a high probability of
CD8þ T cell death, PD1 blockade is not able to reduce the number of
cancer cells [the top row of Figs. 8(d) and 8(e)] despite there being
more pro-memory CD8þ T cells. In summary, a combination of high
CD8þ T cell recruitment and low CD8þ T cell death is needed for
PD1 blockade to effectively control the size of the cancer cell
population.

DISCUSSION

We have presented an agent-based modeling framework that pre-
dicts the spatiotemporal behavior of the tumor-immune ecosystem
comprised of cancer cells and distinct subsets of macrophages and T
cells. The model highlights that CD8þ T cell recruitment, their death,
and cancer cell-mediated killing can influence tumor growth.
Specifically, the combination of low T cell death probability and high
T cell-mediated cancer killing most strongly controls tumor size with
high T cell recruitment. In addition to predicting how the number of
cancer cells evolves with time, our results consider the absolute num-
ber and relative proportions of macrophage and T cell subsets, repre-
senting the immune component of the tumor. Experimental and
clinical studies demonstrate the efficacy of targeting the immune
checkpoint inhibitor, PD1, to inhibit tumor growth.27 Therefore, we
applied the model to predict the effects of altering gene regulation

within CD8þ T cells to inhibit activation of the PD1 gene. This strategy
is predicted to enhance the composition of the immune compartment,
in agreement with published experimental studies. Given the mecha-
nistic basis of our model, we can explain the efficacy of PD1 blockade,
finding that it drastically shifts CD8þ T cells from an exhausted state
to a pro-memory state. Importantly, the model shows that the efficacy
of this PD1 blockade in controlling the number of cancer cells depends
on CD8þ T cell properties. This result also aligns with experimental
studies, where engineering CD8þ T cell characteristics is used to
enhance the effects of immune checkpoint blockade.29

A defining aspect of our work is the use of a Boolean model to
inform the state transitions of CD8þ T cells. Specifically, we incorpo-
rate a Boolean representation of the GRN that mediates progression of
CD8þ T cells from a naïve state to a terminally differentiated
exhausted or pro-memory state.25 The T cell’s state influences its phe-
notype (probability of cell death) and cell–cell interactions (probability
of promoting cancer cell killing). Thus, integration of the Boolean
model allows the behaviors of CD8þ T cells in the ABM to be influ-
enced by the intracellular gene regulation rather than taking a purely
rule-based approach. The model also includes the effects of other cells
on CD8þ T cell-mediated killing and death probability. We find that
cell–cell interactions contribute to the final tumor composition (pro-
portions of cancer and immune cells). With this modeling framework,
we can simulate the effects of targeting interactions between cells.
Furthermore, this integrated approach enables the investigation of tar-
geted genetic strategies to alter a T cell’s state. We have previously
incorporated an intracellular network within an ABM to study the
population-level effects of therapies that target macrophage intracellu-
lar signaling.22 Similarly, some ABMs consider intracellular models to
inform the agent’s behaviors.19,30,31 However, most ABMs use phe-
nomenological rules to determine cell state changes and phenotypes.
Thus, having a mechanistic basis for the CD8þ T cell behavior helps
advance the field of agent-based modeling.

We acknowledge some areas for future improvements of this
work. First, our model includes three classes of macrophages and five
types of T cells. This is a vast simplification of the tumor-immune eco-
system. Thus, we can expand the model to include other immune sub-
sets. For example, recent work reveals that interactions between T cells
and dendritic cells influence T cell state changes and tumor
growth.32,33 Related to this, we include differentiation of macrophages
into just two broad classes (M1 and M2, anti- and pro-tumor, respec-
tively); however, future work can consider a range of macrophage
states and behaviors. Aligning the time steps simulated by the Boolean
model is a second limitation of our work. We model that CD8þ T cells
become exhausted within hours of stimulation by a cancer cell based
on the findings of Rudloff and coworkers.34 An issue with Boolean
modeling is the use of pseudo-time, where the discrete time steps do
not directly match real time. If the time required to reach an attractor
state is known, one must assume what the interval between Boolean
pseudo-time step corresponds to. For simplicity, we assume linear
pseudo-time steps and that the Boolean model time steps correspond
to a time interval of one hour. While the current work focuses on phe-
notypic features of CD8þ T cells, the effects of the time intervals within
the Boolean model and aligning the timing between Boolean and
ABM can be explored in future work. We can leverage the work of
others in aligning timescales.30,35 Third, we note that altering the GRN
that mediates CD8þ T cell state transitions may not happen with

FIG. 9. Relative proportions of immune cells at the end of the model simulation for
various CD8þ T cell properties, with high CD8þ T cell recruitment rate and PD1
blockade implemented. (a) Proportions of macrophages. (b) Proportions of T cells.
dp, probability of CD8þ T cell death; kp, probability of CD8þ T cell-mediated cancer
cell killing.
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100% efficiency in a heterogeneous population of cells. We can
account for this by sampling from 104 simulated trajectories that are
a mixture of WT and PD1 blockade. For example, assuming an alter-
ation to the GRN within a population of cells is 80% effective, we
would sample from a set of trajectories comprised of 2� 103 WT
and 8� 103 PD1 blockade Boolean simulations. Finally, this work
focuses on development of the integrated Boolean–ABM framework
and explores how CD8þ T cell properties affect tumor growth. We
have not performed a full analysis of the effect of varying all model
parameters, a rigorous statistical analysis of model outputs, or a rig-
orous calibration of the model to tumor images from experimental
models such as organoids or in vivo mouse tumors. Future work will
leverage our recently developed machine learning-based approach to
calibrate ABMs to such imaging data.24

CONCLUSIONS

Taking an ecological view of a biological system by considering
its spatial organization provides a framework for understanding the
evolution of the system and the factors that control system behav-
ior.36 Similarly, in the context of cancer, by considering the composi-
tion and spatial structure of tumors, it may be possible to better
understand the factors that drive tumor progression and response to
treatment.9 We have demonstrated that biophysical agent-based
modeling can produce biological insights into the tumor-immune
ecosystem. Furthermore, accounting for the evolution of T cell states
as determined by an intracellular model of CD8þ T cell gene activa-
tion simulates experimentally observed behaviors. Overall, our work
provides a solid foundation for future studies to explore the role of
cell–cell interactions in the TME and how they influence the
response to treatment.

METHODS
Model description

Model overview

We develop an ABM to simulate the actions and interactions
between cellular species in the TME. Specifically, we are able to capture
the emergent outcomes associated with the interactions between can-
cer cells, cytotoxic CD8þ T cells (also referred to as CTLs), helper
CD4þ T cells, and macrophages classed into three phenotypes (M0,
M1, and M2). The cell–cell interactions are depicted in Fig. 1. This
model provides a framework to develop sophisticated simulations of
the TME and capture complex biophysical phenomena in simplified
forms. We describe the model features below.

Cell forces

Cells are modeled using a center-based approach that considers
each cell as a point and a radius; these two features are used to calcu-
late physical forces between cells.23,37 This approach provides
greater level of biological realism compared to grid-based
approaches like the cellular-automata method. At the same time, the
center-based approach is not as computationally expensive as
frameworks that account for more detailed cell shapes such as the
vertex model.37 Intercellular forces are calculated via the following
equation:

Fi tð Þ ¼

lijsij tð Þx̂ ij tð Þlog 1þ xij tð Þ
�� ��� sij tð Þ

sij tð Þ

 !

for xij tð Þ
�� �� < sij tð Þ;

lij xij tð Þ
�� ��� sij tð Þ
� �

x̂ ij tð Þexp �kc
xij tð Þ
�� ��� sij tð Þ

sij tð Þ

 !

for sij tð Þ � xij tð Þ
�� �� � xmax;

0 for xij tð Þ
�� �� > xmax:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

In this equation, lij is the spring constant, xij tð Þ is the vector between
cells i and j at time t, x̂ ij tð Þ is the unit vector, kc is the decay of the
attractive force, sij tð Þ is the sum of the radii of cells i and j, and xmax is
the maximum interaction distance. For all cells, we assume the same l
and kc. This equation is solved numerically for each cell, as displayed
in the following equation:

xi t þ Dtð Þ ¼ xi tð Þ þ Dt
g

X
j2N i tð Þ

Fij tð Þ:

Here, g is the drag coefficient, andN i is the set of cells within xmax of
cell i. To preserve accuracy, this equation must be solved at a small
time step (Dt), which we set as 0.005 h. The parameters xmax , g, l, and
kc are taken from the literature and reported in Table S2.

When simulating the model, it is computationally expensive to
determine NiðtÞ for each cell, as the distances between each cell need
to be calculated. To improve computational efficiency, we use a larger
simulation time step of 1 h. This time step is both biologically realistic
and computationally efficient. The reported time it takes for macro-
phages to respond to cytokines is on the order of hours.38 However, to
retain the accuracy of solving the force equation for every cell, we allow
macrophage re-differentiation to occur every hour. At the beginning of
each simulation step, we define a cell neighborhood for each cell. This
is a list of cells with a 10xmax distance of cell i. We then determine
NiðtÞ only from cells in that neighborhood and proceed to solve the
above-mentioned equation at the small time step. This hastens compu-
tational time while preserving the accuracy of the force calculations.

Proliferation and cell death

To simplify proliferation and cell death, these processes are mod-
eled as probabilities of occurring at each time point. Cell proliferation
is also influenced by the physical presence of other cells, assuming that
cell proliferation is inhibited by excess physical forces.23 We model the
excess physical stress as being due to the “overlap” between the radii of
adjacent cells. If the sum of the total overlap with other cells is above a
threshold, a cell’s proliferation is inhibited until this overlap decreases.
When a cell proliferates, the daughter cell is placed the distance of the
cell radius away from the mother cell at a randomly selected angle.
When a cell dies, it is removed from the simulation. Only cancer cells
and CD8þ T cells can undergo proliferation.

Immune cell recruitment

Immune cells are recruited to the environment at a rate propor-
tional to the number of cancer cells. They are recruited at a random
angle around the tumor center, under the assumption that the area
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surrounding the tumor is well vascularized. When recruited, these cells
are placed a random distance away from the tumor edge, sampled
from a uniform distribution (Table S2).

Immune cell migration

In the model, immune cells migrate toward tumor cells, mimick-
ing chemotaxis due to tumor-secreted chemokines.39–41 Cells migrate
with a specified amount of bias, which is modeled as the probability at
each migration step of moving in the direction of the tumor center ver-
sus a random direction. This represents the impact of the extracellular
matrix surrounding the tumor.42–46 However, there are many barriers
to immune cell infiltration into the tumor, leading to three general
tumor-immune states: ignored (immune cells cannot detect the
tumor), inflamed (immune cells can infiltrate the tumor), and
excluded (immune cells are restricted to the outside of the tumor).47

Some of these are due to interactions between immune cells, while
others are due to physical barriers of the tumor. To capture this phe-
nomenon in a simplistic manner with as few additional parameters as
possible, we assume that both migration speed and bias decrease upon
entry into the tumor. By adjusting these decreases, this model can cap-
ture different phenotypic tumor behaviors. Migration for all immune
cell types is modeled in the same way; however, each cell type has its
own bias and speed parameters. CD4þ and CD8þ T cells have a com-
parable migration speed and bias, whereas macrophages have a
reduced speed and increased bias compared to the T cells (Table S2).

Diffusion

Within the TME, cells can communicate via diffusible factors,
such as cytokines.41 These are often modeled using PDEs, with cells
acting as point sources/sinks.12,15,48 PDEs, however, require a great
amount of computational time to solve, especially as environment size
and the number of factors increases. Additionally, cells secrete several
different cytokines, many with overlapping effects. This complexity
makes it difficult to model the explicit biological effects of all the cyto-
kines. Often, the effects of these factors are modeled either as a proba-
bility or a threshold value, instead of explicit modeling of downstream
intracellular signaling. Because of this, researchers lump different cyto-
kines into generic factors,48 or replace diffusible factors with a distance
threshold, where an effect occurs if one cell is within a specified dis-
tance from another cell.49

Here, we implemented and extended the latter approach to better
account for the gradient nature of diffusion and the impact of multiple
secreting cells. We refer to this as the “cell influence,” where the closer
cell i is to cytokine-secreting cell j, the greater the effect of cell j on cell
i. This is modeled by an exponential decay displayed in the following
equations:

Dij tð Þ ¼ exp �k xij tð Þ
�� ��� �

;

k ¼ �log2 Pthð Þ 0:693
xth

:

The use of an exponential decay is a reasonable approximation of the
effects of diffusible factors, as the response to a cytokine-secreting cell
has been experimentally found to resemble an exponential decay.50,51

In these equations, xij tð Þ
�� �� is the distance between cell centers, xth is

the soft threshold for the maximum influence distance that can be

thought of as the diffusion limit, and Pth is the probability of an effect
occurring at distance xth. By setting Pth and xth, we can calculate k.
The total influence on cell i is calculated via

Di;T tð Þ ¼ 1�
Y
j2T tð Þ

1� Dij tð Þ:

In this equation, Di;T tð Þ is the total influence, from 0 to 1, on cell i
from all cells of cell type T. Thus, each cell records a separate influence
for each cell type in the simulation. These influences are used to deter-
mine downstream effects. These downstream effects are probabilities,
which are then multiplied by the relevant influence. Thus, the cell
influence acts as a scaling factor for the probabilities of effects occur-
ring. If two cell types can lead to the same effect, their influences are
combined as

D tð Þ ¼ 1� 1� DT1ð Þ 1� DT2ð Þ:
This approach eliminates numerically solving PDEs and means that
the cloud of diffusible factors follows each cell as it moves through the
simulation environment. We followed the assumption that diffusion is
resolved on a much faster timescale (seconds) than cellular processes
(hours for cell division, for example).

Cancer cells

In this model, cancer cells have three main actions: prolifera-
tion, death, and expression of the PD1 ligand (PD-L1).
Proliferation and death occur as described above. Cancer cells gain
PD-L1 at a probability proportional to the influence from CD4þ

helper cells (via T cell-secreted IFN-c, which promotes PD-L1
expression) and M2 macrophages,12,52 dictated by the influence
equation mentioned earlier. After proliferation, the daughter cells
inherit the PD-L1 expression of the mother.

Macrophages

Classical in vitro characterization of macrophages leads to their
classification into what have been called M2 pro-tumor and M1 anti-
tumor macrophages. While it is now known that macrophages exist
on a continuum, whereby their functions vary, and they can exhibit a
range of phenotypes and functions,53,54 we retain these broad M1 and
M2 groupings for the purpose of exploring the effects of anti- and pro-
tumor macrophages.

Macrophages have a certain size55 and enter the simulation in a
naïve (M0) state and differentiate into either M1 (mimicking the
response to IFN-c secretion by CD4þ helper and CD8þ T cells) or M2
(mimicking the response to IL-4 and IL-10 secreted by cancer cells and
Treg cells).56 Additionally, because macrophage state is plastic and
influenced by environmental conditions, macrophages have a proba-
bility of re-differentiating at each time step (1 h).57 Following other
modeling efforts, macrophages have a probability, pi, of remaining in
their current state (naïve, M1, or M2) or differentiating into M1 or M2
(influenced by environmental conditions). Specifically, pi is the proba-
bility of transitioning to state Mi from any other state. Furthermore,
these probabilities are then scaled to sum to 1.15 This is captured by
the following equations, which utilize the cell influence described
earlier,
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p0 ¼
1 if M0;

0 if not M0;

(

p1 ¼ 1� 1� DCD8ð Þ 1� DCD4ð Þ;
p2 ¼ 1� 1� DM2ð Þ 1� Dcancerð Þ 1� DTreg

� �
:

These values are then divided by their sum (ptotal) to get the probability
of differentiating into each state. Next, a random number is selected
from a uniform distribution ranging from 0 to 1. If the number falls
between 0 and p0/ptotal , the cell becomes M0. If the random number is
between p0/ptotal and ðp0 þ p1Þ/ptotal , the cell becomes an M1 macro-
phage (or remains as M1 if it is already in that state). If the random
number falls between ðp0 þ p1Þ/ptotal and p0 þ p1 þ p2ð Þ=ptotal , the
cell becomes an M2 macrophage (or remains as M2 if it is already in
that state).

M2 cells promote the differentiation of CD4þ T cells into the reg-
ulatory state (via IL-10 and TGF-b) and promote M0 differentiation
into the M2 state (via TGF-b).56,58,59 We model all of these effects via
the cell influence function described earlier. M2 cells also express PD-
L1.

CD41 T cells

While CD4þ T cells can take on a variety of states, for simplicity,
we only model two: helper cells and regulatory cells. In this model,
CD4þ cells enter the simulation in the helper state and can be con-
verted into regulatory cells based on influence from M2 macrophages
and cancer cells.56,58–60 The probability of differentiation is propor-
tional to the combined influence of M2 macrophages and cancer cells,
as shown in the following equations:

Ddiff ¼ 1� 1� DM2ð Þ 1� Dcancerð Þ;
pdiff ¼ pdif f0Ddiff :

In the helper state, CD4þ cells promote M0 differentiation into the M1
state (via IFN-c).61 As regulatory cells, they express CTLA-4 (which
has the same function as PD-L1)62 and promote M0 differentiation
into the M2 state (via IL-10).60

CD81 T cells

CD8þ T cells serve the main function of killing cancer cells. In
the TME, we consider a CD8þ T cell to be in a naïve (N), exhausted
(E), or pro-memory (M) state. CD8þ T cells can undergo cell death,
kill a neighboring cancer cell, and migrate.63 The probability of a
CD8þ T cell dying or killing a cancer cell is influenced by (1) the
CD8þ T cell state and (2) the cells in its neighborhood. Specifically, we
set the model parameter for each of these cell behaviors relative to a
baseline set of behaviors. CD8þ T cells in the N state are assumed to
show no deviance from the base probabilities. In comparison, cells in
the M state are half as likely to die and twice as likely to trigger cancer
cell death, relative to baseline. Finally, CD8þ T cells in the E state
maintain the base probability of death; however, their ability to pro-
mote cancer cell killing is reduced by an order of magnitude, relative
to baseline. By varying cell death and cytotoxicity, we capture CD8þ T
cell state-specific behaviors. The way in which the CD8þ T cell’s intra-
cellular GRN influences the probability of a CD8þ T cell dying or kill-
ing a cancer cell is detailed in the section “Integrating CD8þ T cell

state decision into ABM.” Here, we describe how other cells in the
TME influence CD8þ T cell behaviors.

The model accounts for the effects of neighboring cells on CD8þ

T cell proliferation and the ability to kill cancer cells. Firstly, M2 mac-
rophages, T helper, and Treg cells impact CD8þ T cell proliferation.
The implementation follows the same approach of using the distance
between cells to scale the cell property,

Dpos ¼ DTh;

Dneg ¼ 1� 1� DM2ð Þ 1� DTreg

� �
;

pCD8prol ¼ pCD8prol0 Dpos � Dnegð Þ:
Second, the model includes the effect of PD-L1 expression by cancer
cells on CD8þ T cell-mediated killing by having cancer cells expressing
PD-L1 to promote CD8þ T cells to go to the exhausted state.
Specifically, a number is randomly selected from a uniform distribu-
tion ranging from 0 to 1. If that random number is less than the PD-
L1 expression (normalized from 0 to 1) on the cancer cell in contact
with the CD8þ T cell, the T cell will become exhausted. By being in the
exhausted state, the T cell has reduced killing ability and higher proba-
bility of dying.

The model also accounts for the impact of macrophages and
other T cell populations on CD8þ T cells’ killing ability. We consider
the positive influence of M1 macrophages and T helper cells on killing
ability, and the negative influence of M2 macrophages and Treg cells
on killing ability. Specifically, the probability of CD8þ T cell-mediated
killing (pkill) is positively and negatively influenced by the other
immune cells, as shown in the following equations:

Dpos ¼ 1� 1� DM1ð Þ 1� DThð Þ;
Dneg ¼ 1� 1� DM2ð Þ 1� DTreg

� �
;

pkill ¼ pkill0 kscaling
Dpos�Dnegð Þ

� �
:

Here, pkill0 is the baseline killing probability that is determined by
whether the CD8þ T cell is in the naïve, exhausted, or pro-memory
state based on the intracellular gene regulatory network; Di is the dis-
tance between the CD8þ T cell and cell i, and kscaling is a scaling factor.

Defining the simulation loop

The simulation loop proceeds as follows (Fig. 10):

1. Immune cells are recruited to the environment.
2. Cell neighborhoods are determined.
3. Influence from cell–cell interactions due to proximity (mimick-

ing the effects of diffusible factors) is calculated, direct contact
effects (CD8þ T cell-mediated cancer cell killing) are accounted
for, CD8þ T cell states are updated based on intracellular
Boolean model.

4. Forces between cells are solved.
5. Species proliferation and spontaneous cell death are modeled.

Predicting CD81 T cell states

CD8þ T cell state decisions were determined directly from the
output of our previously published Boolean model of the GRN that
defines CD8þ T cell states.25 This model predicts the expression profile
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of CD8þ T cell genes over pseudo-time. Although CD8þ T cells
occupy a continuum of phenotypes, we broadly class the cell’s state
into one of three main phenotypes: naïve (N), pro-memory (M), and
exhausted (E), based on the output of the GRN predicted by the
Boolean model. The model logs the on/off expression of 24 genes,
where each gene is classified as promoting a proliferative pro-memory
(PP) state or an effector exhausted (EE) state. The Boolean model pre-
dicts the state of each CD8þ T cell at every time step based on the rela-
tive expression of PP and EE genes. Specifically, if more PP genes are
on compared to EE, the phenotype is assumed to be M; the phenotype
is assumed to be E if there are more EE genes on than PP. The first
three pseudo-time steps are assumed to be in the N state; following
stimulation of the T cell receptor, the predicted state in subsequent
time steps is based on the expression of PP and EE genes.

For a single simulation, the output from a Boolean model simula-
tion is given by an n � k matrix, where k represents the CD8þ T cell
state (N, P, or E) given by the rules described above, and n represents
the number of time steps. Thus, moving down the rows of this matrix
represents the “trajectory” that a cell takes in its evolution from a naïve
state to the terminally differentiated state. Once a cell reaches its termi-
nal state, it stays in that state for the remaining n time steps. Our prior
work demonstrated that the Boolean model captures both linear differ-
entiation of a T cell fromM to E, and circular differentiation where the
cell oscillates betweenM and E before reaching the final state.64,65

Ten thousand simulations of the Boolean model were performed,
representing a population of 104 distinct CD8þ T cells. We first con-
sider the baseline or wildtype (WT). We also considered the case where
the CD8þ T cell GRN encoded by the Boolean model reflects a PD1
blockade. Literature evidence shows that nuclear factor of activated T
cells 1 (NFATC1) can promote antitumoral effector functions and
memory CD8þ T cell differentiation through regulation of PD1 expres-
sion upon T cell activation.66,67 Therefore, as described in our prior
work,25 we implemented indirect inhibition of PD1 via NFATC1. In
the WT model, NFATC1 can activate PD1 (NFATC1 ! PD1), and
here, we removed NFATC1 from the model, inhibiting PD1 activation.
With this alteration of the GRN, 104 additional simulations of the
Boolean model were performed to produce a population of 104 distinct
CD8þ T cells in which PD1 is inhibited.

Integrating CD81 T cell state decision into ABM

Updating ABM based on state predicted by Boolean
model

The predicted CD8þ T cell state given by the Boolean model
transitions through pseudo-time. It is straightforward to initialize every
CD8þ T cell that is recruited to the tumor by sampling from the 104

trajectories produced by the Boolean model and assigning the selected
trajectory to the CD8þ T cell. However, we must assign a time interval
for each pseudo-time step to align the transition of CD8þ T cells states
with the timescale of the ABM. Experimental evidence indicates that
CD8þ T cells become exhausted within hours following stimulation by
a tumor cell.34 We reflected this finding by updating the CD8þ T cell
state every hour. This would involve an assumption that each pseudo-
time step of the Boolean model corresponds to one hour. Thus, the
predicted CD8þ T cell state given by the Boolean model at every time
step is passed into the ABM. In the cases where the ABM time point is
longer than the trajectory predicted by the Boolean (i.e., the CD8þ T
cell has reached its terminally differentiated state before the current
ABM simulation timepoint), we assume the T cell remains in its final
state (the last value in its trajectory predicted by the Boolean model)
for the rest of the simulation until cell death. For PD1 inhibition, we
instead initialize and update the states of CD8þ T cells using the
Boolean simulations corresponding to the altered GRN in which PD1
activation by NFATC1 is removed.

Assigning cell behavior based on state predicted by
Boolean model

The “Model description” section details that CD8þ T cells can die
and kill cancer cells. The probability of each of these behaviors is deter-
mined by the state predicted by the Boolean model, relative to a base
probability. CD8þ T cells in the N state are assumed to show no devi-
ance from the base probabilities. In comparison, cells in the M state
are half as likely to die and twice as likely to trigger cancer cell death,
relative to baseline. Finally, CD8þ T cells in the E state maintain the
base probability of death; however, their ability to promote cancer cell
killing is reduced by an order of magnitude, relative to baseline. By

FIG. 10. Illustration of steps followed in
the ABM simulation loop.

APL Bioengineering ARTICLE pubs.aip.org/aip/apb

APL Bioeng. 8, 036111 (2024); doi: 10.1063/5.0205996 8, 036111-11

VC Author(s) 2024

pubs.aip.org/aip/apb


varying cell death and cytotoxicity, we capture CD8þ T cell state-
specific behaviors.

Model implementation

This model is built in Cþþ using CMake for build processes.
Scripts that develop the parameter grid as well as plotting scripts were
implemented in Python. Two builds are presented, one developed for
Apple Silicon and the other for a Unix-based computing cluster. The
code is available at: https://github.com/FinleyLabUSC/Boolean-TME-
ABM.

Model simulation

The parameter values used in the model are given in Table S2.
We perform simulations to explore the effects of CD8þ T cell proper-
ties: recruitment rate (krecr), probability of cell death (DP), and cancer
cell killing probability (KP). We further investigate increased T cell
recruitment (fivefold higher than the baseline value); varying the prob-
ability of cell death: fivefold increase and reduction in DP (high DP
and low DP, respectively); and varying the probability of cancer cell
killing: fivefold increase and reduction in KP (high KP and low KP,
respectively). To account for variability in the predictions due to the
probabilistic nature of the agent-based modeling, we performed ten
replicates for each parameter combination considered.

SUPPLEMENTARY MATERIAL

See the supplementary material for supplementary figures and
files. Movie 1 is representative of the time course of spatial layout over
time for the baseline probabilities of CD8þ T cell death and cancer cell
killing for base CD8þ T cell recruitment. Movie 2 is representative of
the time course of spatial layout over time for the baseline probabilities
of CD8þ T cell death and cancer cell killing for high CD8þ T cell
recruitment. Table S1 provides the number and proportion of cell
types, as well as mean infiltration distance for immune cells at the end
of model simulations. Table S2 details the model parameters.
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