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Abstract: High-quality upconverting NaYF4:Yb3+,Er3+ nanoparticles (UCNPs; 26 nm in diameter)
based on lanthanides were synthesized by a high-temperature coprecipitation method. The particles
were modified by bisphosphonate-terminated poly(ethylene glycol) (PEG) and Rose Bengal (RB)
photosensitizer. The particles were thoroughly characterized using transmission electron microscopy,
dynamic light scattering, thermogravimetric analysis, FTIR, and X-ray photoelectron and upconver-
sion luminescence spectroscopy in terms of morphology, hydrodynamic size, composition, and energy
transfer to the photosensitizer. Moreover, the singlet oxygen generation from RB-containing UCNPs
was investigated using 9,10-diphenylanthracene probe under 980 nm excitation. The cytotoxicity of
UCNPs before and after conjugation with RB was evaluated on highly sensitive rat mesenchymal
stem cells (rMSCs) and significant differences were found. Correspondingly, consi-derable variations
in viability were revealed between the irradiated and non-irradiated rat glioma cell line (C6) exposed
to RB-conjugated UCNPs. While the viability of rMSCs was not affected by the presence of UCNPs
themselves, the cancer C6 cells were killed after the irradiation at 980 nm due to the reactive oxygen
species (ROS) production, thus suggesting the potential of RB-conjugated PEG-modified UCNPs for
applications in photodynamic therapy of cancer.

Keywords: upconverting; nanoparticles; Rose Bengal; reactive oxygen species; cytotoxicity;
photodynamic therapy

1. Introduction

Lanthanide-based upconverting nanoparticles (UCNPs) with superb optical properties
have attracted a lot of interest in catalysis [1], energy conversion [2], security systems [3],
or biomedical applications [4,5]. In biomedicine, they have shown much promise both
for diagnostic and therapeutic applications, such as bioimaging and sensing [6], drug
delivery [7], or photothermal and photodynamic therapy (PDT) [8–10], where the UCNPs
perform better than the conventional fluorescent biomarkers [11]. All this is possible due
to the unique ability of UCNPs to convert low-energy near-infrared (NIR) irradiation into
high-energy ultraviolet and visible light via an anti-Stokes emission mechanism. If the
UCNPs are codoped with Yb and Er ions, they emit green and red light, while the particles
codoped with Yb and Tm ions emit UV, blue, and NIR light after NIR irradiation. The
advantage of NIR light for excitation consists of its ability to penetrate deeper into the
living tissues than the visible light [12]. Other beneficial properties of UCNPs include
narrow emission peaks, broad Stokes shifts, absence of autofluorescence, low toxicity, and
relatively good chemical stability [13].

In the biomedical applications, PDT represents a promising approach to treat various
types of cancer. For the cancer treatment, the UCNPs are utilized as NIR acceptors that
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subsequently emit energy deep in tissue to activate the PDT drug (photosensitizer), which
in turn generates reactive oxygen species (ROS). ROS, mostly singlet oxygen (1O2), then
damages the target cancer cells [14,15]. The cytotoxic effects of PDT stem from the oxidation
of a large range of biomolecules inside the cells, including nucleic acids, lipids, and proteins,
leading to severe alteration of cell signaling cascades or regulation of gene expression [16,17].
As a result, autophagy, apoptosis, or necrosis is induced [18].

The UCNPs can be prepared via three main approaches: coprecipitation [19], thermal
decomposition [20], or hydrothermal/solvothermal technique [21]. Other synthetic meth-
ods involve polyols [22], N-(2-hydroxyethyl)ethylenediamine [23], microwave-assisted
synthesis [24], etc. [25]. All the mentioned protocols use organic solvents and thus the ob-
tained UCNPs are hydrophobic; however, they should be hydrophilic and water-dispersible,
if used in bioassays or for cell imaging and labeling. To provide sufficient colloidal stabil-
ity to the UCNPs in water and biologically relevant media, the post-synthesis or in situ
surface modification is required, which still remains to be a challenge [26]. Examples of
these techniques include chemical modification of hydrophobic surface (e.g., oxidation
of oleate or reaction with silanes), replacement of the original ligand by another one, or
addition of a thin protective shell on the particles [27]. The latter involves the adsorption of
amphiphilic and/or hydrophilic polymers [28], e.g., poly(acrylic acid), polyethyleneimine,
poly(ethylene glycol) (PEG), poly(N-vinylpyrrolidone), or coating of UCNPs with silica,
titanium oxide, gold, or silver [29,30].

As a critical point in the preparation of UCNPs applicable for PDT is to guarantee
the efficient energy transfer between the UCNPs and photosensitizer. It can be achieved
by several approaches: (i) the selection of a suitable photosensitizer represented by syn-
thetic dyes [31], and/or natural products [32], such as porphyrins [33,34], chlorins [35,36],
bacteriochlorins [37], and phthalocyanines [38]; (ii) the suitable combination of UCNP
emission with photosensitizer absorption; (iii) the minimal distance between the UCNP
and photosensitizer to facilitate efficient absorption of photons produced by UCNPs. The
chemical structure of photosensitizer itself may also differ according to PDT application,
i.e., cancer versus microbial treatment. The cancer treatment requires a rather lipophilic
and electroneutral photosensitizer that can be excited by NIR or far-red light to achieve a
good tissue penetration depth [38]. On the other hand, the photosensitizer intended for
bacteria killing should have a positive charge and be excitable by visible light [39]. To
combine benefits of anticancer and antibacterial photosensitizers in one molecule, Rose
Bengal (RB) was suggested [40,41]. RB is a photoactive dye of xanthene type, differing from
fluorescein (the most popular synthetic fluorophore) or erythrosine only in substitution
of aromatic ring with halogens [42]. RB is easily accessible, with low general toxicity, and
possessing antimicrobial properties [43,44]. Its interaction with cells showed promising
results for use in PDT [45]. The absorption maximum of RB at 500–570 nm matches well
with the most intensive green emission band from UCNPs (520–570 nm) containing Yb3+

and Er3+ ions, thus making RB a suitable photosensitizer to be used in tissue bonding and
anticancer therapy [46,47]. The energy transfer between UCNPs and Rose Bengal and the
subsequent ROS generation has been described in [48].

This study presents synthesis and surface engineering of colloidally stable NaYF4:Yb3+,
Er3+ UCNPs with immobilized RB photosensitizer with focus on the production of ROS.
The ROS generation was detected by 9,10-diphenylanthracene-based spectrophotometric
assay. To tightly bind RB to the UCNPs, the dye was modified with phosphonate groups via
their reaction with diethyl 2-bromoethylphosphonate. This was followed by the attachment
of PEG-alendronate (PEG-Ale) to render colloidal stability to the particles, the general
cytotoxicity of which was investigated on rat mesenchymal stem cells (rMSCs). Finally,
the cytotoxic effect of RB-conjugated UCNPs on the viability of rat glioma C6 cells after
irradiation at 980 nm was demonstrated.
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2. Materials and Methods

Chemicals: Octadec-1-ene (OD; 90%), sodium hydroxide (99%), ammonium fluo-
ride (99.9%), erbium(III) chloride hexahydrate (98%), anhydrous yttrium(III) and ytter-
bium(III) chlorides (99%), Rose Bengal disodium salt (RB; 95%), sodium alendronate
(Ale; 99%), diethyl 2-bromoethylphosphonate (97%), iodotrimethylsilane (97%), and 9,10-
diphenylanthracene (DPA; analytical standard) were purchased from Sigma-Aldrich (St.
Louis, MO, USA). Gibco™ phosphate-buffered saline (PBS) and Dulbecco’s modified Ea-
gle’s Medium (DMEM) were obtained from Thermo Fisher Scientific (Waltham, MA, USA).
Oleic acid (OA; 98%) and other solvents were purchased from Lachema (Brno, Czech Re-
public). Phosphate buffer (PB) was prepared from sodium phosphate dibasic dihydrate and
sodium phosphate monobasic monohydrate (both Sigma-Aldrich). PEG5,000-alendronate
(PEG-Ale) was synthesized according to earlier report [49]; its 1H NMR spectrum was
shown in the Supplementary Materials (Figure S1). Absolute ethanol and other chemicals
were obtained from LachNer (Neratovice, Czech Republic). Cellulose dialysis membranes
(MWCO 3.5, 14, and 100 kDa) were purchased from Spectrum Europe (Breda, The Nether-
lands). Water used throughout the study was purified on a Milli-Q IQ 7000 system from
Millipore (Molsheim, France).

Cell Lines: Adipose-derived rat mesenchymal stem cells (rMSCs) were kindly gifted
by Dr. Pavla Jendelová from the Institute of Experimental Medicine, Academy of Sciences
of the Czech Republic, Prague. The C6 glioma cell line was kindly provided by Dr. Čestmír
Altaner (Biomedical Research Center SAS, Bratislava, Slovakia). The cells were cultivated in
DMEM supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin
at 37 ◦C under humidified 5% CO2 atmosphere. The cells were passaged after reaching
80–90% confluence using Gibco™ trypsin-EDTA solution.

Preparation of NaYF4:Yb3+,Er3+ Nanoparticles (UCNPs): Lanthanide chlorides (YCl3/
YbCl3/ErCl3·6H2O = 1.56:0.4:0.04 mol/mol/mol) were charged in a 50-mL three-neck
round-bottom flask, OD (15 mL) and OA (6 mL) were added, and the mixture was heated
at 160 ◦C and kept at this temperature for 30 min with magnetic stirring and under argon
atmosphere. Afterwards, the mixture was cooled down to room temperature (RT), dis-
persion of NaOH and NH4F (2.5/4 mol/mol) in methanol (10 mL) was dropwise added,
and the solution was slowly heated to 120 ◦C to evaporate methanol and water. The flask
with the reaction mixture was then equipped with Vigreux distillation column and the
reaction continued at 300 ◦C for 90 min with stirring. The resulting UCNP@OA particles
were se-parated by centrifugation (3460 rcf) for 30 min and washed with hexane/ethanol
mixture (1/4 v/v) four times to remove OA. Before transferring the particles in water, they
were washed with water/ethanol solution three times, gradually displacing ethanol by
water, until the foam disappeared, and separated by centrifugation (3460 rcf); the resulting
particles were dispersed in water and denoted as bare UCNPs.

Preparation of Rose Bengal-Ethylphosphonic Acid (RB-PH): RB was modified with
diethyl 2-bromoethylphosphonate, which was followed by the removal of ethoxy groups
with iodotrimethylsilane (Figure 1a). In a 10-mL round bottom flask equipped with a reflux
condenser, RB (0.1 mmol) and diethyl 2-bromoethylphosphonate (0.3 mmol) were dissolved
in dimethylformamide (DMF; 1 mL) at 80 ◦C for 12 h with magnetic stirring. DMF was then
removed at 45 ◦C under vacuum (1 kPa) and the resulting intermediate was washed with
diethyl ether and water three time each and then dried using a rotary evaporator. Next, a
solution of iodotrimethylsilane (1 mmol) in methylene chloride/DMF (2/1 v/v; 1.5 mL)
was added dropwise to the above compound and the reaction continued at RT for 20 h with
stirring under argon atmosphere. Methanol/water solution (1/1 v/v; 1 mL) was added
and the mixture was kept at RT for 12 h with stirring. The resulting RB-PH was dried at
40 ◦C on a rotary evaporator under vacuum (8 kPa) and its 1H NMR spectrum was shown
on Figure S2.
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Figure 1. (a) Preparation of Rose Bengal-ethylphosphonic acid (RB-PH); (b) modification of UCNPs
with PEG-Ale and RB-PH.

Preparation of UCNP@RB-PH/Ale-PEG: The modification of UCNPs with PEG-Ale
and RB-PH was schematically shown on Figure 1b. PEG-Ale (30 mg) was added to aqueous
dispersion of bare UCNPs (1 mL; 22.2 mg UCNPs/mL), the mixture was stirred at RT for
12 h, and dialyzed (MWCO 100 kDa) against water for 48 h. The resulting UCNP@Ale-PEG
particles (20 mg) were separated by centrifugation (14,100 rcf) for 30 min, resuspended in
water (1 mL), RB-PH (5 mg) was added, and the mixture was stirred at RT for 24 h. Excessive
RB-PH was removed by dialysis (MWCO 100 kDa) against water/ethanol solution (1:1 v/v)
and water for 48 h each.

Generation of Singlet Oxygen: The generation of ROS, in particular the singlet oxy-
gen, was detected with DPA probe by a Specord 250 Plus UV-Vis spectrophotometer
(Analytik Jena; Jena, Germany) according to an earlier described method [50]. Briefly,
ethanolic solutions containing 2 × 10−5 mol of DPA/l and 1.62 × 10−9 mol of RB, RB-PH,
or UCNP@RB-PH/Ale-PEG per liter were mixed and irradiated in darkness for 10 min
by LED lamp (525–535 nm; 0.16 × 10−3 W/mm2) and 980 nm laser (MDL-III-980-2W;
0.7 W/cm2), respectively. The gradual disappearance of DPA absorbance due to binding of
1O2 was measured each 10 min at 330–410 nm and the decrease of peaks corresponding to
DPA reflected the production of singlet oxygen.

Transmission Electron Microscopy: The size and shape of nanoparticles were inves-
tigated by a Tecnai G2 Spirit Twin 12 transmission electron microscope (TEM; FEI; Brno,
Czech Republic) [49]. The diameter of nanoparticles and the size distribution were calcu-
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lated by measuring at least 500 objects from six different TEM micrographs using ImageJ
1.52a software (National Institutes of Health; Bethesda, MD, USA). The number-average
diameter (Dn), weight-average diameter (Dw), and dispersity (Ð) were calculated using the
following equations:

Dn = ∑NiDi/∑Ni, (1)

Dw = ∑NiDi
4/∑NiDi

3, (2)

Ð = Dw/Dn, (3)

where Ni and Di are the number and diameter of the measured particle, respectively.
Dynamic Light Scattering (DLS): The hydrodynamic diameter (Dh), size distribution

(polydispersity PD), and ζ-potential of nanoparticles were measured in water at 25 ◦C
using a ZEN 3600 Zetasizer Nano Instrument (Malvern Instruments; Malvern, UK). Dh and
PD were calculated from the intensity-weighted distribution function obtained by CONTIN
analysis of the correlation function available in Malvern software v1.32.

Thermogravimetric Analysis (TGA): TGA of particles was performed in air from 25 to
700 ◦C at a heating rate of 10 ◦C/min using a PerkinElmer TGA 7 analyzer (Norwalk, CT, USA).

1H NMR Spectroscopy: 1H NMR spectra of organic compounds in D2O or CD3OD
were recorded at 25 ◦C with a Bruker Avance III 600 spectrometer (Rheinstetten, Germany)
equipped with a 5 mm diffusion probe-head. The conditions included 90◦ pulse (width
18 µs), relaxation delay 10 s, spectral width 7812 Hz, acquisition time 4.19 s, and 64 scans.
During the measurements, temperature was maintained constant within ± 0.2 K using a
BVT 3000 temperature unit. The spectra were processed using the Topspin 4.0.5 software
from Bruker.

ATR FTIR Spectroscopy: ATR FTIR spectra were recorded on a Thermo Nicolet 870
FTIR spectrometer (Madison, WI, USA) equipped with a liquid nitrogen-cooled mercury
cadmium telluride detector using a GoldenGate single refection diamond ATR system
(Specac; Orpington, UK).

Luminescence Spectroscopy: Luminescence spectra were recorded using a FS5 spec-
trofluorometer (Edinburgh Instruments; Edinburgh, UK) coupled with a CW 980 nm laser
diode as an excitation source (MDL-III-980-2W) with a maximum laser power 6 W/cm2

and a 5 × 8 mm2 beam size.
X-ray Photoelectron Spectroscopy (XPS): XPS were measured using a K-Alpha+ XPS

spectrometer (Thermo Fisher Scientific; East Greenstead, UK) operating at a base pres-
sure of 1 × 10−7 Pa. The data were acquired and processed using the Thermo Avantage
software. The nanoparticles were spread on a conductive carbon tape and analyzed with
microfocused (spot size 400 µm) and monochromated Al Kα X-ray radiation with pass
energy of 200 eV for survey and 50 eV for high-energy resolution core level spectra. The
X-ray angle of incidence was 30◦, the emission angle was along the surface normal, and the
dual-charge compensation system employed electrons and low energy Ar+ ions. The ana-
lyzer transmission function, Scofield sensitivity factors, and effective attenuation lengths
for photoelectrons calculated using the standard TPP-2 M formalism were applied for quan-
tification. The binding energy scale of the spectrometer was calibrated by the well-known
positions of the C 1s C–C and C–H, C–O and C(=O)–O peaks of poly(ethylene terephthalate)
and Cu 2p, Ag 3d, and Au 4f peaks of Cu, Ag, and Au, respectively. All spectra were
charge referenced to the C 1s contribution at binding energy of 285 eV attributed to C–C
and C–H moieties.

Cytotoxicity Assays: rMSCs were seeded into 96-well flat-bottom plates in concentra-
tion 8× 103 cells/well in 100 µL of complete culture medium. The cells were seeded one day
before treatment to spread. The bare UCNPs and UCNP@RB-PH/Ale-PEG (3.5 mg/mL)
were diluted in water and the cells were incubated with the particles in concentration
range 3.9–500 µg/mL for 24 h at 37 ◦C. The toxicity of UCNPs was determined by [3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay (Abcam; Cambridge,
UK), which assesses the cell metabolic activity. Briefly, the medium from growing cells was
exchanged by 100 µL of complete growth medium including 10 vol.% of MTT (5 mg/mL)
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and the plates were incubated at 37 ◦C for 4 h. After removing the MTT solution, the for-
mazan crystals were dissolved in 100 µL of dimethyl sulfoxide for 10 min. The absorbance
was measured at 570 nm on a Synergy Neo plate reader (Bio-Tek; Prague, Czech Republic).
The data were expressed as a percentage of viability of bare UCNP-, UCNPs@RB-PH/Ale-
PEG-, and RB-treated cells relative to control.

The phototoxic effect of UCNP@RB-PH/Ale-PEG nanoparticles (1 mg/mL) was in-
vestigated on glioma C6 cells seeded in concentration 1 × 104 cells/cm2 onto 96-well cell
culture plate in triplicates. Each well was irradiated at 980 nm for 10 min in a dark room
with an MDL-III-980 laser (CMI Laser; Changchun, China) of 2 W power and after 24 h,
MTT was performed as previously described with the absorbance measured by a Spark®

multimode microplate reader (Tecan; Männedorf, Switzerland). The data were expressed
as a percentage of viability of irradiated to non-irradiated cells or irradiated cells incubated
with the particles relative to non-irradiated ones.

Statistical Analysis: The cytotoxicity (cell viability) was expressed as the
mean ± standard error mean (S.E.M.) of at least three independent experiments performed
in triplicates. Two-tailed unpaired Student’s t-test was used for the evaluation of statistical
differences in both cytotoxicity between bare UCNPs and corresponding RB-conjugated
po-lymer-coated nanoparticles and phototoxic effects on cells incubated with and without
UCNP@RB-PH/Ale-PEG nanoparticles after laser irradiation. The statistical analysis was
calculated using the GraphPad Prism software (version 5.03; San Diego, CA, USA) and the
statistically significant values were considered as * p < 0.05, ** p < 0.01, and *** p < 0.001.

3. Results and Discussion
3.1. Synthesis and Characterization of UCNPs

The initial UCNP@OA particles were prepared by a high-temperature coprecipitation
of the respective lanthanide chlorides in OD as a solvent and in the presence of OA as
a stabilizer [49]. TEM micrographs of the particles showed their spherical shape with
number-average diameter Dn = 26 nm and dispersity Ð = 1.01 suggesting uniformity
(Figure 2a; Table 1). The corona (~1 nm) was clearly visible on the micrograph, confirming
the presence of OA on the particle surface. The TEM analysis was combined with the
upconversion luminescence spectroscopy under NIR excitation at 980 nm to observe the
formation of UCNPs at different reaction times (Figure 3). At a short reaction time (up to
20 min), the intensity of luminescence was negligible (Figure 3a) and it was accompanied
with the formation of nuclei (Figure 3b). However, after 25-min reaction, the intensity
of emitted light increased rapidly with the nuclei growing due to Ostwald ripening [51].
As the coprecipitation proceeded, the nuclei growth was completed with the formation
of mature particles. This process did not finish until the reaction time reached 80 min;
afterwards, the particle size and shape did not change. Based on this observation, the
reaction time of 90 min was selected in further experiments to ensure complete formation
of UCNP@OA particles, their stable morphology, and reproducible results.
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Table 1. Particle characterization.

Type of Nanoparticles Dn
1 (nm) Ð 2 Dh

3 (nm) PD 4 ξ-Potential (mV)

Bare UCNPs
26 1.01

119 0.15 36
UCNP@Ale-PEG 89 0.18 18

UCNP@RB-PH/Ale-PEG 215 0.35 −10
1,2 Number-average diameter and dispersity by TEM; 3,4 hydrodynamic diameter and polydispersity by
DLS, respectively.
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Figure 3. (a) Intensity of luminescence of UCNP@OA particles after excitation at 980 nm; (b) TEM
micrographs of particles prepared at different reaction times (15, 30, 45, 60, 75, and 90 min)/300 ◦C.

The composition of UCNP@OA particles was monitored in XPS spectra, showing the
dominant double Y 3d peak at 159.5 eV, minor contributions of Er 4d and Yb 4d at 172.5 eV
and 186.9 eV, respectively, and F 1s and Na 1s peaks at 686.8 and 1071.1 eV, respectively
(Figure 4a; Table 2); the results agreed with the earlier published data [52]. In the C 1s
spectrum, two peaks originating from C–C and C(=O)–O− groups documented the presence
of OA stabilizer on the particle surface (Figure 4b). High-resolution XPS spectroscopy thus
confirmed the chemical structure of UCNPs. FTIR spectrum of UCNP@OA particles also
showed characteristic OA peaks (Figure S3). Specifically, C-H asymmetric and symmetric
stretching vibrations (2924 and 2853 cm−1), C=O stretching vibration (1712 cm−1), and CH2
bending vibration (1462 cm−1). Thus, the XPS and FTIR results confirmed the presence of
OA on the UCNP@OA particles.



Life 2022, 12, 1383 8 of 14

Life 2022, 12, 1383 8 of 15 
 

 

eV and 186.9 eV, respectively, and F 1s and Na 1s peaks at 686.8 and 1071.1 eV, respec-

tively (Figure 4a; Table 2); the results agreed with the earlier published data [52]. In the C 

1s spectrum, two peaks originating from C-C and C(=O)-O– groups documented the pres-

ence of OA stabilizer on the particle surface (Figure 4b). High-resolution XPS spectroscopy 

thus confirmed the chemical structure of UCNPs. FTIR spectrum of UCNP@OA particles 

also showed characteristic OA peaks (Figure S3). Specifically, C-H asymmetric and sym-

metric stretching vibrations (2924 and 2853 cm−1), C=O stretching vibration (1712 cm−1), 

and CH2 bending vibration (1462 cm−1). Thus, the XPS and FTIR results confirmed the 

presence of OA on the UCNP@OA particles. 

  

Figure 4. Comparison of high-resolution XPS spectra of initial UCNP@OA (black), UCNP@Ale-PEG 

(magenta), and UCNP@RB-PH/Ale-PEG (royal) in the region of (a) P 2p, Y 3d, Er 4d, Yb 4d, P 2s, Cl 

2p and (b) C 1s (red, fitted data; blue, individual contributions of functional groups on the UNCP 

surface). 

Table 2. Surface composition of UCNP@OA, UCNP@Ale-PEG, and UCNP@RB-PH/Ale-PEG parti-

cles (in wt.%) according to XPS spectroscopy. 

Element UCNP@OA UCNP@Ale-PEG UCNP@RB-PH/Ale-PEG 

P 2p - * 0.5 0.9 

Y 3d 38.7 38.1 34.2 

Er 4d 3.2 2.1 1.6 

Yb 4d 0.5 0.5 0.3 

Cl 2p - - 4.1 

C 1s C-C, C-H 16.9 5.3 7.7 

C 1s C-O, C-N - 9.3 10.9 

C 1s C(=O)-NH - -  

C 1s C(=O)-O 2.3 0.7 1.0 

N 1s - - - 

O 1s 2.9 10.0 9.8 

I 3d - - 4.4 

F 1s 27.3 29.3 22.2 

Na 1s 8.2 4.2 2.9 

* Below the detection limit of XPS measurement. 

  

Figure 4. Comparison of high-resolution XPS spectra of initial UCNP@OA (black), UCNP@Ale-
PEG (magenta), and UCNP@RB-PH/Ale-PEG (royal) in the region of (a) P 2p, Y 3d, Er 4d, Yb 4d,
P 2s, Cl 2p and (b) C 1s (red, fitted data; blue, individual contributions of functional groups on the
UNCP surface).

Table 2. Surface composition of UCNP@OA, UCNP@Ale-PEG, and UCNP@RB-PH/Ale-PEG particles
(in wt.%) according to XPS spectroscopy.

Element UCNP@OA UCNP@Ale-PEG UCNP@RB-PH/Ale-PEG

P 2p - * 0.5 0.9
Y 3d 38.7 38.1 34.2
Er 4d 3.2 2.1 1.6
Yb 4d 0.5 0.5 0.3
Cl 2p - - 4.1

C 1s C–C, C–H 16.9 5.3 7.7
C 1s C–O, C–N - 9.3 10.9
C 1s C(=O)–NH - -
C 1s C(=O)–O 2.3 0.7 1.0

N 1s - - -
O 1s 2.9 10.0 9.8
I 3d - - 4.4
F 1s 27.3 29.3 22.2

Na 1s 8.2 4.2 2.9
* Below the detection limit of XPS measurement.

3.2. Surface Engineering of UCNPs

As the UCNP@OA particles were hydrophobic due to the presence of oleic acid on
the surface, as well as lacking any immobilized sensitizer, their surface had to be modified
to render them with colloidally stability in aqueous biological media without aggregation
during storage; at the same time, sufficient amounts of sensitizer should be attached. One
way was to anchor the carboxyl-RB photosensitizer on poly(allylamine)-modified UCNPs
via carbodiimide chemistry [53].

Here, the UCNP@OA particles were washed with hexane/ethanol and water/ethanol
to remove OA and transferred in water to obtain bare UCNPs, which were subsequently
modified with PEG-Ale and RB-PH according to the protocol described in Materials and
Methods. PEG-Ale was bound to the UCNPs by bisphosphonate groups. As the molar
mass of RB-PH was lower than that of PEG-Ale, RB-PH molecule could penetrate the
spaces between adjacent PEG chains, being attached to the particle surface via phosphonate
groups. The modifications were not distinctly contrasted in TEM micrographs of both
UCNP@Ale-PEG (Figure 2b) and UCNP@RB-PH/Ale-PEG nanoparticles (Figure 2c); in
the latter particles, clusters were formed during drying. Corresponding DLS measure-
ments in water revealed the change of hydrodynamic diameter of particles from 119 nm



Life 2022, 12, 1383 9 of 14

for bare UCNP to 89 and 215 nm for UCNP@Ale-PEG and UCNP@RB-PH/Ale-PEG, re-
spectively. The relatively low value of Dh of UCNP@Ale-PEG particles can be explained
by their reduced aggregation compared to that of bare UCNPs. On the other hand, the
increased Dh of UCNP@RB-PH/Ale-PEG is related to the presence of thick RB-PH/Ale-
PEG shell on the particle surface. At the same time, the ζ-potential of UCNP@Ale-PEG
and UCNP@RB-PH/Ale-PEG particles decreased from 36 mV for bare UCNPs to 18 and
−10 mV, respectively (Table 1), due to the electroneutrality of PEG and also due to the
negatively charged RB [54]. TGA of UCNP@RB-PH/Ale-PEG confirmed the presence of
PEG-Ale and RB-PH, amounting to 11.2 and 11.9 wt.%, respectively (Figure 5a). The ATR
FTIR spectra of bare UCNPs showed very low characteristic C-H stretching vibrations
(2924 and 2853 cm−1) of OA, confirming efficient washing of starting UCNP@OA. The
FTIR spectrum of UCNP@Ale-PEG particles confirmed the modification with Ale-PEG. The
stretching vibration at 3000–3660 cm−1 corresponded to the O-H bond, the peaks at 2881,
1465, and 1345 cm−1 were attributed to the stretching of C-H, and the bands at 1240 and
1000–1200 cm−1 were ascribed to the vibration of C-O-C bond [55,56]. In the spectrum of
UCNP@RB-PH/Ale-PEG, the modification of UCNPs with RB-PH was documented by
stretching vibrations at ~1565, 1490, and 1460 cm−1 ascribed to the characteristic absorption
of aromatic ring; the peaks at 1260 cm−1 were attributed to C–O–C groups (Figure 5b).
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Figure 5. (a) Thermogravimetric analysis; (b) FTIR; (c) luminescence spectra of surface-modified
UCNPs excited at 980 nm.

The upconversion luminescence of UCNPs induced by energy transfer, as well as the
light absorbance by RB, were investigated by comparison of emission spectra. In brief,
the Yb3+ ions absorbed photons at 980 nm, inducing transfer of their f-electrons from the
ground 2F7/2 state to the 2F5/2 excited state (Figure 5c). Consequently, the proximity of
energy levels of Er3+ and Yb3+ ions allowed the energy transfer from excited Yb3+ sensitizer
to Er3+ emitter. Here, two processes could occur: (i) excitation state absorption, where Er3+

energy levels (2H11/2 and 4S3/2) were pumped up with energy, and (ii) cross-relaxation
of Er3+ ions pumped up to 4F9/2 energy level [57]. In the fluorescence spectra, the green
emission was characterized by peaks at 515–534 and 534–560 nm corresponding to the
2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 electron transitions, respectively. The red emission at
640–674 nm was ascribed to the 4F9/2 → 4I15/2 transition, while the relatively weak blue
emission appeared at 402–412 nm due to 2H9/2→ 4I15/2 transitions. The intensities of peaks
of bare UCNPs and UCNP@Ale-PEG at a concentration of 1 mg/mL in the excitation region
515–560 nm were almost the same, while that of UCNP@RB-PH/Ale-PEG significantly
decreased. This was associated with the light absorption by RB-PH (Figure S4) and the
efficient energy transfer from particles to photosensitizer. The excitation curves of bare
UCNPs and UCNP@RB-PH/Ale-PEG particles were normalized relative to the area of
red peak (630–690 nm), do-cumenting that 72% of excited light was absorbed by RB-PH
(Figure 5c).

In the high-resolution P 2p, Y 3d, Er 4d, Yb 4d, P 2s, and Cl 2p XPS spectra of
UCNP@RB-PH/Ale-PEG particles, the modification of UCNPs with Ale-PEG and RB-PH
increased the phosphorous content; moreover, new bands of iodine and chlorine appeared
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(Figure 4a; Table 2). At the same time, the presence of RB-PH increased the C-C peak at
285.0 eV in the high-resolution C 1s XPS spectrum of UCNP@RB-PH/Ale-PEG (Figure 4b).
The concomitant XPS and DLS analysis thus confirmed the successful formation of RB-
PH/Ale-PEG coating around the UCNPs. Considering the size of PEG (5 kDa), RB-PH
photosensitizer is supposed to be at the interphase between UCNP and polymer shell. This
surface engineering of UCNPs with RB-PH/Ale-PEG shield the particles from unspecific
interactions with proteins of body fluids and might diminish fast clearance in in vivo
applications, while preserving high activity of RB.

RB is known to effectively produce singlet oxygen, when irradiated with green
light [58] (Figure S5). ROS production by RB-PH was confirmed by binding 1O2 to DPA
fluorochrome after the excitation at 525–535 nm. The amount of 1O2 released from RB-
PH continuously increased with increasing irradiation time, which correlated with the
disappearance of DPA absorbance (Figure 6a). Analogous experiment was performed in
complete darkness with UCNP@RB-PH/Ale-PEG particles excited at 980 nm (Figure 6b).
The decreasing absorbance of DPA (330–410 nm) confirmed the production of ROS. A no-
ticeably quicker generation of 1O2 by RB-PH compared to that by UCNP@RB-PH/Ale-PEG
was related to the area of irradiation; while the RB-PH was illuminated over the entire
surface of cuvette by LED lamp, the UCNP@RB-PH/Ale-PEG particles were illuminated
only in the path of the laser beam.
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Figure 6. UV-Vis spectra of (a) RB-PH excited at 525–535 nm and (b) UCNP@RB-PH/Ale-PEG excited
at 980 nm document time-dependent decrease of DPA absorbance due to 1O2 generation (see the
arrow); (b) black dashed line is for UCNP@OA particles. Each curve was measured after 10 min delay.

3.3. Cytotoxicity of UCNPs

For the evaluation of general cytotoxicity (without irradiation and the subsequent
generation of ROS) of surface-engineered UCNPs, the adult rat stem cells (rMSCs) were
selected, which are healthy (non-cancer) multipotent cells, capable of differentiating into
multiple cell types; such cells are more sensitive to nanoparticles or drugs than the termi-
nally differentiated cells [59,60]. Higher susceptibility to toxic compounds makes these
cells a valuable model for the evaluation of biocompatibility of nanoparticles in their poten-
tial applications in vivo. The cytotoxicity was assessed by MTT cell viability assay after
24 h of incubation with rMSCs (Figure 7). The bare UCNPs were nontoxic at all particle
concentrations, except for the highest one (500 µg/mL). However, the sensitizer-containing
RB-PH/Ale-PEG coating significantly decreased the cytotoxicity of particles at 500 µg/mL
that was manifested by the change of the viability from 66 ± 2% to 82 ± 3% for bare
UCNPs and UCNP@RB-PH/Ale-PEG (p < 0.01), respectively; thus, this concentration can
be considered as nontoxic for rMSCs. It is known that the coating of nanoparticles might
influence their cytotoxicity, depending on type of coating, cells, etc. [61,62]. Our coating
with RB-PH/Ale-PEG favorably decreased cytotoxicity of bare UCNPs, which supports
their usefulness for potential biomedical application.
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Figure 7. Cytotoxicity of bare UCNPs (green) and UCNP@RB-PH/Ale-PEG particles (blue) against
rMSCs after 24 h of incubation using MTT cell viability assay. Error bars represent standard er-
ror means (S.E.M.) calculated from at least three different experiments performed in triplicates;
** p < 0.01 (two-tailed unpaired Student’s t-test).

The impact of ROS production by UCNP@RB-PH/Ale-PEG nanoparticles manifested
as the phototoxic effect was investigated on the C6 glioma cell line after 10 min of irra-
diation at 980 nm vs. in the absence of irradiation or without UCNP@RB-PH/Ale-PEG
nanoparticles. It has already been shown before that the exposure of cells to 980 nm laser
irradiation for at least 30 min did not decrease cell viability [63]. The C6 cells were selected
as a model to demonstrate the potential therapeutic effect of particles on cancer cells,
which should be killed after NIR irradiation. The viability of C6 cells incubated with the
UCNP@RB-PH/Ale-PEG particles decreased after the laser irradiation from 88± 6% (in the
absence of particles) to 66 ± 4% probably due to ROS production after the Rose Bengal acti-
vation (Figure 8). Ultimately, the cell experiments showed that even mild general toxicity
associated with the highest concentration of bare UCNPs can be advantageously surpassed
by the polymeric coating containing RB sensitizer, which conferred the nonto-xicity to
UCNPs at the one side and enabled their utilization for the ROS production on the other
side. Effective ROS production by the UCNP@RB-PH/Ale-PEG particles (Figure 8) can
justify a significant decrease in the cell viability of cancer cells after irradiation.
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without irradiation (control; blue) and after 10 min of irradiation at 980 nm in the absence (green)
and presence of particles (red); ** p < 0.01 (Student’s t-test).
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4. Conclusions

This report describes the synthesis of NaYF4:Yb3+,Er3+ upconverting nanoparticles
and their modification with RB as a photosensitizer to enable the generation of ROS,
preferably, deep in the tissues to kill cancer cells. The synthesis was based on a high-tempe-
rature coprecipitation of lanthanide precursors that allowed us to obtain UCNPs via a
controllable and reproducible approach. To render the UCNPs with colloidal stability and
to decrease the toxicity, the particles were covered with PEG-Ale as a stabilizer that is a
well-known FDA-approved hydrophilic agent, suppressing non-specific protein adsorption.
Moreover, the newly synthesized RB-PH photosensitizer benefited from the presence of
phosphonate groups able to very strongly coordinate with rare earth atoms, thus ensuring
strong attachment to UCNPs [64]. The bare UCNPs, especially at the highest concentration
(500 µg/mL), were mildly cytotoxic for rMSCs (viability ~70%), while the UCNP@RB-
PH/Ale-PEG particles were almost nontoxic (viability ~80%). As the latter particles did
not exert toxic effects on highly sensitive rMSCs, we thus demonstrated biocompatibility
for a wider range of applications with different cell types, namely, C6 glioma cells that
substantially differ from widely applied glioma cell line U87MG [53]. The ROS production
by UCNP@RB-PH/Ale-PEG particles after 10 min of irradiation with NIR laser successfully
led to the killing of the cancer cells manifested as a decrease in cell viability >20%. Thus,
the combination of RB with PEGylated UCNPs represents a promising approach for the
treatment of cancer via photodynamic therapy.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/life12091383/s1, Figure S1: High-resolution 1H NMR
spectrum; Figure S2: High-resolution 1H NMR spectrum; Figure S3: FTIR spectrum; Figure S4:
UV-Vis absorption spectrum; Figure S5: UV-Vis spectra.
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