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Abstract

The immense global diversity of HIV-1 is a significant obstacle to developing a safe and
effective vaccine. We recently showed that infections established with multiple founder vari-
ants are associated with the development of neutralization breadth years later. We propose
a novel vaccine design strategy that integrates the variability observed in acute HIV-1 infec-
tions with multiple founder variants. We developed a probabilistic model to simulate this vari-
ability, yielding a set of sequences that present the minimal diversity seen in an infection
with multiple founders. We applied this model to a subtype C consensus sequence for the
Envelope (Env) (used as input) and showed that the simulated Env sequences mimic the
mutational landscape of an infection with multiple founder variants, including diversity at
antibody epitopes. The derived set of multi-founder-variant-like, minimally distant antigens
is designed to be used as a vaccine cocktail specific to a HIV-1 subtype or circulating recom-
binant form and is expected to promote the development of broadly neutralizing antibodies.

Author summary

Diverse HIV-1 populations are generally thought to promote neutralizing responses. Cur-
rent leading HIV-1 vaccine design strategies maximize the distance between antigens to
attempt to cover global HIV-1 diversity or serialize immunizations to recapitulate the
temporal evolution of HIV-1 during infection. To date, no vaccine has elicited broadly
neutralizing antibodies. As we recently demonstrated that infection with multiple HIV-1
founder variants is predictive of neutralization breadth, we propose a novel strategy that
endeavors to promote the development of broadly neutralizing antibodies by replicating
the diversity of multi-founder variant acute infections. By training an HIV-1 Env consen-
sus sequence on the diversity from acute infections with multiple founders, we derived in
silico a set of minimally distant antigens that is representative of the diversity seen in a
multi-founder acute infection. As the model is particular to the input sequence, it can pro-
duce antigens specific to any HIV-1 subtype or circulating recombinant form (CRF). We
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applied this to HIV-1 subtype C and obtained a set of minimally distant antigens that can
be used as a vaccine cocktail.

Introduction

The diversification of HIV-1 is mediated by low replication fidelity, large population size, high
recombination rates [1-3] and escape from immune pressures, including that exerted by neu-
tralizing antibodies (nAbs) [4,5]. In the first months of infection, nAbs direct their response to
recognize Envelope (Env) targets in autologous viruses [6] before heterologous targets are rec-
ognized typically a couple of years later [7,8]. While most individuals living with HIV-1
develop nAbs, only 10-25% of individuals elicit nAbs that can neutralize >70% of a diverse
virus panel [9,10]. The maturation time needed to induce broadly nAbs (bnAbs) indicate that
it is a complex, multi-factorial process. So far, this process has not been reproduced by vaccine
candidates. Several viral factors have been associated with the development of bnAbs, includ-
ing viral load, viral subtype, CD4+ T cell count, infection duration and viral diversity [11-20].

Theoretical and empirical data show that increased Env diversity in acute or early infection
may prime the immune system to develop bnAbs. A modeling study by Luo and Perelson
showed that broadly neutralizing responses could emerge earlier in infections founded by mul-
tiple strains as bNAbs were less likely to develop after infection with single variants due to
competitive exclusion by the autologous antibody response [21]. Relatedly, the large increase
in diversity that occurs following a super-infection has been linked to the subsequent develop-
ment of bnAbs in these individuals [22-24]. We recently analyzed 3,482 HIV-1 Env sequences
sampled from 70 people living with HIV-1 (PLWH) who were diagnosed in acute infection
[25-27] and compared the sequence data to neutralization breadth measurements performed
on samples collected between six months and four years after infection [28]. Participants had
been enrolled in the prospective HIV-1 acute infection cohort RV217 [29]. In this cohort,
more than 3,000 seronegative individuals from four countries (Kenya, Tanzania, Thailand and
Uganda) were tested twice-weekly for HIV-1 RNA and 155 acute infections were identified.
RV217 PLWH were followed for up to five years after viremia was detected. We showed that
individuals with infections established with multiple HIV-1 founder viruses were more likely
to develop neutralization breadth than those with infections established with single founder
viruses [27]. This finding was reproduced in the cohort of placebo recipients who were
infected during the RV144 vaccine efficacy trial [27,30,31]. We interpret recent data from
small cohorts of infants living with HIV-1 as also supporting this relationship between multi-
variant infections and the development of breadth. Infections with more diverse viral popula-
tions were associated with the development of neutralization breadth [32] and the proportion
of infections with multiple founders was high among infants (7/12) in a different small cohort
[33].

Infections with multiple HIV-1 founder variants account for approximately 25% of infec-
tions [25,34-37]. These multi-founder infections occur when multiple sequences are transmit-
ted from a single transmitter who was likely in the chronic phase of their infection. Hence, all
the sequences in the recipient are closely related, phylogenetically linked, and show around 1%
intra-participant diversity (i.e., minimally distant). We previously showed that infections with
multiple founder variants have clinically relevant features as viral load set point was 0.3 log10
higher in infections with multiple founders when compared to single founder infections [36].
We also recently showed that higher engagement of B cells in the first months of infection was
associated with the development of bnAbs years later [28]. This finding together with the fact
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that infections with multiple HIV-1 founder variants was predictive of the development of
neutralization breadth [27] emphasize that the early events of HIV-1 infection play a critical
role in the ontogeny of bnAbs. This led us to propose that a vaccine which would be consti-
tuted by multi-founder like, minimally distant antigens (differing by ~1% in Env) correspond-
ing to the variability we observed in infections with multiple founder variants could initiate
the induction of bnAbs. We hypothesize that a set of antigens that show minimal differences
and differ primarily at surface sites, including sites that correspond to bnAb epitopes, would
promote the maturation of neutralizing responses through toggle responses between variant
epitopes.

An HIV-1 vaccine that elicits bnAbs is vital to prevent infection from circulating viruses.
Serial administration of the bnAb VRCO1 prevented HIV-1 acquisition, albeit blocking only the
small fraction of circulating viruses that were highly sensitive to the bnAb (IC80 <1 ug/mlL)
(corresponding to 28 of 162 infections) [38]. These results emphasize the enormous challenge
associated with the development of a protective HIV-1 vaccine and highlight the need for new
strategies to develop vaccine candidates that could elicit neutralization breadth. Here we present
a probabilistic model for simulating Env alignments that resemble a set of minimally distant
antigens representative of the variability seen in multi-founder acute infections. We showed
that the model recapitulated features of multi-founder variant infections, including divergence
or pairwise distances across sequences and diversity at key Env antibody epitopes. Using this
probabilistic model, we derived minimally distant antigens (differing by ~1%) for subtype C
Env sequences and selected five sequences that can be used as a vaccine cocktail.

Results

A probabilistic model designed to simulate sequence alignments

The model was based on two training alignments, F; and F,. F; corresponded to all the
sequences descended from the major founder variant, i.e. the major founder lineage in a par-
ticipant infected with multiple founder variants. F, grouped all sequences descended from
minor founder variants in that participant (Fig 1A). Infections with multiple founder variants
can be established with two founders that are clearly delineated; however, rare lineages and
recombinant forms (based on the extant or unsampled founder variants) are often identified—
these are sometimes found as singletons. While the model can be adapted to #n founder line-
ages, for simplicity, here we considered the major founder lineage F; and grouped the other
sequences in that participant (all closely phylogenetically related) as representing F,. Hence, a
group is not necessarily comprised of sequences descending from a unique founder variant
but represents a genetically differentiable cluster with a divergent evolutionary pattern; identi-
fying and distinguishing such clusters allow us to recapitulate the diversity of acute infections
with multiple founders without biasing towards one founder variant population. The percent-
age of non-consensus residues at each site (77;) was calculated for F; and F, separately, giving a
mutational landscape for each founder lineage (major and minor viral population) (Fig 1B).
Next, a transition probability matrix, ©, was computed according to the procedure described
by Le & Gascuel (LG matrix) [39] for the overall rate to define the probability of each amino
acid (or gap) transitioning into any other amino acid (or gap) (Fig 1C); the empirical transi-
tion probabilities were computed on an alignment of 172 subtype C Env sequences sampled
since 2011 from the LANL HIV Database. Finally, a single sequence, aligned to the training
alignment reference frame, was required to seed the model (Fig 1D). The single seeding
sequence corresponds to the design target and can be any sequence for which a set of multi-
founder like antigens is to be derived, e.g. the consensus (or most recent common ancestor)
from a set of sequences corresponding to a particular participant or to a specific HIV-1 subtype
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Fig 1. Protocol for simulating alignments with multiple founder lineages. (A) Alignments of the major (F;) and minor (F,) founder lineages
from a participant infected with multiple founder variants are used to train the algorithm,; this can also be done by pooling a set of participants in
each training alignment. (B) The percentage of non-consensus amino acids is calculated at each site separately for the training alignments. (C) A
transition probability matrix is calculated based on a set of empirical HIV-1 sequences. (D) A seeding sequence is input to seed the sequence
simulation. (E) For each site, a residue is simulated from a multinomial probability distribution defined by the transition probability matrix and
percentage of non-consensus amino acids at that site based on one of the founder variants, with an equal probability of sampling from each variant
model. (F) The simulated sequences are output.

https://doi.org/10.1371/journal.pcbi.1010624.9001
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or Circulating Recombinant Form (CRF). At each iteration, 1, sequence simulation was
trained on either F; or F,, such that site j of the seeding sequence had a probability of mutating
proportional to 7; to a new residue defined by ©;, where 7 was drawn from either F, or F, (Fig
1E). The model then outputs simulated sequences in an alignment (Fig 1F). Here we showed
equal numbers of sequences derived from each founder lineage model, however, the propor-
tion of simulated sequences trained on each founder lineages alignment can be specified.
Instead of considering the variability in a given participant, the model can also rely on a pooled
dataset of major vs. minor founder lineages from multiple participants. In that case, at each
site, the mutational pattern can be that of any individual in the pooled set (to retain within-
host diversity characteristics and forbid inter-host transitions).

Simulated sequences reproduced the variability of acute infections with
multiple founder variants

We simulated sequences trained on alignments corresponding to the major (F;) and minor
(F,) founder lineages sampled from six RV217 participants who had infections established
with multiple founder variants and whose plasma, years later, neutralized >70% of viruses on
a 34-virus panel [27,28] (Table 1). Sequences were obtained between 4 and 34 days post-
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Table 1. RV217 infections with multiple founder variants used as training alignments. The RV217 participant ID, Env subtype/CRF, number of sequences sampled
from each founder lineage, the days post-diagnosis that sequences were sampled, and the peak neutralization breadth reached by the participant within three years of diag-

nosis are reported.

ID
10220
30124
20337
40123
40363
40436

https://doi.org/10.1371/journal.pcbi.1010624.t001

Subtype
Al
Al
C
CRF01_AE
CRF01_AE
CRF01_AE

Founder lineage 1 Founder lineage 2 Days post-diagnosis Peak neutralization breadth (%)
7 13 15,31 74
4 14 4,32 82
9 9 7,34 79
8 13 7,29 82
10 10 7,28 88
5 14 4,28 77

diagnosis. Highlighter plots (S1 Fig) and tree topologies (S2 Fig) indicated that each infection
was established with multiple founder variants (Fig 2A and 2B). For the major founder lineage
F), the mean percentage of non-consensus residues per site across the six participants was 0.06%
(max = 10%) and median pairwise amino acid diversity was 0.001 (min = 0, max = 0.005). For
the minor founder lineage F,, mean percentage of non-consensus residues per site (1.11%,

max = 50%) and median diversity (0.019, min = 0.006, max = 0.034) were both significantly
higher than for F; (Mann-Whitney U test, P<0.015). An empirical transition probability matrix,
O, was computed on an alignment of 172 subtype C Env sequences sampled since 2011 and sim-
ulations were seeded with the consensus derived from sequences from an independent RV217
participant (id = 10066). One thousand sequences were simulated and trained in equal propor-
tions on major and minor founder lineages alignments for each participant separately, where the
percentage of non-consensus residues at each site, 71, was defined by either the major founder
lineages, F,(7r;), or minor founder lineages, F,(r;). The percentage of non-consensus residues in
simulated sequences at each site was highly correlated (median R* = 0.99, min = 0.98, max = 100)
with the percentage in the training alignment for each founder lineage (Fig 2C and 2D). One
thousand sequences were also simulated while trained on a pool of all founder lineage alignments
across participants (Fig 2E), where F,(71;) was the maximum percentage of non-consensus resi-
dues found at site j in a given individual across all F; alignments and F,(7;) was the maximum
percentage of non-consensus residues found at site j in a given individual across all F, align-
ments. The 95% confidence intervals of median pairwise diversity in simulated sequences
included median pairwise diversity of training alignments for sequences simulated on each par-
ticipant and for the pooled set of participants (Fig 2F). Similarly, the 95% confidence intervals of
the median number of polymorphic sites per simulated sequence as well as the number of poly-
morphisms per sequence at CD4bs, V1-V2, V3 and MPER contact sites included the median
number for training alignments for sequences simulated on each participant (Fig 2G).

The model was designed to simulate sequences that are specific to the seeding sequence
rather than mimic the composition of the training alignment. Therefore, the simulated align-
ment should be genetically closer to the seeding sequence than to the training alignment.
Indeed, the percentage of mismatched ungapped sites between the consensus of simulated
sequences and seeding sequence (0%) was significantly lower (Mann-Whitney U test,

P =0.001) than between the consensus of simulated and consensus of the training sequences
(8.27-16.12%) for sequences simulated with each training alignment (S3 Fig).

Simulated sequences replicated the diversity found in infections with
multiple founder variants

We compared diversity and divergence estimates for sequences simulated under the pooled set
of major and minor founder lineage alignments to Env sequences sampled during acute
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Fig 2. Simulated sequences reproduced the variability of acute HIV-1 infections with multiple founder variants. (A) A highlighter plot and (B) phylogeny for Env
sequences sampled at 7 and 28 days post-diagnosis from a RV217 participant (id = 40363) with an infection with multiple founder variants. (C) The percentage of non-
consensus residues at each Env site in sequences simulated from the major founder variant or major lineage 1 (top, blue line) and the minor founder variants grouped here
as lineage 2 (bottom, blue line) after seeding with the consensus sequence from an independent acutely-infected RV217 participant (id = 10066); values for sequences
belonging to the major and minor founder lineages in 40363 are shown in open and filled pink circles, respectively. (D) Regression plots of the percentage of non-
consensus residues in the training alignment as a function of non-consensus residues in the simulated alignment for (top, blue fill and pink border) founder lineage 1 and
(bottom, blue border and pink fill) founder lineage 2. (E) Phylogeny of sequences sampled at 4-34 days post-diagnosis from 6 RV217 participants with infections with
multiple founder variants. Tips are colored to represent the population corresponding to the major (open circles) and minor (closed circles) founder populations for each
participant (for simplicity, multiple founder variants or singleton sequences are grouped under the minor lineage). (F) For sequences simulated under each training
alignment (see panel E), the pairwise diversity of the training alignment (pink) and of the sequences simulated under that training alignment (blue); and the pairwise
diversity of sequences simulated under the pooled alignment (blue). Solid lines represent 25% and 75% interquartile ranges. (G) Barplots of the number of polymorphic
sites per sequence in sequences simulated under each training alignment and the pooled-participants training alignment (blue) at all sites, CD4bs, V1-V2 contact sites, V3
contact sites, and MPER sites. Dashed whiskers indicate maximum values. Pink dots represent median values for training alignments.

https://doi.org/10.1371/journal.pcbi.1010624.9002
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Fig 3. Simulated sequences replicated the diversity found in infections with multiple founder variants. Violin plots of (A) median pairwise diversity, (B) maximum
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acute infection with a single founder variant (n = 53, grey), sequences simulated under the pooled-participants probabilistic model (n = 5000, blue), and sequences
sampled from RV217 participants during acute infection with multiple founder variants (n = 6, pink). (E) Phylogenies constructed with sequences from a participant with
a single founder variant sampled at 1 and 29 days post-diagnosis (id = 10066), a sample of simulated sequences from the pooled-participants model (five from major
founder lineage 1 and five from minor founder lineage 2, blue), and sequences from a participant with multiple founder variants sampled at 7 and 28 days post-diagnosis
(id = 40363) (pink). Phylogenies are shown at the same scale; the dashed box shows the top phylogeny at ten-times magnification. Violin plots of spectral density profile
summary statistics A*(F), 17 (G) and In-transformed y (H) for the same groups. Median values are shown above each plot.

https://doi.org/10.1371/journal.pchi.1010624.g003

infection from RV217 participants infected with either a single founder variant (and who
developed <35% neutralization breadth) (n = 12) or multiple founder variants (and who
developed >70% neutralization breadth) (n = 6). The 95% confidence intervals of diversity
and divergence estimates for simulated sequences included the median values for Env align-
ments of multi-founder variant acute infections and was higher than that of infections with
single founders (Fig 3A-3D).

Similarly, phylogenies of simulated sequences were more similar to phylogenies of infec-
tions with multiple founder variants than to those with single founder variants (Fig 3E). Spec-
tral density profiles of the modified graph Laplacian [40] were computed for Env alignments
from infections with single and multiple founder variants in RV217 and for down-sampled
alignments from sequences simulated under the pooled set of major and minor founder line-
ages alignment. Spectral density profile summary statistics each capture a unique aspect of
phylogenetic topology: * is proportional to non-synonymous/synonymous rates, 1 is
inversely proportional to transition-transversion rate ratio, and y is proportional to rate het-
erogeneity [41]. The simulated alignment was downsampled 100 times for 5 sequences simu-
lated under each of the founder lineage training alignments, F; and F,. The 95% confidence
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In silico-derived antigenic sequences for HIV-1 Env subtype C
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whereas across samples of simulated sequences an average (mean of median) of 3.08%

[IQR =2.93-3.16%] of residues at a site were non-consensus and 17.3% [IQR = 15.2-16%|
(148/856) of sites were polymorphic (Fig 4D). B-cell epitopes and exposed sites were predicted
for the subtype C consensus. Across samples of simulated sequences, an average of 12.3%
[IQR = 11.7-13.2%] of sites (26.73/213) with >50% epitope probability were polymorphic and
16.2% [IQR = 15.0-16.9%] of sites (42.65/260) at predicted exposed sites were polymorphic
(Fig 4D). Finally, all samples of simulated sequences were polymorphic at one or more Ab epi-
tope sites. Five Abs corresponding to critical Env targets for neutralization were considered:
VRCO1:CD4bs[42], CAP256-VRC26.25:V2 apex[43], PGT121:V3[44], 10E8:MPER([45],
35022:interface between gp120 and gp41[46]. At VRCO1 epitope sites (n = 36), a median of 12
sites were polymorphic per sample of simulated sequences and 17 sites were polymorphic in at
least one sample; at CAP256-VRC26.25 epitope sites (n = 6), 1 site was polymorphic per sam-
ple and 4 were polymorphic in at least one sample; at PGT121 sites (n = 13), 2 and 8; at 10E8
sites (n = 10), 2 and 2; and at 35022 sites (n = 12), 2 and 6 (Fig 4E).

Finally, an alignment of simulated sequences was constructed for five Ab epitopes represen-
tative of key Env targets (VRC01, CAP256-VRC26.25, PGT121, 10E8, 35022). There were 166
sequences with non-consensus residues in at least three of the five Ab epitopes (Fig 5A-5F).
From these, two candidate sequences generated by F; and two by F, that were maximally
divergent (within the framework of minimal diversity) were selected as candidate antigens
(Fig 5G and S1 File). Together with the subtype C consensus, the candidate sequences had 20
polymorphic sites with 2-5 different residues per polymorphic site (Fig 5H). We predicted the
structure of the simulated sequences using AlphaFold2 [47]. Predicted local distance difference
tests (pLDDTSs) showed generally good confidence across all domains, with median pLDDTSs
between 86.25-88.44, which was comparable to the median pLDDT of the subtype C Env con-
sensus (87.77) that was used to seed the simulations. The sequences generated by F; were more
similar to the seed sequence than those generated by F, (Fig 5I), as expected, and the structure
protein prediction indicated that all simulated sequences should fold to a structured protein.

Discussion

While bnAb infusions in humans can prevent HIV-1 infection [38], no vaccine candidate has
shown the induction of such bnAbs in a vaccine efficacy trial [48-54], emphasizing the need
for novel vaccine strategies. Here we developed a new vaccine design approach that emulates
the diversity observed in HIV-1 infections with multiple founder variants. This multi-founder
like vaccine design derives from the finding that individuals with infections established with
multiple founder variants were more likely to develop bnAbs than individuals with infections
established with single founder variants [27]. We showed that our design strategy reproduced
the diversity seen in infections with multiple founder variants and we applied this approach to
design a subtype C-specific vaccine candidate constituted of a set of five minimally distant Env
sequences centered on an updated subtype C consensus.

First, we developed a probabilistic method to design antigens that reflect the diversity seen
in acute infections with multiple founder variants. This method was trained on sequences
descended from major and minor founder lineages sampled during acute infection from one
of six individuals who developed broad neutralization breadth against HIV-1 or on a pooled
alignment of sequences from all six individuals. When seeded with an independent acute
infection sequence, our method generated a set of antigens that recapitulated the variability of
infections with multiple founder variants, including polymorphisms at critical Env target epi-
topes (CD4bs, V1-V2, V3 and MPER). Importantly, the derived sequences remained close to
the seeding sequence, suggesting that the simulated sequences would preserve the structural

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010624  October 31, 2022 9/21


https://doi.org/10.1371/journal.pcbi.1010624

PLOS COMPUTATIONAL BIOLOGY Simulating minimally distant HIV-1 antigens

A B C
0
@ S 2 § 3
210 2 b=
- 1]
g 8 3 3 2]
7] & =
< 6 2 0]
3 c 1 @
& 8 8
8 4 £ £ 1
c ] I}
g, o <
5 g S
go- 4 g0 ] 50—
> N O PSS NS PSS L SO, o NP LSS,
D Simulated sequences E Simulated sequences F Simulated sequences
0 2 — 824
g E
° g O 0.157
a 2 55
2 c o 20.10
8 17 81 E 3
2 5 2o
3 ¢ 2§
5 5 8 £0.05+
= S [T)
© N 2 q
] o} 2<
< 0- . 80— = 8 000-m—F7 7T+
NS P LSS N \@'L ’5@ &Q%Q%Qe /\@‘E@Q@ @“ N \Qe?@ SO S S L
Simulated sequences Simulated sequences Simulated sequences
H
KITLNTANEKTSGGDTHQENTROGGNMNNETR GGPRNTRDKKAR IGPGATEY ATRIFRTTNLIKNVTKNTNS TVIW
Subtype CIK TTLNTNNAKTSGGD IWQEVTRDGGNNNNNTRGGDRNTRDKKNRIGPGQTFYATNNWFDITNLWKNVTKNTNSTVNM

FIKTTLNTNNGKTSGGDIWQEVTRDGGNNNNNTRGGDRNTRDKGNRIGPGQTFYATNNW FE\TN,NK\\’T&\JRI\STS\H\
FlKTTLNTNNTKTSGGDIWQEVTRDSGNNKNATRGGTRNTRDKKNRIGPGQTFYATNNWFED I TNLWKNVTKNTNSTVNM
FIKTTLNTNNVKTSGGDIWQEVTRDGNTSNNNTRGGERNTRDKKNRIG oTFVATKsWFD\TD,M\\/TMMSTVNM
FZKTTLN‘A(SKTSGGD\wOEETTDGG\KN\ETRGCD%NT%DK(NR\G QTFYTTKNWFAITNLWKNVTKNTNSTVNM

L L 1 [ ] [ 1 L ]

VRCO1 CAP256 PGT121 10E8 35022

O Identical

Similar
@ Different
@ Indel
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candidate antigen sequences; non-consensus residues are shown in larger font and regions corresponding to the epitopes of VRC01, CAP256-VRC26.25, PGT121, 10E8,
and 35022 sites are highlighted below the alignment; a logo plot above the 5 candidate sequences represents the diversity found in circulating subtype C sequences at the 5
representative antibody epitopes. (I) Sequence differences from the consensus to candidate antigen sequences mapped on the predicted structure of the consensus C
sequence. The C, atoms of similar, different, and insertion/deletion (indel) sites are shown as yellow, red and black spheres, respectively.

https://doi.org/10.1371/journal.pcbi.1010624.g005

integrity of the chosen central sequence. By training on alignments sampled from different
infections with multiple founder variants, we showed that the variability patterns of simulated
sequences differed according to the training alignment. However, for all training alignments,
our method generated sequences that reflected a median genetic distance of ~1%, conforming
to the infections with multiple founder variants that we want to emulate in order to elicit
bNADs.

Second, we applied this method to design a subtype C specific vaccine candidate. Seeded
with the Env subtype C consensus (derived from 172 independent subtype C Env sequences
sampled since 2011), we generated a set of minimally distant antigens that preserved the com-
position of subtype C sequences while recapitulating the variability of infections with multiple
founder variants. The divergence from the consensus of simulated sequences was a magnitude
smaller than that of independent subtype C sequences and so met the criteria of representing
diversity around the seeding sequence while reducing the total inter-host genetic space. We
selected four candidate antigens that exemplified diversity at epitope sites for representative
bNAbs. However, alternative selection criteria could be used to design antigens with features
that could promote other types of immune responses, such as Fc effector functions [55,56]. An
important limitation of this method is its reliance on alignments from only six individuals to
simulate multi-founder-like sequences. While each individual developed bnAbs, precise mech-
anisms behind the association between multi-founder variant diversity and the development
of neutralization breadth are unknown. We tried to overcome this limitation by pooling
founder lineage alignments to capture the scope of diversity found in acute infection in these
broad neutralizers rather than relying on one individual to define a prototypical infection with
multiple founder variants. While we chose to use as seeding sequence a subtype C consensus
in order to design a subtype C vaccine candidate (because over half of the people living with
HIV-1 live with subtype C), only one of the six infections we used in our pooled founder line-
age alignment corresponded to subtype C (Al (n = 2) and CRF01_AE (n = 3)). It has not been
reported that patterns of variability in acute infections with multiple founders differ by sub-
type, nonetheless, it is possible that subtype C specific patterns exist and would not necessarily
be captured by our approach. Additionally, we separated sequences into two major and minor
founder lineages—this does not account for the complexity seen in some infections with multi-
ple founder variants which can include recombinants between extant and/or unsampled
sequences and rare or even unique sequences. Hence, our model simplified the landscape of
acute viral diversity in these individuals. Nonetheless, if datasets of increased depths are avail-
able, the model can be used to simulate the multitude of distinct sequences that can be identi-
fied in a set of hundreds of Env sequences from acute HIV-1 infection.

In silico methods for vaccine design have gained a foothold over the last decade. Computa-
tional approaches for updating vaccines against Influenza have proposed models for predicting
antigenic diversity over time, including multivariate regression on physicochemical properties
of circulating variants [57], phylogenetic weighting of antigenic evolution [58-60], and
dynamic fitness models of antigenic alleles [61]. In silico vaccine design methods have been
used for HIV-1 for over two decades to overcome the obstacle posed by HIV-1’s extreme
diversity [62-64]. There is more diversity within each HIV-1 subtype or CRF than what can be
seen across a viral species [65]. Gaschen and colleagues showed that a centralized sequence,
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consensus or ancestral, would better represent HIV-1 than any sequence derived from a
PLWH [63,66]. To cope with HIV-1 diversity, some designs, such as the mosaic approach,
seek to integrate a fraction of the diversity seen in HIV-1 sequences [67-69]. These variability-
inclusive strategies are reminiscent of the diversity seen in super-infections, which have previ-
ously been associated with the development of neutralization breadth. As such, mosaic anti-
gens are designed to be maximally distant to cover a large fraction of circulating viruses. The
rationale is that immunizations with these diverse mosaic inserts, for example corresponding
to consensus sequences for group M, subtype B and subtype C, could lead to the development
of antibody responses against these distant viruses thereby potentiating broadly cross-reactive
responses. Two vaccine efficacy trials are testing the Mosaic design (one reached futility crite-
ria in 2021: https://www.jnj.com/johnson-johnson-and-global-partners-announce-results-
from-phase-2b-imbokodo-hiv-vaccine-clinical-trial-in-young-women-in-sub-saharan-africa).
An opposite strategy to Mosaic designs was to focus on only the most conserved elements of
HIV-1 [70-73]. This stemmed from the realization that variable segments of HIV-1 functioned
as decoys eliciting immune responses that were not optimal and that only a small fraction of
HIV-1 diversity could be integrated in a vaccine candidate of practical size. Another currently
leading strategy, the germline targeting approach, seeks to improve the longitudinal process
seen in individuals infected who later developed breadth [74] by reproducing the directional
process that leads to breadth in a minority of individuals through using antigens that corre-
spond to stepwise stages of the co-evolution between the virus and the neutralizing response.
Our approach is also based on a process seen in natural infections, whereby infections with
multiple founder variants were linked to the subsequent development of neutralization
breadth. This multi-founder-like design of minimally distant antigens is also akin to the con-
served elements vaccine design rationale. We consider that the ‘noisification’ of a central con-
sensus sequence at target sites for key antibodies will trigger responses to these antibody
epitopes and that the toggle between these minimally distant epitopes will promote a desirable
affinity maturation process leading to the development of bnAbs. The fact that our vaccine
design was derived from the variability seen in multi-founder acute infections suggests that
this strategy with a cocktail of minimally distant antigens may be best suited as a priming
immunization. Whether subsequent immunizations should consist of the same set of antigens
or a subset of them, or one or more distinct antigens, will need to be evaluated with experi-
mental assays.

In summary, our in silico method generates a set of antigens that bear distinct epitopes, but
maintain a minimal global distance across Env, constituting a projected formula for increasing
the probability of eliciting bNAbs. We hypothesize that this generic approach can serve to
design vaccine candidates with enhanced bnAb-eliciting properties for any given sequence. As
such, this approach can be used to design cocktail vaccine candidates adapted to any HIV-1
subtypes and circulating recombinant forms. While this model can also be used to design an
HIV-1 group M vaccine cocktail, the idea of a successful universal HIV-1 vaccine is far-fetched
when considering lessons from the past forty years of HIV-1 vaccine research.

Materials and Methods
RV217 participant sequences

We used env sequences that we previously generated via single genome amplification of HIV-
1 on plasma samples collected in the first five weeks after HIV-1 diagnosis in acute infection in
participants from the RV217 cohort [25-27,29]. All participants were antiretroviral treatment
naive. We included Env sequences from twelve participants with infections with single foun-
ders (median = 10, min = 10, max = 28) who developed <35% neutralization breadth and
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from six participants with infections with multiple founders who developed >70% neutraliza-
tion breadth (median = 11, min = 10, max = 13) (Table 1) (another participant with multiple
founder variants and >70% neutralization breadth was excluded because the development of
neutralization breadth occurred following superinfection). Infections with multiple founder
variants are illustrated with highlighter plots [34] (S1 Fig); we previously reported that these
individuals neutralized 74-88% of a 34-virus panel at 435-2115 days post-diagnosis [28].
Sequences belonging to each founder lineage in multi-founder acute infections were used in
the training dataset.

Independent subtype C sequences

Subtype C Env sequences sampled since 2011 were downloaded from the Los Alamos National
Laboratory HIV Sequence Database (https://www.hiv.lanl.gov/components/sequence/HIV/
search/search.html). Sequences were excluded if the individuals had been vaccinated, if the
sequence did not have a complete open reading frame or did not have a sampling year. One
sequence was downloaded per individual and sequences were removed if they were non-inde-
pendent or an outlier. Hypermutated sequences identified with Hypermut 2.0 [75] (using
https://github.com/philliplab/hypermutR) were removed with a Fisher’s exact test P<0.1.
Sequences were de-duplicated at 95% identity.

Probabilistic model for sequence simulation

A probabilistic model was developed to simulate Env sequences that replicated the variability
of infections with multiple founder variants. The model is trained on two Env alignments, cor-
responding to the major (F;) and minor (F,) founder lineages identified in a given participant
(the model can also be trained on a pooled set of individual lineages). A first-order Markov
transition probability matrix, 6, is estimated as described by Le and Gascuel (LG matrix) [39];
in brief, transition rates are directly computed between pairs of amino acids, including transi-
tion rates from/to gaps based on an alignment of empirical sequences. We suggest using a
large dataset of independent sequences that would correspond to the subtype of the desired
target vaccine candidate (i.e., subtype C sequences if the goal is a subtype C vaccine which
implies that the seed sequence corresponds to subtype C). For each alignment,

1. The percentage of non-consensus residues was calculated for each alignment site.

2. For each site, j, percentage of non-consensus residues, 7;, an amino acid in the seeding
sequence, k, and a transition probability, Oy, the probability of transitioning from k to K’
was written as

P(k/|k7 n].,(ak) -

where Pj(K’) is calculated for each site j. For each simulated sequence, 7; is trained on either F;
or F, and at each site in the sequence, j, the new residue is then drawn from a multinomial
probability distribution based on P(k'). The denominator, X(6@y[-k]), is included to force the
probability distribution to sum to 1, such that P/(k'#k) = 1-P,(k’ = k). For each seeding
sequence (e.g., a subtype C consensus sequence), whichever model is initially drawn to simu-
late the initial amino acid in a sequence is consistently applied to generate the following amino
acids in that sequence. For the pooled sets, the less diverse major founder lineages were pooled
together and the more diverse minor founder lineages constituted a second set. For each
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pooled founder lineage alignment, at each site j, 77; was estimated as the maximum percentage
of non-consensus residues in any individual alignment in that pool (i.e., this retained within-
host diversity levels); however, this could be alternatively modeled such that, at each site j, m;
was randomly drawn from an individual alignment in the pooled alignment.

Sequence simulation

One thousand sequences were simulated using a probabilistic model with an empirical transi-
tion probability matrix, ©, computed on an alignment of 172 subtype C Env sequences sam-
pled since 2011 and seeded with a consensus sequence corresponding to sequences from an
independent acutely-infected RV217 participant (id = 10066) or a subtype C consensus. Seven
sets of sequences were simulated: one trained on each of the six individual training alignments
separately and one on a pooled alignment of all of the training sequences. For the pooled
model, the F,(71;) and F,(7;) were the maximum percentage of non-consensus residues found
at site j in a given individual across all F; and F, alignments, respectively. The probability of
drawing from each variant model was recorded, so the outputs could be analyzed separately.

Sequence analysis

Consensus sequences were computed with a majority rule. Sequences were aligned to the
HXB2 reference in MAFFT v7.419 [76]. For alignments of sequences sampled from partici-
pants in RV217, the percentage of non-consensus (as well as non-gap, non-ambiguous) resi-
dues at each site was calculated as the number of residues at each site different from the
majority consensus residue for that alignment divided by the total number of sequences. Poly-
morphic sites were defined as sites with at least one amino acid different from the consensus.
For simulated sequences, the percentage of non-consensus residues and polymorphic sites
were defined against the seeding sequence. Contact sites for known HIV-1 antibodies

(n = 116) were previously reported in studies of natural HIV-1 infection (https://www.hiv.lanl.
gov/components/sequence/HIV/featuredb/search/env_ab_search_pub.comp).

A maximum-likelihood model of pairwise sequence distance that corrects for sequence
length was computed using the dist.ml function [77]. Sequence divergence was calculated
against the seeding sequence for each alignment. Phylogenies of aligned sequences were con-
structed with IQ-TREE 2 [78] based on the model with the lowest BIC identified with Model-
Finder [79]. The modified graph Laplacian (MGL) is computed for the distance matrix of the
reconstructed phylogeny of sequences; eigenvalues calculated from the MGL define the con-
nectivity of the phylogeny in terms of substitutions. Spectral density profile summary statistics
represent different aspects of the topology of the phylogeny, such as the longest path through
the phylogeny, A* which is a correlate of non-synonymous/synonymous substitution rates, the
proportion of long versus short branching-events, y, which is a correlate of rate heterogeneity,
and the occurrence of branching-events, 7, which is a correlate of transition-transversion rates
[40,41]. Spectral density profile summary statistics 1*,i, and n were estimated for phylogenies
reconstructed from empirical and simulated sequences. Simulated alignments were iteratively
down-sampled 100 times to a random set of 10 sequences. Divergence, pairwise distance, and
phylogenetic metrics were calculated on each downsampled alignment.

Subtype C sequence antigen prediction

A phylogeny for subtype C sequences was constructed with IQ-TREE 2 [78] based on the
model with the lowest BIC identified with ModelFinder [79]. Divergence from the majority
consensus was computed for each sequence and pairwise distances were computed for all
sequences.
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For the subtype C consensus, exposed residues (i.e., accessible to antibodies) were defined
as we previously described [27] and B-cell epitopes were predicted with Bepi-Pred 2.0 [80]
using an epitope prediction threshold of 0.5. The number of polymorphic sites among simu-
lated sequences corresponding to predicted B-cell epitopes were quantified.

To select candidate antigen sequences, simulated sequences were filtered by those that had
a non-consensus residue (with respect to the subtype C consensus) in at least three key Ab epi-
topes (VRCO01, CAP256-VRC26.25, PGT121, 10E8, and 35022). Of these sequences with mini-
mal variability, the two maximally divergent sequences simulated by F; and two by F, were
selected as candidate antigens. Maximally divergent sequences were selected to cover as much
genetic space as possible within the simulated minimal divergence.

Structure prediction and visualization

The structure of one subunit of the Env-trimer for subtype C consensus (the seed sequence)
and four in silico-derived antigenic sequences were predicted with ColabFold [81]. The align-
ment was prepared using MMseqs2 [82] and the structure prediction was carried out with
AlphaFold2 [47]. Before feeding to the ColabFold, the signal peptide and the sequence after
the transmembrane helix were removed from the sequence. The structure figure is rendered
by PyMol (https://pymol.org/). If a substitution is between a pair of highly similar residues
(RK, QE, QN, ED, DN, TS, SA, VL, IL, LM, and FY), the residue is colored yellow; other
changes are colored red.

Statistical analysis

Shapiro’s normality test was used to determine if data were normally distributed. If data were
normally distributed, pairwise comparisons were made using a Student’s t-test; and otherwise
using a Mann-Whitney U test. Two-sample Kolmogorov-Smirnov tests were used to compare
distributions. Statistical tests were only used to compare empirical data but not simulated data.
Comparisons with simulated data were made by assessing inclusion/exclusion of values within
the 95% confidence intervals of simulated data.

Supporting information

S1 Fig. Highlighter plots of 6 RV217 infections with multiple founder variants. For each
individual, a highlighter plot is constructed from sequences sampled during acute infection
using the consensus as the master sequence. The number of days post-diagnosis at which each

sequence was sampled is listed to the right of each plot.
(TIF)

S2 Fig. Phylogenies of 6 RV217 infections with multiple founder variants. For each individ-
ual, a phylogeny constructed from sequences sampled during acute infection and rooted on
the majority consensus sequence.

(TIF)

S3 Fig. Mismatched sites between seeding, training, and simulated sequences. Correlation
plot of the percentage of mismatched non-gapped sites between the consensus of the seeding
alignment, simulated alignment, and training alignment for sequences simulated under each
RV217 multi-founder infection.

(TIF)

S1 File. Candidate antigen sequences simulated from a subtype C Env consensus sequence
and trained on pooled founder alignments sampled from six multi-founder acute
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infections in RV217.
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