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Abstract

Fish populations are linked to ocean biogeochemistry by their reliance on primary production

for food, and dissolved oxygen to breathe. It is also possible that marine fish modify biogeo-

chemical dynamics, as do freshwater fish, through top-down trophic cascades, but there

has been relatively little consideration of this possibility. This lack of consideration may

reflect a lack of importance; alternatively, it may simply reflect the lack of appropriate obser-

vations with which to constrain such relationships. Here, we draw attention to the potential

use of marine sediments as long-term simultaneous monitors of both fish abundance and

marine biogeochemical dynamics. We compile published sediment proxy records of fish

abundance from the west coasts of the Americas, and compare them with biogeochemical

proxy measurements made at the same sites. Despite the challenges of using sediment rec-

ords and the potential convolution of ecological and climatic signals, we find a small number

of statistically significant relationships between fish debris and biogeochemical variables, at

least some of which are likely to reflect causal relationships. Considering TOC, the most

commonly-measured biogeochemical variable, some positive correlations with fish abun-

dance are found, consistent with bottom-up control of fish abundance by primary production,

or a planktivore-herbivore-phytoplankton trophic cascade. Negative correlations are also

found, which could reflect sedimentary processes, the influence of upwelling-driven oxygen

and nutrient dynamics on primary production and fish populations, and/or impacts of fish

stocks on carbon fluxes by altering the recycling of carbon within the water column. Although

the number of available measurements is too small to draw strong conclusions, the results

point to plausible cases of bottom-up forcing, trophic cascades, and influence of dissolved

oxygen concentrations on fish habitat.

Introduction

Marine fish are inextricably linked to biogeochemical cycles through their reliance on photo-

synthetically-captured energy and dissolved oxygen. Phytoplankton transform dissolved
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inorganic carbon into organic matter, at a rate that depends on nutrient limitation, water tem-

perature, light exposure, and grazing control of phytoplankton biomass [1]. The organic mat-

ter is then transferred to fish via heterotrophic pathways, so that the abundance of fish

depends to some degree on photosynthesis [2]. Dissolved oxygen also exerts a critical environ-

mental influence on fish, given that fish communities are metabolically constrained by the

combination of water temperature and oxygen concentrations [3].

It is typically assumed that the reverse dependency, of ocean biogeochemistry on fish, is

negligible in the ocean due to the relatively slow metabolic rates of fish. However, fish have

been shown to significantly affect biogeochemical cycling in lakes through trophic cascades

[4], and it has previously been argued that similar processes may occur to a lesser, but perhaps

still significant degree in the ocean [5–10]. These changes could be manifested as changes in

the export fraction (i.e. the f-ratio) and transfer efficiency of sinking particles [11, 12], with

consequences for the biological ‘soft tissue’ carbon pump and oxygen consumption in the deep

ocean. Thus, it remains an open question whether the abundance of fish, and their impact on

the structure of marine communities, alters the cycling of nutrients, carbon and oxygen in the

ocean in a consequential way. This question has implications for the long-term evolution of

ocean ecology [13, 14], and gains a sense of urgency in the context of industrial fishing, which

may have depleted the biomass of large predatory fish by 90% since preindustrial times [15]; if

fish do influence biogeochemical cycling to a significant extent, their removal may have

already had unappreciated consequences for ocean biogeochemistry.

Bottom-up control, widely believed to dominate in the ocean [16] implies that environmen-

tally-driven changes in primary productivity control the abundance of ‘higher’ trophic levels

(by which we mean all organisms above zooplankton), by modifying the supply of food. As

such, all trophic levels would be expected to flourish and decline together. Top-down control,

on the other hand, implies that the biomass structure within a population is significantly

altered by predation, so that the abundance of predators and their prey would vary inversely

over time [6, 17, 18]. Top-down control provides a potential mechanism for fish to impact bio-

geochemistry, despite their relatively slow metabolic rates, by controlling the abundance of the

trophic levels below them. Top-down control is widely recognized in fresh water ecosystems as

‘trophic cascades’, whereby the reduction of biomass at one trophic level releases their prey

from predatory pressure, causing them to increase in abundance. The next trophic level down

would be depleted, in turn. This pattern of depleting the biomass of alternate trophic levels

was first observed in freshwater fish removal experiments [4, 19] and was shown to have pro-

found biogeochemical impacts. Trophic cascades induced by the addition or removal of fish

from lakes can abruptly increase phytoplankton biomass, which lowers water column trans-

parency, reduces the depth of light penetration and causes the thermal stratification and mix-

ing depth to shoal [20]. The increased thermal stratification, combined with a greater amount

of slow-sinking phytodetritus can increase sub-surface respiration and significantly deplete

hypolimnetic oxygen concentrations [21].

The simple trophic cascade mechanism documented in lakes is not directly transferable to

marine ecosystems due to their higher diversity, fewer discrete trophic levels, and the relative

ease with which organisms can migrate and/or be transported by ocean currents over long dis-

tances [10]. However, there are indications that some forms of trophic cascades can occur in

the marine environment [22]. Top-down control in North Atlantic ecosystems has been

suggested by observed negative correlations in timeseries of predator-prey abundances

[17]. Trophic cascades have been reported as a result of human activities in the Peruvian

Upwelling [5], Baltic Sea [8], Black Sea [9], Scotian Shelf [7] and Namibian upwelling [23]. All

of these putative trophic cascades are related to intensive industrial fishing, and appear to cor-

respond to observed and documented biogeochemical changes: an increase in chlorophyll a
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concentrations in the Baltic Sea, oxygen depletion in the Black Sea, an increase in water col-

umn nitrogen on the Scotian Shelf, and an increase in organic matter flux to sediments in the

Peruvian and Namibian upwellings. These observations have been used to suggest that upper

trophic levels can exert a significant influence on the marine biogeochemical environment, at

least in certain environments and ecosystems. ‘Wasp-waist’ ecosystems, in which a relatively

small number of forage fish with high turnover rates acts as a critical intermediary between

lower and upper trophic levels, have been identified as particularly prone to trophic instability

[24].

The consumption of herbivorous zooplankton by planktivorous forage fish can alter the

abundance and species composition of phytoplankton, as observed in the Scotian Shelf trophic

cascade [7]. In environments where nutrients or light are available to phytoplankton in excess

(i.e. not limiting primary production), the consequent impacts on phytoplankton biomass may

alter overall rates of primary production. In addition, control of the zooplankton population

and community structure could modify the depth at which organic matter is respired, or

‘remineralized’ within the water column. Zooplankton fecal pellets account for a highly vari-

able (between 0 and 100%) but often significant amount of carbon collected in sediment traps

[25]. Zooplankton biomass, size, and community structure can have a significant influence on

the remineralization profile of the water column and, thus, the export efficiency of particulate

organic carbon [26]. This effect has been observed in fresh water systems where a shift towards

smaller zooplankton results in less efficient grazing of phytoplankton and smaller, slower sink-

ing particulate matter [21]. In addition, it is possible that the presence of predatory fish alters

the behaviour of zooplankton [27], such as providing an incentive to undertake Diel Vertical

Migration (DVM), which has been shown to have a significant impact on organic matter remi-

neralization in the global thermocline [28].

In addition to controlling the biomass of zooplankton, fish can exert a direct control on the

fluxes of organic matter and minerals. Fish create large fecal pellets that sink up to an order of

magnitude faster than those of zooplankton [29]. Few observational studies distinguish fish

pellets from zooplankton faeces, but anchovy fecal pellets have been found to account for up to

17% of organic carbon in sediment traps placed in the Peruvian Upwelling Zone [30]. Mesope-

lagic fish, particularly myctophids, also engage in DVM that facilitate the active transport of

carbon out of the upper ocean by feeding near the surface at night and resting at depth during

the day. It has been estimated that DVM by mesopelagic fish accounts for 15-17% of carbon

export in the California Current [31]. The excretion of calcium carbonate in fish feces has also

been argued to provide a surprisingly large vertical flux of carbonate [32].

Fig 1 provides a graphical summary of possible interactions between fish abundance, the

ecosystem size spectrum and sinking particle fluxes. Large fish may produce the fastest-sinking

fecal pellets, but in relatively small quantities given their slower metabolic rates. As such, they

can potentially exert a greater impact on particle cycling through top-down control of smaller

organisms. For example, if piscivorous fish are removed from the system illustrated in Fig 1,

and a trophic cascade occurs, the abundance of forage fish could be expected to increase,

decreasing the abundance of zooplankton. If forage fish are removed from a system and a tro-

phic cascade occurs, zooplankton would be expected to increase in abundance. In all cases, the

effects on abundance are expected to be dampened at trophic levels further away from the ini-

tial perturbation [18].

Body size can also be considered as a first order indication of the trophic roles of different

fish species [33]. For example, in eastern boundary upwelling systems, anchovy, sardine and

hake are commonly found. The relative sizes of these fish, with anchovy and sardines being

smaller than adult hake, generally corresponds to the relative sizes of their prey of plantkon vs.

small fish [34, 35]. However there are additional differences between the species, such as the
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facts that hake is demersal (bottom-dwelling) whereas anchovies and sardines are pelagic, that

sardines can filter phytoplankton from the water while anchovies feed by biting zooplankton,

and that anchovy tend to outcompete sardines when water colummn oxygen concentrations

are lower [36]. Thus, sensitivities to environmental changes will differ between species, as well

as their potential to produce cascades or other biogeochemical effects.

Despite the numerous potential mechanisms by which fish might influence biogeochem-

istry, the provision of firm observational constraints is hampered by the spatio-temporal vari-

ability of ocean circulation and lower trophic level processes, the highly motile nature of fish,

and confounding environmental changes [10]. Direct observations of individual fish can be

scaled up to infer large-scale impacts on biogeochemistry [31, 32], but this is fraught with

uncertainty, leaving time-series observations of past changes in fish abundance and biogeo-

chemistry as a critical test [9, 17]. In order to be able to confidently identify trends, records of

both fish abundance and biogeochemical parameters are needed, over a sufficiently long time-

scale to filter out the interference of other processes.

Here, we explore the possibility that impacts of fish on ocean biogeochemistry can be dis-

cerned in previously published proxy records from recent marine sediments. Marine sediment

records have most often been collected with the aim of reconstructing past climate, but fish

bones, otoliths or scales have been extracted and counted from a small number of them to

reconstruct population abundance over time. Fish scales, composed of hydroxyapatite, are

continually lost by most fish and can be preserved for thousands of years in anoxic sediments

[37]. Fish scales were first counted in sediments of the Santa Barbara Basin [38] and later cor-

related to standing stock biomass in the same region [39] as well as more recently in Saanich

Fig 1. Schematic size spectra of marine communities and sources of sinking particles. The lines show idealized responses of community size spectra

to changes in fish abundance. Because the abundance of organisms generally decreases with size, zooplankton will produce large amounts of more

slowly-sinking faecal pellets, while large fish will produce small amounts of rapidly-sinking fecal pellets. The hypothetical predator-removal spectra are

inspired by the simulated impacts of fishing on size spectrum models [18].

https://doi.org/10.1371/journal.pone.0199420.g001
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Inlet [40]. Fish bones and otoliths are deposited by a different mechanism than scales, most

commonly being excreted by predators [40]. Bones and otoliths are far more resistant to degra-

dation than fish scales and thus will be less affected by varying preservation regimes [41, 42].

In addition to fish abundance proxies, common sediment measurements that might reveal

relevant processes generally fall into three categories: climate state, primary and export pro-

duction, and oxygenation state. Proxies that reflect climate include Sea Surface Temperature

(SST) proxies, and lithogenic particles supplied by wind or runoff. Productivity-related quanti-

ties include Total Organic Carbon (TOC), calcium carbonate (CaCO3), opal, and species

assemblages (e.g. diatoms, foraminifera, and dinoflagellate cysts). These proxies would be

expected to reflect changes in primary productivity, while also depending on the export frac-

tion (i.e. that which sinks to depth), which is controlled by ecosystem structure and the remi-

neralization profile. Oxygenation proxies include trace metals that accumulate in sediments

depending on the sediment oxidation state [43], sedimentary laminations, and benthic faunal

assemblages. Oxygenation proxies may be used to test for relationships between fish stocks

and oxygen concentrations within the water column, and may also help to detect changes in

the preservation of organic matter. Bulk sedimentary δ15N reflects the cycling of nitrate,

including sources and sinks of nitrogen as well as its utilization [44].

Despite its great potential, using and interpreting the sediment record presents considerable

challenges (eg. [41]). Proxy signals are convolutions of climatic, oceanographic, sedimentary,

and ecological influences, among which it can be difficult to differentiate. In addition, sedi-

mentary records include a raft of uncertainties: chronologies of sediments are imperfectly

known [45], sedimentary processes at the seafloor can leave imprints that have nothing to do

with fish or biogeochemistry [46], and diagenetic alteration from the activity of heterotrophic

organisms alters the composition of recently-deposited sediments [47]. What’s more, the

amplitude of natural changes in overall fish abundance may have been smaller than those now

underway due to fishing and climate change, and may therefore produce smaller biogeochemi-

cal impacts. It is entirely conceivable that any signals resulting from natural fluctuations in

upper trophic level influence on biogeochemistry are simply too small to be preserved in sedi-

ments, or may be dwarfed by climatically-forced biogeochemical changes.

Methods

A search was performed for published fish debris in recent marine sediments, using four

online databases: NODC (nodc.noaa.gov), Pangaea (pangaea.de), Web of Science

(webofscience.com), and Google Scholar (scholar.google.com). The search revealed nine loca-

tions at which counts of sedimentary fish bones, otoliths and/or fish scales were available,

located along the west coast of North and South America (Fig 2) and in the Yellow Sea [48].

We refer to each of these locations as a ‘site’. The same databases were then searched for any

biogeochemically relevant data that had been collected at these sites, including all cores within

10 km distance that overlapped in time with the fish abundance records. This resulted in posi-

tive data identification at all sites except the Yellow Sea. Data were obtained from online data-

bases if available, otherwise by manually digitizing the values in published figures or by

contacting study authors directly. We also retained climate-relevant proxy data at the eight

sites where biogeochemical and/or physical climate proxy data were available, although we did

not conduct an exhaustive search for these.

Most of the sites had been sampled by multiple sediment cores, and the composition of

most sediment cores had been analyzed in terms of multiple observable parameters at many

depths below the sediment-water interface. We refer to each depth-parameter series as a

‘record’. For many cores, chronological information had previously been used to estimate the
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ages of the samples, providing an ‘age model’. In most cases, records were reported with depth

as the primary axis, but in some cases the primary axis was the estimated age. All records

retrieved for the study are listed in Table 1 and data files are provided as supplementary

material.

To provide an objective assessment of the statistical relationships between different sedi-

mentary measurements, we performed regressions of all possible record pairings. First,

Fig 2. The eight sites examined in this study. The total number of record pairs at each are listed in parentheses. A

‘record’ is defined as a single parameter measured in the sediment, and a ‘record pair’ is constituted by two co-existing

records that can be compared.

https://doi.org/10.1371/journal.pone.0199420.g002
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comparisons between proxies were made within the same core when available, as reported vs.

depth in sediment, interpolating linearly between depths when necessary. For these ‘incore’

comparisons there are no age model uncertainties. Comparisons were also made between dif-

ferent cores at the same site, using published age models, with the assumption that a given site

represents a sufficiently small oceanic region that changes in the ecosystem, biogeochemistry

and physical ocean state were synchronous on the multi-annual sampling timescale. Proxies

from cores without age models were only ever compared to other records from the same core

(vs. depth in sediment). Correlations calculated between cores should be viewed with caution

as all are from areas of high-sedimentation rates and many sites are prone to frequent sediment

slumps and discontinuities [78]. We assume that the inevitable age model inaccuracies—

Table 1. Data sources for the eight sites examined. Italicized proxy names indicate those for which only flux data was available.

Site Core Ref. Record types Period (CE) Mean sample interval (years)

Effingham Inlet, Canada TUL99B03 [49] Fish scale counts -2532-562 47

Effingham Inlet, Canada TUL99B03 [50] Age model -2745-1805 568

Effingham Inlet, Canada MD02-2494 [51] TOC, Opal, CaCO3, total N, N-15, redox sensitive elements -15526-1214 22

Effingham Inlet, Canada MD02-2494 [52] Age model -15526-1214 22

Saanich Inlet, Canada ODP 1034 [53] Fish bone counts -10964-1121 50

Saanich Inlet, Canada ODP 1034 [54] TOC -9685-1418 113

Saanich Inlet, Canada ODP 1033 [55] TOC, Opal, CaCO3, total N, N-15, redox sensitive elements, C-13 -9684-1418 113

Santa Barbara Basin, USA 214 [56] Fish scale counts 145-1995 10

Santa Barbara Basin, USA SPR0901-02KC [57] Fish scale counts 1009-1492 6

Santa Barbara Basin, USA SABA87-1 [58] TOC, alkenone SST 1443 -1941 2

Santa Barbara Basin, USA ODP 893 [59] TOC -46681-1919 173

Santa Barbara Basin, USA ODP1017 [60] N-15, TOC -72801-1950 150

Santa Barbara Basin, USA MD2503 [61] Foram counts -31583-1786 107

Santa Barbara Basin, USA MD2504 [61] Foram counts -22429-1769 125

Santa Barbara Basin, USA BC-1 [42] Otoliths 40-2000 10

Soledad Basin, Mexico 244 [39] Fish scale accumulation 1783-1976 5

Soledad Basin, Mexico 244 [62] Age Model 1725-1976 5

Soledad Basin, Mexico TUL (unnamed) [63] TOC 1456-1977 18

Guaymas Basin, Mexico 7807-1305 [64] Fish scale accumulation 1735-1975 10

Guaymas Basin, Mexico BC50 [65] TOC, Opal, total N, redox sensitive elements 1814-1987 2.7

Callao, Peru 106KL [66] Alkenone SST -17654-1960 178

Callao, Peru B0405-13 [67] Fish scale counts, fish bone counts, TOC, CaCO3, quartz, N-15 1309-1999 7

Callao, Peru C0329 [68] Fish scale counts, P_fish, TOC, CaCO3, Opal, total N No Age Model -

Callao, Peru ODP1228 [69] N-15, TN -12675 to 1088 98

Callao, Peru W7706-40 [70] N-15, TN -2569-1607 24

Callao, Peru SO78-173-4 [71] TOC, SST No Age Model -

Pisco, Peru B0405-06 [72] Fish scale counts, fish bone counts, TOC, CaCO3, quartz, N-15 1291-1998 5

Pisco, Peru B0405-06 [73] Alkenone SST 1737-2003 3

Pisco, Peru B0405-06 [41] Fish scale counts 1291-1998 5

Pisco, Peru B0506-14 [67] Fish scale counts 1510-2005 1

Pisco, Peru B0506-14 [45] Opal, N-15, TOC, redox sensitive elements 1510 -2005 2

Pisco, Peru B05-13 [45] Fish scale counts, TOC 1858-2004 1

Mejillones Bay, Chile F981A [74] Fish scale accumulation, TOC, N-15 1746-2001 3

Mejillones Bay, Chile BC3D [75] TOC 1787-2002 3

Mejillones Bay, Chile 33C [76] Fish scale counts, TOC, CaCO3, Opal No Age Model -

Mejillones Bay, Chile BC-1 [77] Fish scale accumulation, TOC, Quartz, SST 1331-2013 6

https://doi.org/10.1371/journal.pone.0199420.t001
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which may be large—will tend to lead to the detection of fewer correlations than exist in real-

ity, since we cannot readily conceive of instances in which chronological error would systemat-

ically produce additional inter-core correlations.

In addition, we point out that there is often a very broad range of timescales and sampling

resolutions among records at the same site. This range of timescales may have a significant

influence on the processes they can capture, as well as the relative strengths among multiple

co-existing processes that vary with different temporal frequencies. For example, if the effect of

fish populations on sinking particle fluxes varies strongly on a 5-y timescale, it may not be

strongly-resolved in a record with a 50-y sampling interval. Alternatively, if large community-

driven changes alter sinking particle fluxes on a regional, multi-decadal timescale, these may

be overwhelmed by interannual fluctuations of local hydrography in a record with annual

resolution.

Linear interpolation between records was carried out in both directions, so that each

record-pair was analyzed twice. We chose n> 8 as the minimum number of overlapping data

points among two records in order to consider them as a record-pair. Relationships between

proxy timeseries were quantified using linear regression, and correlations with p values less

than 0.05 were identified as statistically significant [79]. Each timeseries was also linearly

detrended and correlations recalculated; if the p value remained below the threshold of 0.05

the correlation was identified as a significant detrended regression. The detrending test was

performed given the occurence of long-term signals (such as gradual climate shifts or isostatic

changes altering the shape of coastal embayments) that could affect both fish abundance and

biogeochemical proxies without any causal relationship between them. Whenever an original

study identified individual species in fish scale counts, correlations were calculated with each

species as well as the sum of all scales.

Comparisons within cores were always made between pairs of concentrations or pairs of

accumulation rates. For the analyses of age-based pairs, we relaxed this requirement. When

both fluxes and concentrations were available for a single parameter, we only included the con-

centrations. This choice was made to avoid false positive correlations due to changes in the

estimated sedimentation rate at chronological tie points, though we note that dilution by other

sediment constituents could also produce positive correlations between proxies (see also Dis-

cussion). If the concentrations were not available but could be calculated from the fluxes using

other sedimentary parameters, we did so. The records for which we used fluxes are listed in

italics in Table 1.

Both TOC and fish scales decay due to microbial activity, and changing preservation

regimes over time might have altered the preserved abundances at any of the sites. Previous

work has evaluated fish scale preservation at two of the sites, Saanich Inlet [53] and the Peru-

vian margin [41]. Changing preservation appears to be a particularly important issue in the

Peruvian cores, where a pronounced biogeochemical shift has been identified in the mid-19th

century, associated with a shift from poor preservation to excellent preservation (see S1

Appendix for a detailed explanation of this analysis). We therefore only consider Peruvian sed-

iments from the well-preserved period in the analyses discussed in the main text. Although we

do not make similar subdivisions of other records, it should be born in mind that this is due to

a lack of information, and that variable preservation could be a relevant factor at any of the

sites.

Results

Table 2 provides an overview of the regression analysis results, for both within-core and age-

based record pairs. In all cases except Fish-Physics pairs (for which few within-record pairs are
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available), the proportion of significant correlations is higher for within-core pairs, as would

be expected from the introduction of age-model error in age-based pairs. The two groups do

not include the same records, given that many more pairs are included in the age-based group,

yet the following general features are robust between them, including both raw and detrended

records: the strongest correlations are found among biogeochemistry-biogeochemistry pairs,

followed by physics-biogeochemistry pairs, followed by fish-fish pairs, followed by fish-biogeo-

chemistry pairs, followed by fish-physics pairs. At most sites we included only one physical

proxy record, so the physics-physics pairs were not well tested. The total number of record

pairs varies markedly between sites (Fig 2), so that this overview is dominated by the sites with

larger numbers of pairs, most notably Pisco and Santa Barbara Basin. Detailed correlation

tables for each site are provided in the S1 Table and S1 File.

Table 3 focuses on the results for fish-biogeochemistry and fish-physics pairs. The correla-

tions are given in terms of number of record pairs, each of which represents a comparison of

fish scale abundance with another proxy record at the same site. Note that multiple taxon-spe-

cific fish records were available at many sites, so that the total number of pairs is much greater

than the total number of non-fish proxy records.

Among the fish-bgc and fish-physics pairs, those with significance occurring in more than

10% of pairs (including after detrending) are TOC, the C:N ratio and opal. Among these, cor-

relations with C:N are positive, while TOC and opal include both positive and negative correla-

tions. Conversely, SST, foram assemblages and productivity indicators all show very low

occurrence rates of significant pairs. The absence of correlations with SST is surprising, given

the common assumption that SST reflects upwelling and productivity (e.g. [80]), which might

therefore provide a bottom-up forcing on fish abundance. The rarity of correlations with the

available productivity proxies also fails to support an important role for local primary produc-

tion in driving fluctuations of fish abundance. Nonetheless, given the small number of records

available for each proxy, and the weakness of most correlations where they do exist, the general

impression provided by this overview must be viewed with caution.

Table 2. Overview of all record pairs analyzed at the eight sites. The first column gives the total number of record pairs of each type. The second and third columns give

the pairs for which significant correlations were identified, as total number and fractional percentage, respectively. The fourth and fifth columns correspond to the second

and third columns, but for detrended records. The upper portion of the table only includes record pairs that occurred within the same sediment core, while the lower por-

tion includes all available record pairs at a site that included an age model.

Pairs Sig. Sig. % Detrend sig. Detrend sig. %

Within core

Fish-Fish 92 29 32 30 33

Fish-Bgc 68 13 19 7 10

Bgc-Bgc 156 119 76 90 58

Fish-Phys 7 0 0 0 0

Phys-Bgc 33 24 73 17 52

Phys-Phys 2 0 0 0 0

Age-based

FishFish 183 53 29 49 27

FishBgc 301 41 14 29 10

BgcBgc 208 137 66 94 45

FishPhys 56 4 7 4 7

PhysBgc 60 28 47 18 30

PhysPhys 2 0 0 0 0

https://doi.org/10.1371/journal.pone.0199420.t002
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Table 4 provides details of all correlations identified as significant among the fish-bgc and

fish-physics pairs. The table shows that a number of the correlations are not consistently signif-

icant between the original and detrended timeseries, which we take as an indication that they

are less robust. In particular, all but one of the record pairs in Saanich fails to produce signifi-

cant detrended correlations. On the other hand, some of the record pairs show very significant

correlations (p< 0.01) with both. The Mejillones Bay records have especially strong positive

correlations between fish scales, TOC and δ15N.

In general, TOC stands out as having a large proportion of significant correlations with fish

abundance, and is the only non-fish proxy that was available at all sites. We therefore discuss

the correlations with TOC in greater detail.

Organic carbon

Of the eight sites examined, statistically significant negative correlations between fish abun-

dance proxies and TOC were found in cores at three sites (Santa Barbara, Soledad, Saanich

Inlet), positive correlations at two sites (Callao, Mejillones), both positive and negative correla-

tions at one site (Pisco), and no significant relationships at two sites (Guaymas, Effingham).

The first site with negative correlations between TOC and fish is Santa Barbara Basin,

where an aggregate of all fish scales produces a negative correlation to TOC (r = −0.274, p =

.019) across numerous boom-bust cycles in anchovy scales. Interestingly, there was no correla-

tion between the TOC record and the Uk’37 derived SST at the same site [58].

Further south at Soledad Basin, accumulation rates of hake scales have a strong negative

correlation with TOC flux (r = −0.518, p = .001), which remains robust after detrending (r =

−0.475, p = .002), whereas there is not a significant correlation with other species. Although it

is conceivable that changes in scale accumulation rates could dilute TOC concentrations, the

fact that no correlation exists with the total scale accumulation rate suggests that this is

unlikely, and the ecological or habitat-based characteristics of hake may be significant at this

site.

Saanich Inlet, on the southern tip of Vancouver Island, also has a negative correlation

between fish abundance (fish bone counts) and TOC values, in a record that spans the entire

Holocene. A gradual increase in TOC and decrease in fish bones from approximately 7500 to

Table 3. Correlations between fish abundance and other proxy records for age-based pairs. The number of significant (Sig., p< 0.05) correlations are listed for each

available proxy record vs. all fish abundance records at the same site. Of these, the number of positive (i.e. r> 0) regression coefficients are indicated in the ‘Sig.+ve’ col-

umn, and the percentage of significant correlations among the total pairs tested is given in the ‘Sig.%’ column. The ‘dt’ columns show the corresponding values for the line-

arly-detrended records.

Pairs Sig. Sig +ve Sig.% Sig.dt Sig.dt +ve Sig.dt%

TOC 85 15 8 18 12 4 14

TN 29 3 1 10 1 0 3

CN 10 2 2 20 1 1 10

CaCO3 22 2 2 9 3 2 13

Opal 19 7 1 37 3 1 16

d15N 53 5 5 9 5 5 9

ForamAssemb 12 1 0 8 0 0 0

Productivity 9 1 1 11 0 0 0

Bottom Water O2 62 4 2 6 3 2 5

Quartz 22 2 2 9 4 2 18

SST 27 1 0 4 0 0 0

Al 7 1 1 14 0 0 0

https://doi.org/10.1371/journal.pone.0199420.t003
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Table 4. All significant fish correlations. For each record pair for which a significant correlation was found, the proxy names, corresponding cores (single names indicat-

ing within-core pairs), and correlation statistics r and p are given. The dt columns are for detrended records. The total number of points in each comparison timeseries is

given by n. Boldface indicates record pairs for which n> 20 and p< 0.01 for both original and detrended pairs. Note that “total scales” is the sum of available records and

may not include unpublished or uncounted species. Multiple Anchovy-TOC pairs exist at Pisco due to their coverage of different time periods.

Fish Proxy Cores r p dt r dt p n

Callao

Hake scales TN B0405-13 0.422 0.010 - - 35

Hake scales TOC B0405-13 0.460 0.004 - - 35

Effingham

Herring scales CaCO3 TUL99B03—MD02-2494 0.291 0.012 0.243 0.026 66

Guaymas

Anchovy scales TN 7807-1305—BC50 -0.599 0.004 -0.576 0.005 17

4 Anchovy scales C:N 7807-1305—BC50 0.621 0.003 0.685 0.002 17

Mejillones

Anchovy scales TOC F981A 0.565 0.000 0.437 0.000 83

Sardine scales TOC F981A 0.365 0.001 0.454 0.000 83

Anchovy scales δ15N F981A 0.518 0.000 0.355 0.002 82

Sardine scales δ15N F981A 0.315 0.012 0.409 0.000 82

Anchovy scales TOC F981A—BC-3D 0.456 0.000 0.375 0.001 70

Anchovy scales SST BC-1 -0.226 0.035 - - 104

Sardine scales Quartz F981A—BC-1 0.447 0.019 0.460 0.013 83

Pisco

Sardine scales CaCO3 B05-13—B0405-06 0.357 0.000 0.363 0.000 131

Sardine scales Quartz B0506-14—B0405-06 0.175 0.047 0.200 .023 129

Sardine scales TOC B0405-06—B0506-14 0.376 0.009 - - 47

Jack Mackerel scales TOC B0405-06—B0506-14 -0.300 0.040 - - 47

Jack Mackerel scales CaCO3 B0405-06 - - -0.339 0.038 51

Anchovy scales TOC B0506-14 0.261 0.003 - - 132

Hake scales TOC B0506-14 0.318 0.000 0.454 0.000 132

Total scales TOC B0506-14 0.291 0.001 - - 132

Hake scales Opal B0405-06—B0506-14 - - -0.340 0.012 47

Jack Mackerel scales Opal B0405-06—B0506-14 0.345 0.017 0.295 0.044 47

Hake scales Opal B0506-14 -0.261 0.003 -0.374 0.000 131

Anchovy scales Opal B0506-14 -0.271 0.002 - - 131

Total scales Opal B0506-14 -0.299 0.001 - - 131

Anchovy scales Re/Mo B0506-14 - - -0.230 0.013 130

Hake scales Re/Mo B0506-14 0.263 0.002 0.377 0.000 130

Anchovy scales TOC B0506-14—B05-13 -0.575 0.040 - - 13

Hake scales Re/Mo B05-13—B0506-14 0.219 0.016 0.303 0.001 121

Total scales Opal B05-13—B0506-14 -0.262 0.003 - - 123

Anchovy Scales Opal B05-13—B0506-14 -0.244 0.007 - - 123

Anchovy scales TOC B0506-14—B0405-06 - - -0.307 0.001 128

Total scales TOC B0506-14—B0405-06 - - -0.297 0.001 128

Anchovy scales Quartz B0506-14—B0405-06 - - -0.440 0.000 129

Total scales Quartz B0506-14—B0405-06 - - -0.423 0.000 129

Anchovy scales TOC B05-13—B0506-14 - - -0.314 0.000 124

Total scales TOC B05-13—B0506-14 - - -0.284 0.001 124

Saanich

Bones TOC ODP1034 -0.575 0.001 - - 206

Bones TOC ODP1034—ODP1033 -0.356 0.000 - - 223

(Continued)
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3000 BCE produces an overall negative correlation (r = −0.58, p = 0.001) but which is insignifi-

cant when detrended. Isostatic rebound following the last deglaciation gradually isolated the

fjord from the open ocean, increasing productivity and lowering oxygen conditions [55]. This

major bathymetric change likely dominates the trends in all records from this site, explaining

the numerous strong correlations that disappear following detrending.

The final site with negative correlations is Pisco, in the Peruvian Upwelling Zone; however,

there is a mix of both negative and positive correlations at this site. Inconsistencies in the cor-

relations between cores may be due to differences between species, as well as unrecognized

sedimentary hiatuses that plague the Peruvian margin, as discussed by [78]. It is also notable

that both cores show a marked decrease in anchovy scales and increase of TOC within the

upper sediment. This decrease of anchovy scales has been attributed to low anchovy biomass

during a sardine-dominated period [81] and subsequent biomass removal by industrial fish-

ing, and roughly follows reported anchovy landings [41, 72, 77].

In contrast to the equivocal sign of correlations in Pisco, the correlations at Mejillones Bay

in Northern Chile are strongly positive for both anchovy and sardine scales, with r-values

ranging from 0.37 to 0.57 and p-values all less than 0.001. Although a few of the record pairs

did not show significant correlations, particularly the anchovy scale record from BC-1, overall

these stand out as the most consistent and powerful fish-TOC correlations among the sites

analyzed. The second site with a positive correlation is Callao, a second Peruvian site where

the 19th-century biogeochemical transition was also previously identified. One significant pos-

itive correlation occurred here, with hake scales, but it was relatively weak and did not remain

significant following linear detrending.

The downcore record from Guaymas Basin produced no statistically significant correlation

between fish abundance and TOC. Likewise, Effingham Inlet, a small (<1 km wide) isolated

fjord on the west coast of Vancouver Island, showed overall low scale counts with no obvious

periodicity or relationship with TOC.

Table 4. (Continued)

Fish Proxy Cores r p dt r dt p n

Bones TN ODP1034—ODP1033 -0.480 0.000 - - 223

Bones Opal ODP1034—ODP1033 -0.394 0.000 - - 223

Bones C-13 ODP1034—ODP1033 -0.297 0.001 0.266 0.020 223

Bones Al ODP1034—ODP1033 0.424 0.000 - - 223

Bones Mo ODP1034—ODP1033 -0.465 0.000 - - 223

Bones Mo/Al ODP1034—ODP1033 -0.495 0.000 - - 223

Bones C:N ODP1034—ODP1033 0.476 0.000 - - 223

Santa Barbara

Sardine scales TOC 214—SABA87-1 - - -0.242 0.020 48

Total scales TOC 214—SABA87-1 -0.274 0.019 -0.250 0.025 50

Hake scales δ15N 214—SMB 0.773 0.000 0.543 0.018 14

Total scales δ15N 214—SMB 0.810 0.000 0.670 0.002 14

Total scales Benthic forams 214—MD2504 0.481 0.011 - - 163

Otoliths TOC SABA87-1—BC-1 - - -0.294 0.014 229

Anchovy scales TOC 214—SABA87-1 -0.527 0.000 - - 50

Anchovy scales δ15N 214—SMB1 0.772 0.001 - - 14

Soledad

Hake scales TOC 244—TUL -0.518 0.001 -0.475 0.002 39

https://doi.org/10.1371/journal.pone.0199420.t004

Fish abundance and ocean biogeochemistry

PLOS ONE | https://doi.org/10.1371/journal.pone.0199420 August 1, 2018 12 / 22

https://doi.org/10.1371/journal.pone.0199420.t004
https://doi.org/10.1371/journal.pone.0199420


Discussion

Our broad statistical overview of published sediment records shows that most of the possible

pairings of fish abundance and biogeochemical proxies are not significantly correlated. This is

not surprising, given the complexity of the marine ecosystem and the potential for sedimento-

logical processes to obscure relationships. Nonetheless, we find that significant correlations

occur with a sufficient frequency among some record pair types that they are very likely to rep-

resent causal relationships. It would therefore appear that marine sediment records do have

the potential to inform poorly-understood relationships between fish and biogeochemical

cycling. These interactions could include bottom-up limitation of fish by primary production,

interactions with dissolved oxygen, or the trophic cascades discussed in the introduction.

Correlations between fish abundance records and TOC are observed, at statistically-signifi-

cant rates (including following detrending), at four of the eight sites at which records were

available. The correlations are unlikely to have arisen from the same mechanisms at all sites,

given diversity among the environments and the ecosystems, as well as differences in sedimen-

tation. The range of records investigated also differs greatly in the temporal resolution

(Table 1), which will result in different sensitivities to mechanisms, given different timescales

of interactions between ecosystems and biogeochemistry. Additionally, we would caution

against strong conclusions being drawn from these correlations, given that the number of rec-

ords is small, and even where significant, the fraction of variability explained tends to be small

(r2 < 0.5). Nonetheless, the identification of a correlation with p< 0.05 would be expected to

occur less than once in 20 cases by random chance, and although correlations do not necessar-

ily imply direct causal relationships, it is interesting to further consider the possible underlying

mechanisms.

Given that TOC is the most widely-available proxy, we focus the discussion on the possible

mechanisms that might have generated correlations between proxies of fish abundance and

TOC. This discussion is intended to provide a framework for considering possible implica-

tions of the observed correlations and to help direct future study. We divide the possible mech-

anisms into four categories (Fig 3) as described below.

Bottom-up control: Organic carbon affects fish

A positive correlation would be expected in an ecosystem where temporal variability of fish

biomass is driven by variability in the local primary production. During times of higher pri-

mary production, the increased food availability would percolate up the food web, resulting in

greater total fish abundance. For a positive correlation to be found, greater primary production

must also result in enhanced carbon burial in the sediments, requiring that particulate export

production (i.e. the sinking of organic matter out of the sunlit surface layer) also increased.

Mejillones Bay showed very robust positive correlations between TOC and fish scales (both

sardine and anchovy) that would support a local bottom-up control, consistent with the inter-

pretation of [77] based on a longer record of scale deposition rates from the site. The negative

correlation of anchovy scales with SST, and positive correlation of sardine scales with quartz,

are also consistent with a wind-driven upwelling control on productivity at this particular site.

These results are entirely consistent with the interpretation of [77]. We also found positive cor-

relations over the complete timeseries from the Peruvian sites (including sediments prior to

and following the mid-19th century oxygenation change), as discussed in the S1 Appendix,

consistent with the upwelling-driven bottom-up control proposed by [45, 72, 73] based on

multiple proxies from Peru and elsewhere. However, given the evidence for a large change in

preservation of both TOC and scales [41, 72], we cannot rule out the possibility that a major

portion of this correlation is due to the preservation change. We also find positive correlations
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for some fish species in B0506-14 from Pisco within the well-preserved interval, but these co-

occur with negative correlations. The weakness or absence of positive correlations at sites

other than Mejillones Bay should not be taken as evidence that changes in primary production

are unimportant for fish abundance, they simply do not emerge unambiguously from the anal-

ysis. Thus, although bottom-up control undoubtedly plays a role in fish abundance between

locations [2] and appears to play a strong role at Mejillones [77], it does not appear to have

dominated fish abundance variability on the temporal and spatial scales captured by the avail-

able sediment records at the other sites.

Top-down control: Fish affect organic carbon

A second possibility is that fish exert a control on carbon export to the sediment, an example

of top-down control. This control on carbon export could be a result of predation on lower

trophic levels (trophic cascade), or due to the behaviour or the species itself. For example, pre-

dation by planktivorous fish would be expected to deplete the stocks of herbivorous zooplank-

ton, potentially reducing their repackaging of phytodetritus as fecal pellets, which sink rapidly

to sediment, as schematized in Fig 1. This would result in a smaller carbon flux to sediments

when planktivorous fish are abundant, which would produce a negative correlation. However,

one could conceive of other possibilities as well. Since zooplankton grazing limits the phyto-

plankton biomass, a larger zooplankton population could reduce local productivity in a region

with excess nutrients, such that less organic carbon would end up in the sediment [5, 23]. Or

the abundance of piscivorous fish could have an impact on the abundance or behaviour of

smaller fish, the effects of which may not be straightforward. It thus seems possible that abun-

dant fish stocks could either enhance or diminish carbon export to sediment: both would

Fig 3. Potential mechanistic explanations of observed correlations between TOC and fish debris. Grey indicates no correlation is expected, blue a positive

correlation, purple a negative correlation, and orange indicates either positive or negative correlation.

https://doi.org/10.1371/journal.pone.0199420.g003

Fish abundance and ocean biogeochemistry

PLOS ONE | https://doi.org/10.1371/journal.pone.0199420 August 1, 2018 14 / 22

https://doi.org/10.1371/journal.pone.0199420.g003
https://doi.org/10.1371/journal.pone.0199420


appear possible, depending on interactions between fish, zooplankton, phytoplankton and the

spectrum of sinking particles within the local community.

It is possible that at least some of the significant relationships observed between fish and

TOC reflect top-down control. The results suggest a species-dependence of results at both

Santa Barbara basin and Pisco, which could be because species have different relationships

with the local food web. Alternatively, it might reflect a role for common drivers.

Common environmental drivers

Correlated changes of fish scale counts and TOC may also be driven by a common factor,

without a direct causal link between the two. For example, all eight sites are directly or indi-

rectly affected by coastal upwelling, which can simultaneously affect water column oxygen-

ation [82] and organic matter production. A depletion of oxygen within the water column

could alter the distribution of bottom-dwelling species and compress the habitat depth range

of pelagic fish, making them more vulnerable to predation. The latter mechanism has been

invoked to explain positive correlations between oxygen concentrations and pelagic fish stocks

in the California Current over the last 60 years [83]: as more oxygen-poor, nutrient-rich waters

were upwelled, primary production is expected to have increased. The result is co-occurence

of increased phytodetritus, better preservation of organic matter in sediments affected by the

bottom water oxygen decline, and depleted fish populations.

Changes in water column oxygenation affect species of fish differently and can trigger a

shift from one regime to another. In the Humboldt current system, it has been suggested that

multidecadal oxygen changes drove shifts between anchovy and sardine regimes [81]. Low-

oxygen conditions are associated with anchovy dominance and vice versa for sardines [36].

This introduces a large degree of uncertainty in how a change in water column oxygen would

affect carbon export as it is also a feasible mechanism to create negative correlations between

TOC and fish scales depending on how each individual species affects export production.

It seems quite feasible that upwelling-oxygen dynamics were responsible for the strong and

highly significant negative correlations between TOC and Hake scales in the Soledad Basin. If

greater production occurs due to an influx of nutrients supplied by stronger upwelling, the

associated shoaling of isopycnals would draw low-O2 waters up to shallower depths [82]. The

expansion of low-oxygen waters on the upper slope could reduce the habitat of demersal hake

and lead to an anti-correlation between hake abundance and TOC. A relationship with bottom

water oxygen is also suggested by the weak positive correlation (r< 0.2) of hake scales at Pisco

with Re/Mo, a bottom water oxygen proxy. This suggests that weak upwelling at Pisco reduces

primary production, while simultaneously improving the local oxygenation of bottom waters,

which could increase the abundance of hake. Yet, this may be a site-specific feature, given that

none of the other five sites where some kind of oxygen proxy is available shows any statistically

significant correlations with any kind of fish abundance records (S1 Table). Local interactions

between fish stocks and dissolved oxygen distributions may depend on the the bathymetry and

geometry and intensity of oxygen minimum zones relative to the core locations, and could

involve more complex dynamics than the simple causality evoked here [84].

Another possible common driver involves processes involved in the generation of the sedi-

mentary records. The sedimentation and burial of TOC and fish scales is not instantaneous,

and sedimentary processes act upon these proxies differently. Local currents transport sedi-

ment along the seafloor and winnow the finer sediments away from the coarser; this hydraulic

sorting may differentially transport the fine fraction of TOC relative to fish scales. A potentially

important issue is any preservation difference in the sediment of organic carbon originating

from phytodetritus or marine snow versus fecal pellets from zooplankton or fish, which may
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generate positive or negative correlations. Positive correlations could occur due to a common

influence of redox conditions on both TOC and fish scale preservation; as discussed in the S1

Appendix, changes in preservation driven by variable oxygenation also appear to have played a

major role in the Peruvian sediment records before and after approximately 1820. The possi-

bility of changes in TOC preservation could be further tested by comparison with carbon flux

proxies less prone to diagenetic alteration, such as Ni [85], or by more detailed characterization

of the sedimentary organic matter [86].

Since we analyzed both flux and concentration records, it is possible that variable dilution

of both TOC and fish debris by changes in other sedimentary components contributes to the

positive correlations identified in some cases. It is also possible that negative correlations arise

due to the dilution of TOC concentrations by fish scales, given that TOC fluctuations are typi-

cally on the order of 1%, while fish scale abundance varies by orders of magnitude. However, if

dilution were the driving factor, we would expect the strongest negative correlation to always

be with an aggregate of all scales counted rather than individual species, whereas the opposite

is more commonly observed in the available cases here.

Spurious correlations

The occurrence of spurious correlations (i.e. no causal link) must also be considered. Apparent

correlations would be expected to occur among unrelated timeseries at a rate equal to the p-

value used for significance testing; in our case,< 5%. In addition, correlations between caus-

ally-unrelated timeseries are more likely in the presence of long-term trends. For example, a

decrease of TOC with depth below the core-top could be produced by the downcore decay of

organic carbon by microbial degradation (diagenesis). Depending on sedimentation rates, this

could occur over the recent period of rapid intensification of industrial fishing, which would

produce a decrease in scales towards the top of the core. Thus, causally-unrelated effects of

microbial degradation and fishing could produce a spurious negative correlation. This is more

likely to occur between records with strong linear trends (e.g. the Saanich records), since more

complex temporal patterns are less likely to change in a coordinated fashion, thereby prompt-

ing our inclusion of detrended correlations. On the other hand, if fish do exert a top-down

control, the onset of industrial fishing could have actually caused the increases over time in

sedimentary TOC, in which case the hypothetical correlation would not be spurious.

No correlation observed

Finally, at half of the sites, significant correlations between TOC and fish scales were not

observed. This lack of correlation may indicate that the ecosystem structure at these sites does

not allow for a consistent relationship between fish abundance and carbon export. Alterna-

tively, relationships may be masked by larger climate signals (such as the large shifts seen in

the Saanich site), obscured by sedimentological artifacts, or lost in the translation of measure-

ments between cores, as necessitated by the approach here. An absence of correlations cannot

be taken as an absence of links between proxy variables and fish abundance.

Outlook for future work

The sediment record represents an important archive that can be used to help examine long-

term relationships between marine fish and the environment around them, bridging the gap

between marine ecology and biogeochemistry. However, there are currently very few pub-

lished studies that include both biogeochemical proxy measurements and fish abundance

proxies on the same sediment cores. To take full advantage of the opportunity, more datasets

of fish abundance should be developed, as they are currently sparse relative to other
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sedimentary proxies, and they should be accompanied by multiproxy data on the same sedi-

ments. Although the present work focused mostly on fish scales, which break down relatively

quickly in most marine sediments, fish teeth and bones are potentially preserved for much

longer time periods, providing the possibility to extend the record of fish abundances back

thousands or millions of years [13, 87]. Ideally, fish abundance records would be directly

accompanied by measurements of biogeochemical and physical proxies, in order to avoid the

inter-core comparisons that were necessary here. Finally, all of the sites examined here under-

lie coastal upwelling zones in the eastern Pacific, because of their tendency to generate rapidly-

accumulating oxygen-poor sediments that preserve excellent fish scale records; of particular

interest would be other types of fish abundance records that can occur in dramatically different

oceanographic regimes (e.g. otoliths, teeth), to examine ecosystem-biogeochemistry links in

other settings.

Conclusions

Our compilation of fish abundance records revealed significant correlations between fish

debris and the available biogeochemical proxies at most sites, though they were less frequent

than correlations among biogeochemical proxies alone, or between biogeochemical proxies

and physical proxies. Most notably, significant correlations between fish scales and TOC, that

persisted when linearly detrended, occurred at four of the eight sites. Our meta-analysis cannot

definitively distinguish among the causal mechanisms behind the observed fish-TOC correla-

tions, but suggests that they are dominated by site-specific factors.

At Mejillones Bay, strong positive correlations between fish scales and TOC are consistent

with bottom-up forcing, whereby greater upwelling provides more food for the ecosystem,

increasing the abundance of all fish, as concluded by the authors of the original work [77].

These significant positive correlations could also conceivably reflect a top-down trophic cas-

cade, via predation on herbivorous plankton, leading to larger phytoplankton biomass. Mean-

while, two possibilities to explain the negative relationships found at Soledad, Santa Barbara

and Pisco are: 1) that abundant fish populations reduce the organic carbon flux to sediments

by contributing to more complete organic matter recycling within the water column [5], or 2)

that upwelling-driven oxygen-nutrient dynamics simultaneously control the habitat ranges of

fish and nutrient supply to primary producers [83].

Although we cannot draw firm conclusions based on the data in hand, we find promising

signs that the development of more multi-proxy records of fish abundance and biogeochem-

istry could provide valuable insights on the links between marine fish populations and biogeo-

chemical cycles, and their variations through Earth history.
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