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Abstract: (1) Background and objective: Cardiovascular disease is one of the most common causes of
death in today’s world. ECG is crucial in the early detection and prevention of cardiovascular disease.
In this study, an improved deep learning method is proposed to diagnose abnormal and normal
ECG accurately. (2) Methods: This paper proposes a CNN-FWS that combines three convolutional
neural networks (CNN) and recursive feature elimination based on feature weights (FW-RFE), which
diagnoses abnormal and normal ECG. F1 score and Recall are used to evaluate the performance.
(3) Results: A total of 17,259 records were used in this study, which validated the diagnostic perfor-
mance of CNN-FWS for normal and abnormal ECG signals in 12 leads. The experimental results
show that the F1 score of CNN-FWS is 0.902, and the Recall of CNN-FWS is 0.889. (4) Conclusion:
CNN-FWS absorbs the advantages of convolutional neural networks (CNN) to obtain three parts of
different spatial information and enrich the learned features. CNN-FWS can select the most relevant
features while eliminating unrelated and redundant features by FW-RFE, making the residual features
more representative and effective. The method is an end-to-end modeling approach that enables an
adaptive feature selection process without human intervention.

Keywords: ECG diagnosis; convolutional neural network; feature extraction; feature adaptive
screening

1. Introduction

The prevalence of cardiovascular disease in China continues to rise, and the number
of people with cardiovascular disease is estimated to reach 330 million [1]. ECG testing is
widely used due to its non-invasive and practical nature and is the preferred method of
cardiovascular disease prevention. Although ECG sampling is currently easy, diagnosis us-
ing ECG usually requires a physician with expertise and personal experience. Considering
the large number of people asking for an ECG, the workload for doctors is enormous. The
effectiveness of physicians’ ECG diagnoses will be considerably improved if the majority
of normal ECGs are filtered using computer-aided technology for clinical ECG detection.

The methods of computer-assisted ECG analysis have evolved rapidly in just a few
decades. In the beginning, algorithms were based on the physician’s logical deduction,
Such methods first extract the clinical features of the ECG, for example, R-wave duration [2],
P-wave duration [3], T-wave duration [4], and other methods, and then these combined
with medical rules to give conclusions. J.S. Geddes et al. [5] designed rules to achieve
the classification of premature ventricular ECG. First, the parameters to be detected were
selected according to the characteristics of ventricular premature ECG performance: R-R
interval, QRS wave group duration, and QRS wave group shape. Then the following rules
were used as criteria for judging the occurrence of ventricular premature beats: (1) when
the QRS duration is slightly wider than the QRS duration standard, and the current R-R
interval is judged to be <90% of the previous R-R interval, the diagnosis is ventricular
premature beats; (2) if the QRS duration is significantly wider than the QRS duration
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standard, the diagnosis is ventricular premature beats; (3) when the QRS wave cluster has a
different shape than the standard shape, the diagnosis is ventricular premature contraction.
This method is more intuitive, but the extraction algorithm of clinical indicators other than
r-wave is inaccurate and affects the conclusion.

Various mathematical and theoretical features have been explored to replace the
obvious clinical indicators, and together with some nonlinear classifiers, a set of methods
called pattern recognition has been developed to diagnose the ECG. These mathematical
and theoretical features include, among others, Fourier transform [6], wavelet transform [7],
Welch’s method [8], EMD [9], component analysis (PCA) [10], and independent component
analysis (ICA) [11]. For example, R.J. Marti et al. [12] used Independent Component
Analysis (ICA) for numerical feature extraction and PNN for arrhythmia diagnosis, with
mean sensitivity, specificity, positive predictive value (PPV), and accuracy of 99.97%,
99.83%, 99.21%, and 99.28%, respectively, in the case of a tenfold cross-validation scheme.
However, these method classes treat the extraction and classification sessions in isolation
without considering their connection, and their accuracy often relies on the experience of
the algorithm designers.

In recent years, deep learning techniques have overcome the challenges faced by
traditional methods and have made a splash in automated ECG diagnosis because the
methods themselves do not require the manual production of features for analysis, but
rather the direct use of neural networks for classification. Many scholars have conducted
in-depth research on ECG classification and diagnosis. Kiranyaz et al. [13] suggested that a
one-dimensional CNN provides rapid and reliable patient-specific ECG classification and
prediction. Acharya et al. [14,15] constructed CNN models to achieve ECG classification
without conducting any feature selection. To accomplish ECG positive abnormality classifi-
cation, Jin et al. [16] employed an ECG signal as an input signal and a CNN and R-wave
feature extraction set as a diagnostic approach. To obtain successful ECG classification,
Salloum and Kuo [17] used RNN for the first time in their study. Chen et al. [18] suggested
a DNN-based method for classifying ECG positive abnormality signals. Khan et al. [19]
employed principal component analysis (PCA) for denoising and LSTM for classification
to classify arrhythmias. Oh et al. [20] suggested combining a convolutional neural network
(CNN) with long short-term memory (LSTM) in a system to identify frequent arrhythmias
on ECG with high accuracy. Hou et al. [21] suggested using LSTM-AE to extract ECG
characteristics and SVM for ECG classification. Lee et al. [22] used the intrinsic mode
function of SVM-RFE with 3 and 32 feature dimension methods for heartbeat recognition,
showing robust performance. Hammad et al. [23] developed a new DNN technique based
on cross-validation paired with GA for feature and parameter optimization to accomplish
arrhythmia classification.

The above work demonstrates the usefulness of deep learning network structures in
ECG diagnosis. However, in clinical practice, neural network models are prone to encounter
problems such as inadequate representation of the features acquired by the deep learning
network structure, poor adaptive filtering of features, and vague generalization of the
classification model. This paper proposes a CNN-FWS that combines three convolutional
neural networks (CNN) and recursive feature elimination based on feature weights (FW-
RFE). CNN-FWS optimizes feature information representation and selects the most relevant
features while eliminating unrelated and redundant features by implementing adaptive
features filtering. ECG is processed into three stages: spatial information extraction using a
variety of convolutional neural networks (CNNs), spatial information optimization using
recursive feature weight elimination (FW-RFE), and diagnosis of fully connected layers.
The PTB-XL ECG dataset [24] was used to verify the generalization performance of the
model of this paper.

This paper is organized as follows. Section 2 introduces the related theoretical methods
and the proposed integrated convolutional neural network (CNN) and recursive feature
elimination based on feature weight (FW-RFE). Acquisition and processing of human
ECG data are presented in Section 3. Section 4 presents the results. Section 5 provides a
discussion based on the results obtained in Section 4. Finally, Section 6 concludes the paper.
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2. Methods
2.1. Model Architecture

The model shown in Figure 1 integrates three convolutional neural network feature
extraction modules, a recursive feature elimination module based on feature weights
(FW-RFE), and a fully connected layer. Three convolutional neural networks are trained
independently without interfering with each other. The three fully convolutional neural
networks are prepared separately from each other in such a way that the spatially fused
information features of each convolutional neural network are different, so the output
of each part of the features expresses a different meaning. This module analyzes the
characteristics of the weights to select the most relevant features while eliminating unrelated
and redundant features by implementing adaptive features filtering. Finally, the three
retained feature vectors are concatenated and output to the fully connected layer to obtain
the final classification result.

Figure 1. Architecture for the proposed model. The 12-lead ECG is fed into a convolutional layer
to obtain different features. The feature elimination module accepts the output of the convolutional
layer and retains the most representative features. The final classification result is output through the
fully connected layer.

2.2. Extraction of Spatial Data: CNN-Based Feature Extraction

CNNs [25] are one of the most widely used artificial neural networks. Convolutional
neural networks have two types of layers: convolutional and pooling. The convolutional
layer has a number of filters via which the neurons link the input data points directly and
multiply them by the weights. The convolutional layer is calculated as follows: y is the
convolutional layer’s output, n is the number of input samples, xi is the convolutional
layer’s ith input number, wi is the weight corresponding to that number, f is the activation
function, and bi is the offset corresponding to that number.

y = f (
n

∑
i=1

wi ∗ xi + bi) (1)
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The pooling layer frequently follows the convolution layer. To achieve the goal of
lowering the matrix size while holding the matrix depth constant, adjacent pooling units
collect inputs via repeated row or column panning. The maximum pooling function [26] is
determined as follows, where Pi is the output of the ith feature of the pooling layer, yi is
the ith feature input of the pooling layer, and S is the pooling block size.

Pi = max(yi), yi ∈ S (2)

All neurons in the filter of the convolutional layer share weights, enabling the sharing
of channel information and facilitating the spatial fusion of information from different ECG
leads. The output features become increasingly biased to express high-level characteristics
as the number of convolutional layers grows, while the expression of low-level features is
repressed. In earlier studies, low-level feature extraction was always ignored [27,28], and
their performance proved the importance of low-level features. Low-level features contain
more initial information about the data, but are noisier due to less convolution. High-level
features include more contextual information [29], with abstract information more closely
resembling human understanding. Therefore, different convolutional neural networks
have various features for spatially fusing information, and different convolutional neural
networks have different meanings expressed by the output features. Furthermore, various
convolutional neural networks produce features with different degrees of noise, and these
insignificant features impact the model’s generalization ability.

2.3. Feature Optimization: Recursive Feature Elimination Based on Feature Weights

The machine learning feature extraction method [30,31] is to process according to the
parameters given by machine learning to filter the features.This paper chooses to perform
feature optimization to improve the quality of features and select the most relevant features
while eliminating unrelated ones. This paper proposes a recursive feature elimination
method based on feature weights, called FW-RFE. The method analyzes the weight values
of the features obtained from the CNN model to obtain the feature ranking, whereby the
lowest-ranked features are selected and removed. The feature set is fed into the fully
connected layer for classification at each iteration. The method identifies the optimal set
of features extracted from the CNN model based on the classification results. FW-RFE
achieves the adaptive filtering of features, and the features retained are more representative
and effective.The detailed algorithm of FW-RFE is shown in Algorithm 1.
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Algorithm 1 FW-RFE

Input: The set of output features of the pooling layer and sample labels,

{(Pi, yi)}Num_l
(i=1) , Pi ∈

{
p1, p2, · · · , pj

}Num_ f
j=1 , yi ∈ {+1, 0}

and the set of convolutional layer feature weights,{[
w1

1, w2
1, · · ·w10

1
]
,
[
w1

2, w2
2, · · ·w10

2
]
, · · · ,

[
w1

j, w2
j, · · ·w10

j
]}Num_ f

(j=1)

Output: Feature Sorted Set R;
1: Initial feature set S

S = {si}num_l
i , si =

{
pi

1, p2
i, · · · , pj

i
}

and accuracy set V = ∅ ;
2: while (S 6= φ) do

3: Calculate the ranking criterion score:ci =
10
∑

n=1
(wj

n)
2
;

4: Find the feature with the smallest ranking score:

h = min C

5: Extract features si = si − pi
h, updata S;

6: Take S as the input of the fully connected layer, use sigmoid regression function to
achieve binary classification: sigmoid(Si) =

1
1+e−Si

7: Update accuracy set: V = [acc, V]
8: end while
9: When the accuracy rate in the accuracy set V is the highest, the feature set in S is

selected as the output result

FW-RFE can assist the model in focusing on the signal’s key information, hence
boosting detection performance.

3. Experiment
3.1. ECG Collection

The ECG heartbeat signals are obtained from PTB-XL. The PTB-XL ECG dataset is
a large dataset of 21,837 clinical 12-lead ECGs from 18,885 patients. These recordings
were interpreted and validated by up to two cardiologists. We considered two main
paradigms—DA and DB—to evaluate the proposed model.

With a total of 17,259 pieces of 10-second ECG data, this research uses Śmigiel S’s data
selection approach [32] in the DA paradigm and picks ECG data with 100% confirmation by
clinicians that the illness conclusion is true. Table 1 shows the diagnostic distribution of the
chosen data. The datasets are separated into two categories: normal datasets (7185 items)
and aberrant datasets (6925 items are randomly selected). The sequence of the data sets is
scrambled, and 5198 abnormal 12-lead ECG data and 5198 normal ECG data are used to
create a training set, 577 abnormal 12-lead ECG data and 577 normal ECG data are used to
create a validation set, and 1150 abnormal ECG data and 1410 normal ECG data are used to
generate the test set. The recordings were sampled at a frequency of 500 Hz.
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Table 1. A summary table with the breakdown of the five classes of DA.

Records Description

7185 Normal ECG (Normal)
2984 Myocardial Infarction (MI)
4579 ST/T Change (STTC)
4787 Conduction Disturbance (CD)
1473 Hypertrophy (HYP)

Simultaneously, when different samples of the same patient occur in the training set,
validation set, and test set simultaneously, the model’s generalization performance may be
reduced. To eliminate the impact of this one factor, we evaluated the model using the DB
paradigm.

Only one ECG data was chosen for each patient in the DB paradigm, with 100 percent
physician validation of the specific ECG data for the illness findings, totaling 14,908 10-s
ECG data. Table 2 shows the diagnostic distribution of the chosen data. The datasets
are separated into two categories: normal datasets (6590 items) and aberrant datasets
(6590 items are randomly selected). The sequence of the data sets is scrambled, and
5031 abnormal 12-lead ECG data and 5031 normal ECG data are used to create a training
set, 559 abnormal 12-lead ECG data and 559 normal ECG data are used to create a validation
set, and 1000 abnormal ECG data and 1000 normal ECG data are used to generate the test
set. The recordings were sampled at a frequency of 500 Hz.

Table 2. A summary table with the breakdown of the five classes of DB.

Records Description

6590 Normal ECG (Normal)
2363 Myocardial Infarction (MI)
3735 ST/T Change (STTC)
4014 Conduction Disturbance (CD)
1201 Hypertrophy (HYP)

Normal ECGs were labeled as 0, and abnormal ECGs were labeled as 1. The data from
each lead of the ECG was also filtered using a band-pass filter to achieve noise reduction of
the ECG signal and improve the signal-to-noise ratio. Figure 2 shows a selection of filtered
samples from the PTB-XL database of five ECG second lead recordings (i.e., normal and
other abnormal cases).

3.2. Model Setting

Figure 3 depicts the model parameters of the three convolutional neural networks:
CNN-A, CNN-B, and CNN-C. A LeakyReLU [33,34] follows each convolutional layer. A
fully connected layer is the ultimate level in all neural network frameworks. This study
employs two hidden layers. The first hidden layer uses Relu and the second hidden layer
uses a sigmoid regression function to achieve binary classification. The extracted features
are the output of the ECG signal after it has passed through the last pooling layer of
each model.

In the FW-RFE part, the training set and the validation set are input for training
and validation after a three-part feature set obtained from CNN-A, CNN-B, and CNN-
C. The fully connected layer is a hidden layer with a sigmoid regression function to
implement binary classification. The last feature in the ranking is eliminated in each
recursive elimination iteration, making the features adaptively filtered to obtain the best
features in the feature set extracted by each CNN model.

In the diagnostic part, a hidden layer consisting of a sigmoid regression function
implementing a binary classification is used.



Entropy 2022, 24, 471 7 of 13

0 1000 2000 3000 4000 5000

-0.3

0.0

0.3

0.6  Normal

0 1000 2000 3000 4000 5000

-0.3
0.0
0.3
0.6  MI

0 1000 2000 3000 4000 5000

0.0

0.5

1.0  STTC

0 1000 2000 3000 4000 5000

-1

0

1

2  HYP

0 1000 2000 3000 4000 5000

0

1

2  CD

Figure 2. Normal and abnormal class filtered samples from the PTB-XL dataset.

Figure 3. Convolutional neural network layer configurations. CNN-A, CNN-B, and CNN-C designs
are shown from left to right. A convolutional layer with 54 kernels of size 15 is designated as
“Conv1D,1554”. A maximum pooling layer with a step size of 2 is called “Maxpooling”. A fully
linked layer is referred to as “Faletten”. “Dense,10” refers to a buried layer with a 10 output.

The Adam optimizer [35] was used to train the whole model, with the beginning
learning rate for the diagnostic module set to 0.0001 and 0.001 for the rest of the model. The
Adam optimizer was applied to balance gradient updates across categories, thus mitigating
the detrimental effects of data imbalance. Furthermore, the learning rate of the model
was multiplied by 0.1 without boosting the accuracy of the validation set after every five
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epochs. The L2 loss of all parameters in the model was multiplied by a factor of 0.001
to prevent certain parameters from dominating the computation by being too large. A
binary cross-entropy loss function was also used as the loss function throughout the model.
EarlyStopping was used throughout the model, using the validation set accuracy as a
reference, and training was stopped if there was no growth in 15 iterations. This prevents
the network from overfitting.

4. Results
4.1. Evaluation Indicators

In this section, four evaluation indicators are investigated to evaluate the performance
of the presented models in the following sections. The four evaluation indicators are Subset
Accuracy, Precision, Recall and F1 score, which are introduced as follows.

SubsetAccuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 =
2 ∗ Precoision ∗ Recall

Precoision + Recall
(6)

TP (Ture Positive) represents the number of positive samples correctly diagnosed
by the model; TN (Ture Negative) represents the number of negative samples correctly
diagnosed by the model; FP (False Positive) represents the number of positive samples
incorrectly diagnosed by the model; FN (False Negative) represents the number of negative
samples incorrectly diagnosed by the model.

4.2. Feature Elimination Performance

Figure 4 shows the process of feature adaptive screening. The number of removed
features is demonstrated by the horizontal coordinate, while the vertical coordinate indi-
cates the accuracy of the feature set on the validation set. For the first 250-or-so features,
CNN-A’s accuracy rate hovers around 1% before plummeting in a sudden downward
trend. The accuracy of CNN-B and CNN-C varies between 1% and 1% for the first 160 and
350 features, respectively, before showing a cliff-down trend.

Finally, we obtain the features preserved by the model with the best accuracy on the
validation set. The DA paradigm retains 125 features with CNN-A, 89 features with CNN-B,
and 223 features with CNN-C. Through CNN-A, the DB paradigm retains 346 properties.
CNN-B retains 116 features, but CNN-C retains 229 features.

4.3. Classification Performance

Table 3 shows the differences between the proposed model and the traditional CNN
model in terms of Subset Accuracy, Precision, Recall, and F1 score in the DA paradigm. The
suggested model increases Subset Accuracy by 0.58%, Precision by 0.7%, Recall by 0.3%,
and F1 score by 0.5%, as shown in Table 3.

Table 4 shows the differences between the proposed model and the traditional CNN
model in terms of Subset Accuracy, Precision, Recall, and F1 score in the DB paradigm.
Table 4 shows that the suggested model increases Subset Accuracy by 2.3%, Precision by
2.3%, Recall by 1.3%, and F1 score by 2.3%.

In all respects, the findings demonstrate that the model presented in this study outper-
forms existing reference CNN models.
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Figure 4. The process of removing features. The number of removed features is shown by the
horizontal coordinate, while the vertical coordinate indicates the accuracy of the feature set on the
validation set.

Table 3. The performance of different models used in this paper on the test set (DA).

Model Accuracy Precision Recall F1 Score

Present method 89.92% 0.901 0.914 0.907
CNN-A 88.25% 0.887 0.876 0.878
CNN-B 89.34% 0.894 0.911 0.902
CNN-C 87.58% 0.871 0.900 0.885
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Table 4. The performance of different models used in this paper on the test set (DB).

Model Accuracy Precision Recall F1 Score

Present method 90.05% 0.915 0.889 0.902
CNN-A 87.75% 0.879 0.876 0.878
CNN-B 87.40% 0.882 0.868 0.875
CNN-C 87.75% 0.892 0.867 0.879

4.4. Model Test on PTB-XL

Table 5 compares the diagnostic ability of the five reference models and CNN-FWS
for abnormal and normal ECG, based on PTB-XL. The results are expressed using Recall
and F1 scores, which represent the diagnostic ability for abnormal and normal ECG data.
Figure 5 shows the confusion matrix for evaluating the network results.

In the DA scenario, the findings reveal that CNN-FWS beats the other reference models
in Recall and F1 scores. Recall is 18.4% higher, and F1 score is 14.9% higher when compared
to DLECG-CVD [36]. Recall is 20% better, and F1 score is 16.4% higher when compared
to CIGRU-ELM [37]. Compared to IBECG-SP [38], Recall is 19.5% higher, and F1 score is
15.9% higher when both employ fully connected layers for classification diagnosis. This set
of comparisons means that the model presented in this study is better at obtaining features
using CNNs. In addition, while extracting features using CNN, F1 score is 7.5% higher
than MLBF-Net [39]. Recall increases by 2.5%, and F1 score is 0.3% better when compared
to CNN with entropy features [32]. The performance of CNN-FWS on Recall and F1 scores
did not degrade much in the DB paradigm.

915 95

114 886

1271 139

119 1031

1296 114

162 988

Normal Others

Normal

Others

Present method (DB)

Normal Others

Normal

Others

Present method (DA)

Normal Others

Normal

Others

CNN with entropy features

Figure 5. Confusion matrix for evaluating network results.
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Table 5. The performance of different models on the test set.

Approach Recall F1 Score

Present method (DB) 0.889 0.902
Present method (DA) 0.914 0.907

IBECG-SP [38] 0.719 0.748
DLECG-CVD [36] 0.730 0.758

MLBF-Net [39] 0.714 0.832
CIGRU-ELM [37] - 0.743

CNN with entropy
features [32] 0.889 0.904

5. Discussion

When different samples of the same patient appear in the training set, validation set,
and test set simultaneously, it may suppress results for the generalization performance of
the model. To exclude this effect, we introduced the DB paradigm dataset based on the DA
paradigm dataset.

From Tables 3 and 4 it is easy to see that different CNNs have different diagnostic
capabilities for normal and abnormal ECGs with the same dataset. This result indicates dif-
ferences in the features extracted by different CNNs. Therefore, concatenating the features
extracted by different CNNs can expand the content of the features. By concatenation, it
is possible to increase the generalization ability of the model. However, the presence of
varying degrees of noise features in the features extracted by convolutional neural networks
tends to affect the diagnostic capability of the model.

As shown in Figure 4, with each recursive elimination, the feature set extracted by
the convolutional neural network fluctuates up and down for ECG normal and abnormal
diagnosis accuracy. By retaining the feature set with the highest accuracy for normal and
abnormal ECG diagnosis, we select the most relevant features while eliminating unrelated
and redundant features, further optimizing the information and attaining adaptive filtering
of features. The final features that are left are more representative and effective. The
results in Tables 3 and 4 also demonstrate that CNN-FWS is a better model for ECG
normal and abnormal diagnosis than CNN.The FW-RFE in this paper can directly target
the adaptive screening of features by extracting parameters from the CNN without the
intervention of machine learning methods, reducing the complexity of the ECG positive
anomaly classification algorithm computation and memory.

As the results in Table 5 show, CNN-FWS also demonstrates good advantages for
normal and abnormal ECG diagnosis by compared with other models. Compared with
the literature [36–38], both the Recall and F1 scores are greater than 14%, reflecting that
the CNN in this paper is a better way of obtaining features. From Figure 5, we can find
that with the use of CNN to extract features, this paper effectively improves diagnostic
efficiency of ECG abnormalities without sacrificing diagnostic efficiency for normal ECG.
Therefore, the method in this paper effectively reduces the leakage of abnormal ECG, which
will significantly improve the efficiency of ECG diagnosis for physicians. Furthermore,
comparing the results under the DA and DB paradigms, the Recall and F1 scores of CNN-
FWS did not drop substantially when the amount of data decreased and when the possible
effects of the same patient data on the model were excluded. This result indicates that
CNN-FWS is stable and has excellent generalization performance for ECG diagnosis.

As a result, CNN-FWS increases the information validity of features in general by using
CNN feature extraction and FW-RFE to select the most relevant features while eliminating
unrelated and redundant features and achieving adaptive filtering of features, resulting in a
model with superior generalization performance than previous methods. At the same time,
this method reduces the complexity of the CNN feature screening algorithm computation
and memory, effectively reducing the underdiagnosis of abnormal ECG, which is conducive
to significantly reducing the difficulty of physicians’ diagnosis.
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6. Conclusions

In this study, CNN-FWS combining a convolutional neural network (CNN) and
recursive feature elimination based on feature weights (FW-RFE) is used for ECG normal
and abnormal classification. A large amount of feature information is obtained through
CNN’s excellent feature extraction properties. Features are adaptively filtered and select
the most relevant features while eliminating unrelated and redundant features through
FW-RFE. These modules with different functions are integrated into a single neural network
architecture, resulting in superior classification performance, especially in detecting normal
and abnormal ECG. In terms of normal and abnormal ECG classification, the F1 score
was 0.902, and Recall was 0.889. In summary, the presented method provides an excellent
solution to the problem of detecting normal and abnormal ECGs as an entirely data-driven
end-to-end method that requires no human intervention. It provides examples for other
signal processing problems involving the spatial fusion of signals.
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