
����������
�������

Citation: Wang, M.; Septier, C.;

Brignot, H.; Martin, C.; Canon, F.;

Feron, G. Astringency Sensitivity to

Tannic Acid: Effect of Ageing and

Saliva. Molecules 2022, 27, 1617.

https://doi.org/10.3390/

molecules27051617

Academic Editors: Elisabeth

Guichard and Jean-Luc Le Quéré

Received: 17 January 2022

Accepted: 28 February 2022

Published: 28 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Astringency Sensitivity to Tannic Acid: Effect of Ageing
and Saliva
Mei Wang, Chantal Septier, Hélène Brignot, Christophe Martin , Francis Canon and Gilles Feron *

Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne
Franche-Comté, F-21000 Dijon, France; mei.wang@inrae.fr (M.W.); chantal.septier@inrae.fr (C.S.);
helene.brignot@inrae.fr (H.B.); christophe.martin@inrae.fr (C.M.); francis.canon@inrae.fr (F.C.)
* Correspondence: gilles.feron@inrae.fr; Tel.: +33-0-3-80-69-32-78

Abstract: Astringency is an important sensory characteristic of food and beverages containing
polyphenols. However, astringency perception in elderly people has not been previously documented.
The aim of the present work was to evaluate sensitivity to astringency as a function of age, salivary
flow and protein amount. Fifty-four panellists, including 30 elderly people (age = 75 ± 4.2 years)
and 24 young people (age = 29.4 ± 3.8 years), participated in this study. Astringency sensitivity
was evaluated by the 2-alternative forced choice (2-AFC) procedure using tannic acid solutions.
Whole saliva was collected for 5 min before and after the sensory tests. The results showed that
the astringency threshold was significantly higher in the elderly group than the young group. No
correlation was observed between the salivary protein amount and threshold value. However, a
negative correlation between salivary flow and threshold was observed in the young group only.
These results showed a difference in oral astringency perception as a function of age. This difference
can be linked to salivary properties that differ as a function of age.

Keywords: astringency; threshold; saliva; elderly; proline-rich-protein; tannic acid

1. Introduction

Dietary polyphenols are a class of compounds present in foods and beverages, such as
vegetables, nuts, unripe fruits and berries, wine, tea, etc. [1–3], and they are of great interest
for the food industry because of their potential beneficial effects on health, particularly for
the ageing population [4–6]. In food and beverages, polyphenols, especially tannins, can
elicit astringency, which is perceived as a quality parameter and desired at balanced levels
depending on the food products [7–10]. In contrast, above a certain intensity, astringency
is usually described as an unpleasant oral sensation [11,12], which limits the use and
promotion of polyphenols at moderate levels in food despite their health benefits [9,13].

In 2004, the American Society for Testing and Materials (ASTM) defined astringency
as “the complex of sensations due to shrinking, drawing or puckering of the epithelium
as a result of exposure to substances such as alums or tannins” ([14] cited by [12]). Astrin-
gency is not confined to a particular region of the mouth but is a diffuse sensation [15].
Astringency is generally considered to be a tactile sensation detected through the activa-
tion of mechanoreceptors rather than a taste [16]. Indeed, astringency takes 20 to 30 s to
develop fully, often being the last oral sensation detected [15]. Although the mechanism
of astringency is not yet well understood, several hypotheses have been proposed in the
literature to explain astringency onset [12,16,17]. It is most probably detected at the level of
the oral mucosa [9], either by mechanoreceptors after the increase of the friction forces at
the surface of the epithelial cells [18] or by the detection of the aggregation of the mucosal
pellicle by the transmembrane mucin MUC1 as recently proposed by Canon et al. [16]. Sali-
vary proteins are thought to play an important role in these two hypotheses by protecting
the mucosal pellicle from aggregation by tannins. Indeed, their presence, and especially
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those of tannin-binding proteins, such as proline-rich proteins, decrease the perception
of astringency [19,20].

Regarding the effect of ageing on astringency perception, the literature is quite scarce,
although the influence of ageing on the perception of other taste modalities has been largely
documented. Longitudinal and cross-sectional studies have found that taste and smell
losses tend to become noticeable after 60 years of age, with greater severity after 70 years
of age [21,22]. In 2012, a systematic review and meta-analysis showed that most of the
primary studies included in the review (n = 69) observed an increase in taste detection and
identification thresholds and a decrease in taste intensity at the supra-threshold levels for
the five basic taste modalities (bitter, salt, sour, sweet, umami) [23]. However, the authors
highlighted the lack of concordance among the primary studies regarding the extent of
taste loss. This discrepancy between studies is probably due to significant differences
in the sensory procedures used to evaluate taste acuity [23,24]. More recently, Doty et al.
(2018) [25] evaluated a decline in the five basic taste perceptions in 1020 Caucasian European
subjects (age 18–80 y/o). The study confirmed taste losses with ageing regardless of the
modality. The authors also highlighted the complexity of the association between the ability
to perceive a taste and the preference for the same. Moreover, beyond this overall effect
of age on taste abilities, ageing is also accompanied by large interindividual variability in
olfactory performance scores and, to a lesser degree, in taste performance scores [26].

Several factors can influence the extent of sensory decline during ageing (nutritional
status, general health and diseases) [27]. The reasons for these sensory modifications can
also be linked to changes in oral physiology with age. Indeed, in the elderly population,
the cumulative effects of physiological ageing, diseases and drugs frequently impact the
different aspects of oral physiology that are of great importance in taste and aroma sensi-
tivity and thus eating behaviour [27–29]. In particular, ageing may often be accompanied
by a decrease in salivary flow or changes in salivary composition [30], which can lead to
a dry mouth or xerostomia. Hyposalivation is common among older adults due to an
age-related decline in salivary gland function, and other causes include medications and
systemic diseases [31]. Recently, Descamps et al. [32] found an average 38.5% reduction in
resting salivary flow and a 38% reduction in stimulated salivary flow in healthy elderly
people compared to young adults. This salivary hypofunction in elderly individuals can
lead to changes in aroma, taste and textural perception, and consequently, food intake and
consumption [29,30,33–35].

In the context of the world population becoming older and ageing well, the main
objective of this study was to investigate the sensitivity to astringency as a function of age
and salivary characteristics (flow and protein amount). For this purpose, a 2-alternative
forced choice (2-AFC) methodology was applied to estimate astringency sensitivity in
young and elderly panels while evaluating salivary flow and protein amount. Relationships
between salivary flow, protein amount and sensitivity to astringency as a function of age
are discussed.

2. Results
2.1. Astringency Threshold

No significant differences were observed between the three sessions regarding as-
tringency thresholds for either Group Y (young panel) (Friedman chi2 = 1.13, p = 0.56) or
Group O (elderly panel) (Friedman chi2 = 1.14, p = 0.56). Therefore, we decided to merge
threshold values into a unique variable.

A significant difference was observed between the Y and O groups (Z = −2.5,
p = 0.0110). The O group showed a higher mean astringency threshold than the Y group
(Table 1, Figure 1).
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Table 1. Characteristics of the young (Y) and elderly (O) panels.

Y (n = 24, 18 Males/6 Females) O (n = 30, 16 Males/14 Females)

Characteristics Mean Median Range SD Mean Median Range SD

Age (years) 29.4 30 24–35 3.8 75 73.5 70–87 4.23
SF (mL/min) 0.49 0.47 0.27–0.82 0.16 0.42 0.35 0.11–0.92 0.23

Protein amount
(mg/mL) 0.6 0.62 0.17–1.4 0.27 0.62 0.6 0.22–1.35 0.24

Threshold (g/L) 0.29 0.2 0.04–1.00 0.26 0.41 0.35 0.06–0.78 0.24

SD: standard deviation of the mean; SF: salivary flow.
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2.2. Salivary Flow Rate and Protein Amount

No significant differences were observed between sessions regarding SFStart and
SFEnd for Group Y (SFStart: Friedman chi2 = 0.75, p = 0.68; SFEnd: Friedman chi2 = 0.75,
p = 0.68) or Group O (SFStart: Friedman chi2 = 5.2, p = 0.07; SFEnd: Friedman chi2 = 1.3,
p = 0.53) or between the mean SFStart and mean SFEnd for Group Y (Friedman chi2 = 0.68,
p = 0.492) or Group O (Friedman chi2 = 1.49, p = 0.135). For this reason, we decided to
merge both variables into a unique variable, i.e., mean salivary flow (SF). SF values are
presented in Figure 2. With regard to the comparison of salivary flow rate, the SF in the O
group was lower than that in the Y group but with a modest degree of evidence (Z =1.66,
p = 0.09) (Table 1). Moreover, a larger variability was observed in the O group compared
to the Y group, with the presence of outliers with a higher SF. This large interindividual
variability was previously observed in a large panel of elderly subjects and can be explained
by life-style and aging factors such as diet, smoking habits, hydration status or structural
changes in the salivary glands [32].
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No significant differences were observed between sessions regarding protein amount
for Group Y (Friedman chi2 = 1.08, p = 0.58) or Group O (Friedman chi2 = 2.55, p = 0.28)
or between the beginning and the end of the session for Group Y (Friedman chi2 = 1.5,
p = 0.91) or Group O (Friedman chi2 = 1.70, p = 0.19). For this reason, we decided to
merge the protein amount into a unique variable (Table 1). Protein amounts are presented
in Figure 3, and no significant differences were observed between the Y and O groups
(Z = −0.32, p = 0.74), which confirms previous results [36].

2.3. Correlation between the Astringency Threshold and the Flow Rate and Protein Amount

The Spearman correlation between threshold and SF was not significant in the whole
panel or the O group (Table 2). However, a significant and negative correlation was
observed in the young (Y) group (r = −0.44, p = 0.03), where a higher salivary flow was
associated with a lower threshold (Figure 4).

Table 2. Spearman correlation coefficient (r) and p value of the astringency threshold and salivary
characteristics for the whole (W), young (Y) and elderly (O) panellists. SF: salivary flow.

SF Protein Amount

W Y O W Y O

Threshold r = −0.16
p = 0.24

r = 0.44
p = 0.03

r = 0.14
p = 0.47

r = 0.19
p = 0.16

r = 0.18
p = 0.39

r = 0.19
p = 0.30
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The Spearman correlation between the threshold and protein amount was not signifi-
cant in the whole panel, the Y group or the O group (Table 2).

3. Discussion

In the current study, the astringency threshold was higher in elderly participants
than in young participants. In other words, young adults were more sensitive to astrin-
gency than elderly adults, which confirms the findings of previous studies for other taste
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modalities [23–25,27,37]. To the best of our knowledge, this is the first study evaluating
sensitivity to astringency as a function of age. In 2017, Linne and Simmons [10] investi-
gated the impact of age on individual sensitivities to lingual tactile roughness in relation to
sensitivity to astringent stimuli. The authors did not find a correlation between age and
roughness sensitivity. However, their group was younger (21 to 60 y/o, n = 30) compared
with that in our study as well as most other studies reporting taste differences as a function
of age.

We found average detection thresholds of 0.2 g/L and 0.41 g/L for the Y and O groups,
respectively. Using similar sensory procedures and stimuli, Linne et al., 2017 [10], obtained
a detection threshold of 0.212 mM (0.36 g/L), which is close to our results. The increase in
the detection threshold between Y and O was 1.6-fold. Similar increases on average were
described for other taste modalities, such as saltiness (1.5), sourness (1.5), sweetness (1.4),
umami (2.2) and bitterness (1.2 to 4.1) [23], suggesting that astringency sensitivity loss with
age is not unusual compared to these modalities.

Differences in salivary properties can explain differences in taste sensitivity. Indeed,
saliva allows the transport of taste substances to the taste receptor and protects the receptors
by providing growth factors for the renewal of taste buds [38,39]. Some salivary compo-
nents can modulate taste sensitivity [40]. For instance, sodium and amino acid salivary
concentrations can modulate the detection threshold. Salivary flow can also influence fat
intensity perception and preference, and larger amounts of saliva contribute to a higher
in-mouth washing of lipid emulsion when tasted [41,42].

Regarding astringency, modulation of its perception as a function of the salivary flow
rate led to contradictory results. Indeed, it has been reported that subjects with low salivary
flow rated astringency higher than subjects with high salivary flow [43]. Conversely,
Fisher et al. (1994) and Smith and Noble (1996) did not observe a difference in intensity
rating as a function of salivary flow using temporal perception experiments [44,45]. Finally,
Linne et al. (2017) [10] reported a higher sensory threshold for tannic acid in subjects with
low salivary flow than in subjects with high flow.

In the present study, a positive relationship between astringency sensitivity and sali-
vary flow was observed in the young panel only, i.e., a higher salivary flow corresponds
to a higher sensitivity, which is in accordance with the results of Linne et al. (2017) [10].
This relationship of flow rate to astringency sensitivity, as shown in Figure 4, might sug-
gest protection through an interaction mechanism with salivary proteins rather than a
simple dilution effect, as suggested in other studies [46]. However, the amount of pro-
teins measured in saliva from the Y group was not correlated with astringency sensitivity,
which is consistent with previous studies that did not observe relationships between sali-
vary total protein content and intensity or time-intensity evaluation of astringency [43,47].
However, strong positive correlations of astringency time-intensity parameters with some
salivary protein fractions suggested that differences regarding astringency sensitivity and
salivary properties were linked to salivary protein composition rather than global protein
amount [15]. Indeed, histatins, mucins and salivary basic proline-rich proteins (bPRPs)
have been identified as potential contributors to astringency perception in humans, while
their role in the underlying mechanism of this perception is still under debate [17,48]. In
particular, PRPs and histatins are described as tannin binding-proteins with a high affinity
for tannins [49,50]. PRPs are secreted by the parotid glands, bind and scavenge tannins [51],
giving them the ability to protect the mucosal pellicle against tannin aggregation [18]. Thus,
bPRPs are proteins thought to play a role in astringency perception in humans [12,18]. In
rodents, their role is much clearer as their presence in saliva increases the linking of astrin-
gent solution [19]. Indeed, the secretion of PRP in the saliva of rodents is not constitutive
and is induced by the diet. Moreover, rodents do not secrete histatins [52] and thus PRPs
are the main tannin-binding proteins in their saliva.

We did not observe such a relationship between salivary flow and astringency sensi-
tivity in the elderly group or a difference in protein amount between the Y and O groups,
which should explain the difference in sensitivity between the two groups. However, lower
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salivary flow was observed in the O group than in the Y group, which is in accordance with
previous studies [32,53] and should partly explain the sensitivity differences between the
two groups. Our observations suggest that the role of saliva in astringency sensitivity as a
function of age should also be linked to salivary composition and, in particular, peptides
and proteins. Studies on changes in salivary composition in healthy elderly individuals are
relatively scarce and present poor consistency among results [30]. Moreover, the direction
of change (increase or decrease) depends on the proteins. For instance, amylase, lysozyme
and IgA increase with age, while lactoferrin, glutathione, peroxidase activity and mucin
levels decrease, with a large consensus for the latter [30]. Similarly, histatin levels were also
observed to decline with age [54], which is an interesting finding based on the possible
involvement of mucins and histatins in astringency sensitivity [12,16]. We suggest that a
lower level of these classes of proteins in the saliva of the elderly population should impact
astringency perception. With regard to PRP and bPRP, there is a paucity of information
describing their salivary amounts during the human lifespan. Exploring salivary exocrine
protein secretion in 220 adults, Baum et al. [55] did not find a change in PRP secretion
during ageing, although this study considered only acidic PRP.

In conclusion, we found that the astringency threshold was higher in the elderly
group than in the young group, and our results suggest that salivary properties differently
influence astringency sensitivity as a function of age. A deeper characterisation of salivary
composition, particularly regarding PRP, mucin and histatin levels in both populations,
should be performed.

4. Limitations

This study presents some limitations.
Although a preliminary session was provided to the training subjects on the astrin-

gency modality, bias due to other attributes, such as bitterness or olfactory cues, cannot be
ignored. Regarding the latter, a nose clip was not worn during the sensory test to avoid
excessive fatigue for elderly participants. The same concern guided the choice to limit the
number of tannic acid concentrations to 4 to avoid excessive presentation of samples to this
population.

The number of subjects was defined to be at least 23 participants in each group
following a power test based on the results from a preliminary study. It is likely that this
number of subjects will not permit us to capture all the variability commonly observed
in the elderly population. Thus, an astringency evaluation in a larger population should
be performed before generalising our findings. Moreover, we observed in both groups (Y
and O) a large variability regarding the salivary flow with the presence of outliers in the O
group which led to non-normally distributed data. We cannot rule out the potential effect
of these outliers on the statistical results despite the use of non-parametric statistics more
robust to their presence [56,57]. However, it is important to note that sensory evaluation
and salivary sampling were repeated 3 times in 3 different sessions during a short period,
which ensured the good reliability of our results.

Some of the participants in the elderly group took drugs despite the low mean number
(2) compared to what was commonly observed in this population (ranging from 2.9 to
3.7 medications [58]). Drug intake is known to cause sensory impairment, particularly in
the aged population [22,58]. In our study, we chose subjects who were significantly older
(mean age 75 y/o) than those in the literature and thus more likely to take medication,
which increased the difficulty of limiting the inclusion of drug-taking participants.

Finally, we principally included participants with good oral health based on den-
tal observations. However, we did not check for oral microbiota impairment, a factor
that is commonly observed in the elderly population and that should also affect taste
sensitivity [59].
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5. Materials and Methods

This study was approved on 31 October 2019 by the Ethical Committee CCP Ile de
France IV under the number 2019-A02434-53.

5.1. Materials

Solutions for rinsing consisted of 0.1% pectin (Sigma–Aldrich, Saint-Quentin-Fallavier,
France) and 1% bicarbonate (Gilbert, France) dissolved in Evian water at room temperature.

Solutions for the sensory training session consisted of six taste solutions (salty, sour,
sweet, bitter, umami, and astringent), and their compositions are detailed in Table S1
(Supplementary Material). Each solution was coded with random three-digit codes.

Solutions for astringency sensitivity evaluation consisted of four solutions with in-
creasing tannic acid (Sigma–Aldrich, Saint-Quentin-Fallavier, France) concentrations (in
g/L) with a multiple of 3.05, i.e., 0.02, 0.062, 0.188, and 0.574. These concentrations were
chosen on the basis of preliminary experiments performed with a small internal panel
of subjects (see Section 2.2 below). All samples were prepared in Evian water at room
temperature 1 h before testing. Since potassium alum has not been allowed in sensory
studies, tannic acid was used as a component to evaluate astringency because it has been
described as less bitter than other polyphenols, such as gallic acid and catechin [60], and
thus limits the confusion between astringency and bitter taste. This was confirmed during
preliminary tests.

5.2. Sensory Analysis

Fifty-four panellists, including 30 elderly (O) people (age ≥ 65 y/o) and 24 young (Y)
people (age ≤ 35 y/o), were recruited to participate in the sensory sessions. The panel is
described in Table 1. The number of subjects that needed to be included to find a difference
between the two groups regarding astringency perception was determined by a power test
(power = 0.9, significance level = 0.05, alternative = “two-sided”). The power test was based
on preliminary results obtained on an internal panel (mean threshold = 0.19 ± 0.17 g/L of
tannic acid, n = 9). At least 23 subjects per group (Y or O) were necessary to observe a
difference equal to one standard deviation between the groups. More subjects were re-
cruited in case of defection, particularly for the O group. These size groups are in line with
previous studies aiming at evaluating the effect of ageing on taste perception regardless of
the modalities [23,24]. Elderly and young subjects had good oral health, with a number of
functional posterior units above 7 [32]. Moreover, elderly subjects were autonomous
persons living at home, had no cognitive disorders (Mini Mental State Examination
(MMSE > 25 [61])), did not have complete or half-complete dental appliances and took an
average of 2 drugs per day (median = 1).

5.3. Preliminary Session

The objective of this session was to be sure that subjects were able to (i) clearly
identify and differentiate astringency from other sensory sensations, in particular sourness,
bitterness and olfactory cues, and (ii) perfectly understand the procedure of the sensory
test, i.e., the 2-AFC to be used later.

The session was divided into two parts. During the first part, subjects received
20 mL of tasting sample in a fixed order at room temperature in plastic cups coded with
random numbers. They were instructed to put the samples into their mouths, swirl the
sample gently in the mouth for 30 s, spit it out and judge which taste it was. Between
samples, subjects rinsed their mouth with Evian water and then waited for 1 min before
the next sample. The tasting sensations were saltiness, sweetness, sourness, bitterness and
umami. Additionally, panellists were presented with tannic acid solution as an example
of astringency.

In the second part, subjects were trained and familiarised for the 2-AFC procedure as
described below.
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During both parts of the preliminary session, there was a discussion between subjects
and experimenters after each test. At the end of the session, all the panellists indicated that
they were able (i) to clearly identify astringency from other sensory sensations and (ii) to
perform the 2-AFC test properly.

5.4. Testing Session

All sessions were performed for 3 months between the middle of November and the
end of January and between 2 and 6 p.m. to minimise seasonal and circadian rhythms as
much as possible. Moreover, panellists were asked to not drink, eat or smoke 1 h before
the session.

The whole session was conducted under red light at room temperature in a sensory
room equipped with individual boxes.

At the beginning of each session, panellists were asked to taste a model tannic acid
solution of 1.76 g/L so that they could identify astringency. Then, they rinsed their mouths
with pectin, bicarbonate and Evian water and waited for a 3 min break before threshold
evaluation. The objective of this rinsing procedure is to perfectly clean the mouth to have
the most similar oral conditions when starting each test, and thus minimise carry-over
effects between sample evaluations. Sodium bicarbonate recovers pH homeostasis, and
pectin removes tannic acid from the oral mucosa due to its capacity to form complexes
with polyphenols [12]. This rinsing procedure was found to be efficient in wine studies
for in-mouth aroma release experiments [62,63] and, more recently, for the time sensory
evaluation of astringency and aroma [64]. This procedure was chosen instead of other
procedures, such as the milk rinsing procedure [65], because of the necessity to avoid any
contamination of saliva samples by food proteins.

The astringency threshold was evaluated by a 2-AFC procedure with ascending con-
centrations of tannic acid. In each 2-AFC presentation, two samples were presented: a target
sample and a control sample. Each 2-AFC test was performed 3 times, and the evaluation
was performed 3 times in 3 different sessions. Paired samples (5 mL) were presented in
balanced order following a Latin square design (Williams design) at room temperature in
a white plastic cup coded with the letter A or B. The testing procedure started from the
lowest concentration. Panellists were given the reference or stimulus sample. They were
asked to put the samples into their mouth, swirl them gently around the mouth for 30 s
and then spit them out. They rinsed their mouths with pectin and waited for 1 min before
evaluating the second sample. After 30 additional seconds, the panellists were asked to
indicate which sample was perceived as astringent. Then, the panellists rinsed their mouth
as described previously.

The sensitivity level was reached when three correct answers from the same concen-
tration were achieved. The best estimate threshold for each subject was evaluated as the
geometric mean of the three correctly answered concentrations and the previous lower
concentration. When the subjects correctly identified the lowest concentration (0.02 g/L),
the geometric means were calculated between this concentration and the theoretical con-
centration below, i.e., 0.02/3.05 = 0.0065 g/L. In contrast, when subjects did not correctly
identify the highest concentration (0.574 g/L), the geometric mean was calculated between
this concentration and the theoretical concentration above, i.e., 0.574 × 3.05 = 1.75 g/L.

5.5. Saliva Collection

Whole saliva was collected after the panellists had rinsed their mouths with 0.1%
pectin, 1% bicarbonate and water at the start (SFStart) and at the end (SFEnd) of the
session. Saliva was collected by expectorating into a preweighed tube with a cap for
5 min as described previously [41]. After collection, the tubes were weighed and then
stored at −80 ◦C. Flow rates were determined gravimetrically and expressed as grams per
minute (g/min).
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5.6. Protein Amount

Saliva samples were centrifuged at g for 15 min at 4 ◦C before analysis. The protein
concentration was determined in the supernatant using the Bradford protein assay, with
bovine serum albumin (BSA) used as the standard for calibration [41].

5.7. Statistical Analysis

Data showed the presence of outliers for all the variables. Moreover, normality
assumptions were not met for the raw data and residues. We decided to keep all the data
and to not violate normality assumption. We thus performed nonparametric analyses
because they are adapted to non-normally distributed data and are more robust to the
presence of outliers [56,57,66–68]. Mann–Whitney U tests were performed to evaluate
differences between the Y and O subjects regarding sensory and salivary parameters.
Wilcoxon tests were performed on the salivary parameters (flow and protein amounts)
to evaluate differences between the start and the end of each session. Friedman ANOVA
was conducted on the threshold and salivary parameter measurements to evaluate the
differences between the three sessions. Spearman rank order correlations were performed
for the whole group and in each group (Y and O) to evaluate the relationships between
salivary and sensory parameters. The significancy was set at p < 0.05. These tests were
performed using Statistica® version 13.5.0.17 (1984-2018 TIBCO Software Inc, Palo Alto,
CA, USA).

Supplementary Materials: The following supporting information can be downloaded online, Table
S1: Description of the tasting solutions used for the preliminary session.
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