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Simple Summary: Men of African origin have a 2–3 times greater chance of developing prostate
cancer than those of European origin, and of patients that are diagnosed with the disease, men of
African descent are 2 times more likely to die compared to white men. Men of African origin are still
greatly underrepresented in genetic studies and clinical trials. This, unfortunately, means that new
discoveries in cancer treatment are missing key information on the group with a greater chance of
mortality. A fusion gene is a hybrid gene formed from two previously independent genes. Fusion
genes have been found to be common in all main types of human cancer. The objective of this study
was to increase our knowledge of fusion genes in prostate cancer using computational approaches
and to compare fusion genes between men of African and European origin. This identified novel
gene fusions unique to men of African origin and suggested that this group has a greater number of
fusion genes.

Abstract: Prostate cancer is one of the most prevalent cancers worldwide, particularly affecting men
living a western lifestyle and of African descent, suggesting risk factors that are genetic, environmen-
tal, and socioeconomic in nature. In the USA, African American (AA) men are disproportionately
affected, on average suffering from a higher grade of the disease and at a younger age compared
to men of European descent (EA). Fusion genes are chimeric products formed by the merging of
two separate genes occurring as a result of chromosomal structural changes, for example, inversion or
trans/cis-splicing of neighboring genes. They are known drivers of cancer and have been identified
in 20% of cancers. Improvements in genomics technologies such as RNA-sequencing coupled with
better algorithms for prediction of fusion genes has added to our knowledge of specific gene fusions
in cancers. At present AA are underrepresented in genomic studies of prostate cancer. The primary
goal of this study was to examine molecular differences in predicted fusion genes in a cohort of AA
and EA men in the context of prostate cancer using computational approaches. RNA was purified
from prostate tissue specimens obtained at surgery from subjects enrolled in the study. Fusion gene
predictions were performed using four different fusion gene detection programs. This identified
novel putative gene fusions unique to AA and suggested that the fusion gene burden was higher in
AA compared to EA men.
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1. Introduction

Among men, prostate cancer (PC) is the most diagnosed cancer and a major cause of
mortality, especially in those living western lifestyles [1,2]. Incidence and mortality rates of
PC increase with age, with a higher rate observed in African American (AA) men compared
to those of European descent (EA) [3]. PC is a heterogeneous disease that has a slow
progression compared to other cancers, typically remaining latent for up to 20 years [4].
Increases in PC incidence have been reported since 1990 in both developed and developing
countries [5]. This is due to the increased use of prostate-specific antigen (PSA) screening,
which measures PSA levels in the blood [6]. Serum PSA screening is a general approach
used to diagnose patients with PC. It can successfully detect PC in its early stages, allowing
for earlier therapeutic intervention to reduce mortality rates [7]. It remains controversial
whether widespread screening is beneficial, as this approach has resulted in the excessive
diagnosis of PC cases which may otherwise have remained clinically undetected and
insignificant [7,8].

Knowledge of PC genomics has grown in recent years, allowing several race-specific
variations to be identified, including polymorphisms, gene mutations, and epigenetic
changes [9]. Genetic abnormalities are common in cancers, the most prevalent being the
chromosomal rearrangements that lead to the formation of fusion genes, for example,
through deletions, inversions, and amplifications [3,10]. This results in a chimeric gene
product being formed from the two separate genes involved [11]. The first of these to be
discovered was the fusion of the break point cluster (BRC) and Abelson murine leukemia
viral oncogene homolog 1 (ABL1) genes, better known as the Philadelphia chromosome [12].
It has been detected in 95% of chronic myelogenous leukemia patients, and since that initial
discovery many fusion genes have been identified as drivers of cancer through deregulation,
loss of function, or the formation of oncogenic proteins [13,14]. The discovery of gene
fusions in cancer has increased with the advent of high throughput sequencing.

The prostate-specific androgen response gene TMPRSS2 and its fusion with the ETS-
related gene (ERG) have been extensively studied in PC [15,16]). It is the leading driver of
ERG overexpression in PC, which is associated with the activation of biological pathways
and their constituent proteins that promote cancer progression [16]. Frequencies of genetic
alterations that are potential drivers of cancer vary between populations of different ances-
tries. For example, although the total burden of transcript fusion events was not found to
differ by genetic ancestry, the TMPRSS2-ERG fusion was more frequently observed in EAs
than AAs [17]. Understanding the mechanisms underlying the development of prostate
cancer and the contribution of fusion gene products is crucial to reduce cancer mortality in
AA men.

The primary objective of this study was to examine molecular differences in fusion
genes in a patient cohort that we examined previously for differences in gene expression
patterns. This initial study supported the concept that inflammatory processes may con-
tribute to disease progression in AA men [18]. Here, we undertook an additional series
of additional genome-wide expression profiling experiments using high throughput (HT)
RNA sequencing coupled with fusion gene prediction computational approaches to assess
and compare fusion gene burden in AA men relative to EA. Our research provides novelty
in the context of (1) the identification of novel putative fusions in prostate tumor tissue and
(2) exploiting novel bioinformatics methods to predict fusions in the context of study on
racial diversity.
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2. Materials and Methods
2.1. Human Subjects

The study was authorized by the Institutional Review Board (IRB) of the Medical Uni-
versity of South Carolina (MUSC) and the Ralph H. Johnson VA Medical Center (VAMC),
and by the Research and Development (R&D) Committee of the VAMC and performed
as an interventional study of a new drug (IND) 77839, approved by the Food and Drug
Administration (FDA). The 27 male subjects (10 AA and 17 EA men) enrolled in the study
were all diagnosed with localized prostate cancer and had selected surgical removal of the
prostate (prostatectomy) as a treatment. The current standard of care requires a two-month
interval between biopsy and prostatectomy to reduce inflammation caused by the biopsy.
Enrolled subjects were randomized to vitamin D3 supplementation at 4000 IU per day
or placebo for two months prior to surgery. Two blood samples were obtained from
each patient (at enrollment and on the day of the prostatectomy) to assay serum levels of
25-hydroxyvitamin D3 [25(OH)D3]. Fourteen subjects (5 AA and 9 EA) took 4000 interna-
tional units (IU) of vitamin D3 per day for two months prior to surgery; 13 subjects (5 AA
and 8 EA men) received placebo for two months prior to surgery. Based on the serum
levels of 25(OH)D at study exit, we concluded that there was a high level of compliance by
all enrolled subjects [18]. All 14 subjects that received vitamin D3 supplementation had
an increase in their serum concentration of 25(OH)D3 [18]. Table 1 provides an overview
of the patient characteristics and clinical information. A more detailed description of the
patient clinical data and demographic background is provided in Supplemental Table S1.

Table 1. Patient demographics and clinical characteristics.

European American (n = 17) African American (n = 10)

Age, years, mean (SD) 61.4 (4.78) 63.4 (5.21)

Radical Prostatectomy
Gleason Score, n (%)

3 + 3 4 (23.5) 2 (20.0)

3 + 4 10 (58.8) 7 (70.0)

4 + 3 1 (5.88) 0 (0.00)

4 + 3 + 5 2 (11.8) 1 (10.0)

Tumor, n (%)

Confined 15 (88.2) 7 (70.0)

Extension 2 (11.8) 3 (30.0)

Nodal Involvement, n (%)

N0 13 (76.5) 7 (70.0)

NX 4 (23.5) 2 (20.0)

2.2. Tissue Sample Procurement and RNA Purification

Surgical specimens were received in the frozen section laboratory at the Medical
University of South Carolina or the Ralph H. Johnson VA Medical Center. Nonmalignant
tissue samples were removed from the peripheral zone of the prostate under the supervision
of the attending pathologist to ensure that the excision of tissue samples did not interfere
with the diagnostic priorities. Tissue samples were transferred to sterile tubes, quick-frozen
in liquid nitrogen, and transported to the Hollings Cancer Center Genomics Core Facility.
RNA from each de-identified tissue sample was extracted using Qiagen RNeasy. RNA
integrity was assessed using an Agilent 2100 Bioanalyzer and RNA 6000 Nano Assay chip
(Agilent Technologies, Palo Alto, CA, USA).
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2.3. RNA Sequencing (RNA-seq) and Quality Control

A 100–200 ng total RNA sample was used to prepare RNA-seq libraries using the
TruSeq RNA Sample Prep Kit (Illumina, San Diego, CA, USA). High throughput sequencing
(HTS) was performed using an Illumina HiSeq 2500 with each sample sequenced to an
average depth of >60 million reads using a mix of paired-end (PE125) and single-end (SE50)
sequencing strategies. All raw sequencing data were submitted to the NCBI GEO database
(accession GSE152929). Quality control (QC) was performed using Cutadapt (v1.18) [19].
Low-quality and over-represented sequences identified by FastQC were removed [20].
Cutadapt processed data were used as inputs for fusion detection analysis unless raw data
were required by the fusion prediction tool (Figure 1). A total of 2,052,016,465 reads across
all 27 patients were inputted into this analytical pipeline.
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2.4. Fusion Detection Software

Four fusion detection tools were used to identify fusion genes in the 27 samples, STAR-
Fusion (v1.7.0), FusionCatcher (v1.20) [21], JAFFA (v1.09) [22], and ChimeraScan (v0.4.5),
using a mix of single (SE) and/or paired-end (PE) reads (Figure 1) [23]. These tools were
selected based on availability and support at the time of analysis and the prior comparative
assessment of methods for fusion transcripts detection from RNA-seq data by Kumar and
colleagues [24]. These software packages are freely available to the scientific community
and have been trained, assessed, and benchmarked on diverse types of datasets, and utilize
distinct algorithms.
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2.5. Benchmarking the Fusion Detection Tools Using Prostate Cancer Cell Lines

In order to benchmark and validate the fusion analysis tools for PC analyses, we
selected PC cell lines that were known to be positive or negative for the presence of the
TMPRSS2:ERG fusion. A summary of the cell lines examined is provided in Supplemental
Table S2. We determined whether each tool could detect this fusion or not. The cell
lines examined included VCaP (+), HCIH-660 (+), PC3 (−), LNCaP (−), DU145 (−) and
22RV1 (−), PrECLH (unknown), and MDA-PCa-2B (unknown) for TMPRSS2:ERG status.
Sequence data were downloaded from the NCBI Sequence Read Archive (accession code
PRJNA523380). This provided a series of positive and negative controls for the detection
of TMPRSS2:ERG and allowed determination of the accuracy of the fusion prediction
tools in the context of prostate cancer. HCIH-660 and VCAP both served as positive
controls, and PC3, LNCaP, DU145, and 22RV1 as negative controls. All cell line RNA-seq
data were available in paired-end format. The cell lines were analyzed using STAR-
Fusion, FusionCatcher, and JAFFA with the software versions, reference genome, and tool
parameters described in Section 2.4.

2.6. Analysis of the Patient Samples

Our patient samples were analyzed for the presence of fusion genes using STAR-
Fusion, FusionCatcher, JAFFA, and ChimeraScan. ChimeraScan analyses PE data only,
which resulted in 17 samples analyzed with this tool. STAR-Fusion and FusionCatcher can
analyze SE reads; however, they require a minimum input of 100 and 130 bp, respectively.
STAR-Fusion analyzed all our SE reads; however, no fusions were predicted. Analysis of
the PE samples with STAR-Fusion (7 EA and 10 AA) detected fusion genes. FusionCatcher
failed to analyze the SE samples, again limiting the results to 17 samples. Table 2 provides
a summary of the input data used for each fusion detection tool. Fusion plots were created
by Chimeraviz v1.19.0 using the R statistical environment [25].

Table 2. Comparison of the input sequencing data, patient samples, and genome build specific to
our analyses.

Program STAR-Fusion FusionCatcher JAFFA ChimeraScan

Data type Single and paired end Single and paired end Single and paired end Paired end only

Preprocessing (Y/N) Y N Y N

Samples analyzed
27 samples 17 samples 27 samples 17 samples

10 AA 10 AA 10 AA 10 AA
17 EA 7 EA 17 EA 7 EA

Genome build GRCh38 GRCh38 GRCh38 GRCh37

Inputs for these fusion prediction tools follow: FusionCatcher and ChimeraScan
(raw fastq files) and STAR-Fusion and JAFFA (preprocessed fastq files). Genome build
GRCh38 was used as the reference for STAR-Fusion, FusionCatcher, and JAFFA, while
ChimeraScan employed GRCh37. Default tool parameters were utilized for STAR-Fusion
and FusionCatcher. For JAFFA, the direct mode was used, and the fusion predictions were
classified as “high”, “medium”, or “low” confidence. Fusion genes with low-confidence
ratings were excluded from downstream analyses. Shared predicted fusion genes between
samples were investigated using jvenn [26]. The salient features of the fusion detection
tools are summarized in Table 3.
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Table 3. Fusion detection pipelines.

Program STAR-Fusion FusionCatcher JAFFA ChimeraScan

Release year 2017 2012 2015 2011

Installation Python script Java script C++ script

Alignment tools STAR

Bowtie, Bowtie2, Liftover,
STAR, Velvet, FaToTwoBit,
SAMtools, Seqtk, Numpy,

Biopython, Picard, Parallel

Bpipe, Velvet, Oases,
SAMtools,

Bowtie2, BLAT, Dedupe,
Reformat

Bowtie

Reference Transcriptome Genome and transcriptome Transcriptome Genome and
transcriptome

Reads format
Single end (suggested

reads > 100 bp) and paired
end

Single end (reads > 130 bp)
and paired end

Single end (any length)
and paired end Paired end

Class Read mapping Read mapping Read mapping Read mapping

Input data RNA-Seq RNA-Seq RNA-Seq RNA-Seq

Human Assembly GRCh38 GRCh38 GRCh38 GRCh37

3. Results
3.1. Cell Line Analysis

TMPRSS2:ERG was predicted in both positive control cell lines (VCaP and HCIH-660)
using STAR-Fusion, FusionCatcher, and JAFFA. JAFFA predicted this fusion with high
confidence in both VCAP and HCIH-660. All tools analyzing the negative control cell
lines did not predict the presence of TMPRSS2-ERG. Supplementary Table S3 provides
an unfiltered list of the fusion genes predicted by each tool and organized by cell line.

3.2. STAR-Fusion

STAR-Fusion identified 34 fusion genes in total with duplicates removed. The tool
predicted fusions from PE reads (10 AA, 7 EA). No fusions were obtained with the SE data.
Of these 17 patients for which there was PE data, 10 AA patients yielded 26 predicted fusion
genes compared to only 10 fusions obtained from the 5 EA patients (with 2 common fusions
shared between AA and EA patients). Two of the EA patients did not reveal any fusion
genes. Supplementary Table S4 provides the unfiltered list of the fusion genes predicted by
STAR-Fusion.

3.3. FusionCatcher

FusionCatcher predicted 4918 fusion genes across 17 patients with duplicates removed.
FusionCatcher enables the analysis of SE reads; however, they must be ≥130 bp. The SE
reads were thus too short and therefore not compatible with FusionCatcher, decreasing the
total patient count examined to 17 patients. Ten AA patients yielded 4753 fusion genes
compared to only 278 for the 7 EA patients examined (with 113 common fusions shared
between AA and EA patients). Supplementary Table S4 lists all unfiltered fusion genes
predicted by FusionCatcher.

3.4. JAFFA

JAFFA was run using the “direct” mode option, and exploits sequence reads that do
not map to known transcripts. In total, JAFFA predicted 4772 high- and medium-confidence
fusion genes across all 27 patients with fusion duplicates removed. AA patients accounted
for 3290 of these predicted fusion genes compared to 1530 fusion genes in EA patients
(with 48 shared fusions between AA and EA patients). Supplementary Table S4 provides
an unfiltered list of all fusion genes predicted by JAFFA.
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3.5. ChimeraScan

ChimeraScan predicted a total of 1621 fusion genes across 17 patients (duplicates
removed). SE reads are not compatible with ChimeraScan; 1134 fusions were detected in
AA patients and 991 patients of European descent (504 common fusions between AA and
EA patients). Supplementary Table S4 provides a complete original list of the fusion genes
predicted by ChimeraScan.

3.6. Comparison of Fusion Genes Based on Race

The total number of fusion genes predicted in AA patients was more than three
times (9083) that predicted in EA (2752) based on a summation of fusions predicted by all
four tools with duplicates removed. Comparisons of all fusions based on STAR-Fusion,
FusionCatcher, JAFFA, and ChimeraScan and across AA and EA are provided in Figure 2
(AA) and Figure 3 (EA), respectively. Comparisons excluding STAR-Fusion, which gen-
erated fewer predicted fusions, are presented in Figure 4A,B. Table S4 contains unfiltered
data outputted by all fusion detection tools. The fusion counts we report are based on
a summation of all fusions with duplicated fusions removed. Duplicated fusions between
races in each tool are kept in the table and are included in total fusion count.
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Figure 2. Comparison of fusion genes predicted by the different pipelines in African American
patients. Total nonredundant fusions = 9203.

No single fusion was detected by all four programs, reflecting differences in the
underlying algorithms for how each tool predicts fusion genes [24] (Figures 2 and 3;
Tables 2 and 3). Table 4 summarizes fusion genes detected with each tool and these were
organized by race to enable comparisons. Of the 12,012 fusions genes predicted across
all four tools, 8433 were unique to AA patients and 2102 unique to EA patients. Only
650 predicted fusions were shared between AA and EA (Figure 4C).
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Figure 3. Comparison of fusion genes predicted by the different pipelines in European American
patients. Total nonredundant fusions = 2809.
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Figure 4. (A) Comparison of fusions detected by FusionCatcher, JAFFA, and ChimeraScan in AA
patients. Two shared fusion genes were predicted by these tools in AA patients (NAIP:OCLN and
PDE1C:DNAJC6). (B) Comparison of fusions detected by FusionCatcher, JAFFA, and ChimeraScan
in EA patients. Four shared fusion genes were predicted by these tools in EA patients (Shared
fusions—NAIP:OCLN, FOXP2:CREM, KANSL1:ARL17B, and KANSL1:ARL17A). (C) Comparison of
detected fusions in AA and EA patients across all four tools. Low-confidence fusions have been
excluded from all the comparisons.
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Table 4. Comparison of fusion genes predicted by the four detection tools. (Low-confidence fusions
detected by JAFFA were excluded from this comparison).

Number of Different Fusion Genes Detected by Each Tool

Group STAR-Fusion FusionCatcher JAFFA ChimeraScan
Total

(Nonredundant)
Fusions

AA 26 4753 3290 1134 9203

EA 10 278 1530 991 2809

Total 36 5031 4820 2125

An expanded description of the fusions and the output data from the tools are provided
in Supplemental Table S4. A summary of novel predicted fusion genes is presented in
Supplemental Table S5. Racial differences in predicted fusion genes are summarized
in Supplemental Table S6. Shared fusions across EA and AA patients are presented in
Supplemental Tables S7 and S8, respectively.

Novel fusion genes were detected with all four programs (Table 5 and Supplemental
Table S5). NAIP:OCLN was identified as a novel fusion in AA patients (patient IDs AA
19, AA 23, and AA 27; Supplemental Table S1). This fusion gene was also observed in
one EA patient (patient ID EA 3; Supplemental Table S1). PDE1C:DNAJC6 was detected
as a novel fusion gene in one AA patient (patient ID AA 19; Supplemental Table S1). The
fusion gene KANSL1:ARL17B was predicted in EA patients IDs EA 3, EA 4, and EA 5.
AHSA1:DLG3 was detected in one EA patient (patient ID EA 3; Supplemental Table S1)
and finally FOXP2:CREM was detected in one EA patient (ID EA 1) by FusionCatcher,
JAFFA, and ChimeraScan. These chimeras are candidates for further study as they were
identified as predicted fusions using different tools, which suggests that they have biological
relevance. Of particular interest are the fusions NAIP:OCLN and KANSL1:ARL17B, which
were predicted in AA and EA patients multiple times.

Table 5. Novel predicted fusion genes identified by each tool. Race, patient samples, and the tools
used to obtain the fusions are summarized.

Fusion Gene Race Patient ID Tools

NAIP:OCLN AA AA 20, 22, 24 ChimeraScan, FusionCatcher, JAFFA

NAIP:OCLN EA EA 15 ChimeraScan, FusionCatcher, JAFFA

PDE1C:DNAJC6 AA AA 24 ChimeraScan, FusionCatcher, JAFFA

KANSL1:ARL17B EA EA 5, 6, 15 ChimeraScan, FusionCatcher, JAFFA

FOXP2:CREM EA EA 1 ChimeraScan, FusionCatcher, JAFFA

AHSA1:DLG3 EA EA 15 STAR-Fusion, FusionCatcher, JAFFA

All shared fusion genes were cross-checked with existing fusion databases including
the Mitelman Database of Chromosome Aberrations [27] to determine if they had been
previously associated with cancer. Additionally, these fusions were assessed using the
TumorFusions data portal (http://tumorfusions.org/) (accessed on 27 August 2021) [28]
based on the PRADA (Pipeline for RNA-Sequencing Data Analysis) pipeline and prostate
adenocarcinoma data (PRAD) from TCGA to determine if they had been previously re-
ported in prostate cancer [29]. From these database interrogations, all these predicted
fusions are novel in the context of prostate cancer.

To visualize the novel predicted fusion genes we utilized Chimeraviz to generate
a Circos plot (Figure 5). This provides a schematic of the different chromosomal regions
that are combined together in the predicted fusion genes [25].

http://tumorfusions.org/
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Figure 5. Chromosome Circos plot of novel fusion genes detected between fusion prediction tools.
Red and blue lines indicate intra- and inter-chromosomal fusions. All chromosomes and cytoband
information are denoted. The width of each link varies according to number of reads supporting the
fusion event.

To explore the novel fusions more deeply, we generated a series of fusion plots.
These plots present chromosome ideograms with a red line denoting the location of the
two partner genes, along with transcript and breakpoint information. Figure 6 presents
overviews of the novel fusions NAIP:OCLN (patient AA 20) and KANSL1:ARL17B (patient
EA 5), which were the fusion genes most commonly predicted by fusion detection tools
in patients of African and European descent. Data generated by FusionCatcher were
used for creating all fusion plots as FusionCatcher was the tool that scored in the median
range in terms of prediction performance (i.e., a good balance between specificity and
sensitivity). The remaining plots for the fusions in Table 5 are presented as figures in the
Supplemental Materials (Figures S1–S8).
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Figure 6. (A) Overview of the NAIP:OCLN fusion gene found in patient AA 20. The plot displays the
locations on chromosome 5 of the fusion partner genes. (B) Overview of fusion KANSL1:ARL17B
for patient EA 5. The plot displays the locations on chromosome 17 of the fusion partner genes.
The plots display the locations on chromosome 5 and 17, respectively, of the fusion partner genes,
the number of discordant (split and spanning, respectively, in parentheses) reads supporting the
breakpoint indicated by the red line between partner genes, transcript information showing the exons
in each partner gene, and, lastly, the RNA expression of partner genes beside their genomic location
in Mb.

4. Discussion

Chromosomal rearrangements resulting in gene fusions are the most common genetic
alteration observed in cancer and our understanding of their relevance and function has
significantly grown since the introduction of next-generation sequencing [13,30]. Fusions
are defined as hybrid genes formed from merging component parts of two or more original
genes [31]. They have been linked with malignancy and drive the progression of a wide
range of cancers [31]. Fusion genes account for approximately 20% of cancer morbidity [32].
However, this rate significantly differs between cancers with many fusion genes specific to
subtypes of cancer [32]. This makes them suitable molecular targets for cancer therapeutics
because of their high specificity to cancerous cells [31]. Fusions are formed by genetic
abnormalities, the most prevalent of which is chromosomal rearrangements that lead to the
formation of novel fusion genes caused by chromosomal translocation, deletion, tandem
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duplications, or inversions [3,10,11,33]. This results in a hybrid product forming from the
two individual genes [11]. Originally, fusion genes were thought to be only formed through
chromosomal rearrangements; however, emerging evidence has suggested that chimeric
RNAs can imitate gene fusions when the analogous gene fusion is absent [34]. Chimeras
are formed from abnormal transcription caused by trans- and cis-splicing of pre-mRNAs,
which then guide genome rearrangement to form the corresponding gene fusion [34,35].
This discovery has opened a source for novel biomarker and therapeutic target discovery
efforts [35].

Cancer data from AA account for less than 12% of the Cancer Genome Atlas Portal
(TCGA) compared to 77% for EA [36]. In the USA, significant and persistent racial dispari-
ties in prostate cancer outcomes persist. Prostate cancer disproportionately affects AA men
in terms of incidence, morbidity, and mortality, even after adjustment for stage. AA men
have an elevated risk of developing prostate cancer and a higher mortality rate compared to
EA men. Although reduced access to and disconnect with the healthcare system contribute
to racial disparities in prostate cancer outcomes, underlying genetic factors intensify these
disparities. Thus, an understanding of the underlying biologic mechanisms is required to
develop strategies to overcome them [37–39]. This also highlights the need for large-scale
genomic and computational studies that encompass under-represented ethnic minority
groups [11,40].

The objective of this study was to undertake a computational biology approach to
uncover fusion genes in a cohort of patients that was previously assessed for differences
in gene expression patterns between AA and EA men [18]. The patient cohort consisted
of 10 AA and 17 EA men that underwent a prostatectomy. Fourteen of these subjects
received vitamin D3 supplementation (4000 IU/day) and 13 subjects received placebo for
two months before the surgery. Systems-level analysis indicated that AA men exhibited
higher expression of genes associated with immune response and inflammation.

Several fusion prediction tools were evaluated and considered before a final decision
was made on which were most appropriate for study of our patients. The selection criteria
involved the date the tool was developed, acceptance of the tool by the research community
based on the number of times the software was cited, whether the software was maintained
currently, and ease of installation. Programs that were considered but not used in this study
included SOAPfusion [41], INTEGRATE [42], EricScript [43], and FusionBloom [44]. SOAP-
fusion uses the SOAPfusion aligner, which is reported to accurately discover fusion genes
to a high sensitivity [41]. However, upon assessment we found that the software appears
deprecated at this point. INTEGRATE is a relatively recent tool that has high sensitivity and
precision compared to many other detection programs, making it an appealing choice [42].
However, it required the whole genome sequence of each patient, which was not available
for this study. EricScript uses a combination of four alignment processes and is successful
at being able to distinguish between true fusions and false positives and detecting chimeric
fusions to a resolution of 1 bp. Although it exploits the transcriptome as a reference to
reduce computational times [43], it also uses as input only paired-end data, and given the
heterogeneity of our patient data, with some only available as SE reads, use of this tool
was challenging. FusionBloom also appeared promising owing to its recent publication
and availability as UNIX Make software. FusionBloom performed favorably when com-
pared to STAR-Fusion with a low false positive rate for fusion predictions. However, after
inspection it required many dependencies and ease of install was one of our criteria for
program selection [44]. In summary, fusion gene prediction is a rapidly evolving field with
tools quickly becoming obsolete or requiring many software dependencies that can become
obsolete or generate IT security risks. Consequently, the choice of programs best suited to
analysis of this nature will continue to evolve.

The best known fusion genes associated with prostate cancer involve ETS transcription
factor family members and the androgen-regulated promotor TMPRSS2 (TMPRSS2:ERG,
TMPRSS2:ETV1, and TMPRSS2:ETV4) [45]. The ETS-related gene (ERG) is the most com-
mon fusion partner for TMPRSS2 with ETV1 and ETV4 only ever reported in a small
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number of cases [46]. TMPRSS2:ERG fusions are a common genomic alteration in prostate
cancer; however, variations in its incidence have been extensively observed. An 8% to 83%
prevalence rate has been documented in the literature. These wide variations are explained
by the origin of the tissue, laboratory techniques, and, of most interest, ethnic diversity [47].
The frequency of TMPRSS2:ERG fusions differ considerably by race. Men of European
descent are typically more likely to harbor this fusion in comparison to men of African
or Asian descent. A previous meta-analysis evaluating the prevalence of TMPRSS2:ERG
fusions by race identified that only 25% of men of African descent compared to 49% for
men of European ancestry had this fusion [47]. The literature suggests that TMPSS2-ERG
fusions are inversely correlated with more aggressive forms of PC [48]. Biological pathways
perturbed by this fusion are promising in the context of therapeutic target development;
however, as this fusion is biased toward men of European descent, this suggests that other
biological mechanisms are driving racial differences in PC [49].

Surprisingly, the TMPRSS2:ERG was not observed in any of our patient samples. We
utilized well-established prostate cancer cell-line RNA-seq data to provide both positive
and negative controls for benchmarking the fusion software. The cell lines VCaP and NCHI-
660 are well known to harbor the TMPRSS2:ERG rearrangement. PC3, LNCaP, DU145,
and 22RV1 are negative for TMPRSS2:ERG [50,51]. Research is limiting for PrECLH and
MDA-PCa-2B and prior to our study it was unknown if these cells harbor TMPRSS2:ETS.
We determined that they were negative for TMPRSS2:ETS. With TMPRSS2:ERG correctly
predicted in both positive TMPRSS2:ERG and negative TMPRSS2:ERG cell lines with
three of the fusion programs used in our pipeline, we conclude that TMPRSS2:ERG is absent
in our patient cohort. There is a wide range of documented TMPRSS2:ERG prevalence
recorded in literature, from ~8 to 83% [47]. The general consensus is that TMPRSS2:ERG is
more common in patients of European ancestry. In our cohort, we did not see it as more
prominent in our EA patients compared to AA patients.

Fusion genes as therapeutic targets in cancer treatment have been highly success-
ful [32]. Chronic myelogenous leukemia is characterized by presence of the BCR:ABL1
fusion and treated using imatinib mesylate (Gleevec) [52]. Our study reports several novel
fusion gene transcripts uncovered using four separate fusion gene discovery tools. Each of
the tools employs slightly different genome aligners and/or reference builds to identify
new fusion genes, resulting in different candidates being predicted by each program, as
well as variations in the numbers of overall fusion genes uncovered (Table 3).

STAR-Fusion exploits several genomic resources that are available as a downloadable
Genome Resource Lib. STAR the alignment tool aligns reads to a selected genome build,
and captures spilt and discordant aligned reads. To identify candidate gene pairs represent-
ing potential gene fusions, identified discordant and split reads are mapped to exons of
reference transcript annotations. Lastly, STAR-Fusion completes a series of filtering steps
to predict the most likely true fusions. Filtering criteria include the strength of alignment,
breakpoint proximity, and sequence similarity [53].

FusionCatcher completes several preprocessing quality steps before predicting fu-
sions. This eliminates the need to complete adapter trimming using software such as
Cutadapt or Trimmomatic. Preprocessing steps include: removing reads that contain
adapters and poly-A/C/G/T tails; trimming reads based on quality scores; eliminating
reads that align to ribosomal/transfer RNA, mitochondrial DNA, HLA genes and known
viruses/phases/bacterial genomes; and, finally, removing reads that were identified as low
quality by the Illumina sequencer [21]. FusionCatcher uses a combination of four aligners
(STAR, Bowtie, Bowtie2, and BLAT) individually to predict fusion genes. Fusion genes that
are predicted by all four methods are classified as candidate fusion genes [21].

ChimeraScan operates using Bowtie to align reads to a combined genome–transcriptome
reference. Reads that fail a primary alignment step are segmented and realigned to un-
cover discordant reads. ChimeraScan then clusters these discordant reads and generates
a list of putative 5′-3′ transcript pairs. Next, ChimeraScan completes junction alignment
with the identified putative chimeric junction sequences. ChimeraScan completes this
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by generating a new reference index from the putative chimeric junction sequences and
then realigning nominated candidate junction-spanning reads to the new reference index.
Finally, ChimeraScan completes filtering steps to eliminate false positive fusion genes [23].

JAFFA’s first step is to remove alignments that align to intronic or intergenic regions.
Next, sequences are transformed into a common form (tumor sequences) comprising either
the assembled contigs or the reads themselves. JAFFA then completes a series of fusion
detection steps consisting of aligning the tumor sequences to a reference transcriptome,
counting the number of reads that support the breakpoint, aligning candidate fusions to
a human genome, and narrowing the fusions based on a set criterion. Fusions that meet all
criteria are categorized as high-confidence fusions [22].

JAFFA and ChimeraScan uncovered the highest number of fusion genes. STAR-Fusion
identified the least number of fusion genes within each patient as well as the least diverse
gene fusions. This may be partly due to its ability to exclude fusion genes that contain
sequence-similar gene pairs and promiscuous fusion partners, or it could indicate a reduced
sensitivity and greater specificity of the program compared to the others, due to its rigorous
filtering steps [53].

Kumar et al. benchmarked the tools we used (except STAR-Fusion) by using positive,
negative, mixed, and test datasets, and ranked them based on percentage sensitivity, defined as
the number of true positives relative to total fusions, as follows: JAFFA (88%) > FusionCatcher
(66%) > Chimerascan (8%). Based on our experience using each of the tools using our data
and the model cell lines, our ranking is slightly different. We ranked our tools based on
their accuracy to detect the fusion TMPRSS2:ERG in each of the prostate cancer cell lines,
together with ease of use and the total time required. We considered the specificity of PE
and SE reads per tool. Regarding this, JAFFA was the most accessible for analyzing SE
reads. FusionCatcher and STAR-Fusion could analyze SE reads; however, the reads must
be greater than a certain length to provide enough analytical power to predict fusion genes.
ChimeraScan is incompatible with SE reads. Optimization is still required to enhance
fusion prediction tools. We initially evaluated each tool based on its ability to correctly
predict TMPRSS2:ERG in positive- and negative-control cell lines. We thus ranked the
tools as follows: 1—STAR-Fusion, 2—FusionCatcher, 3—JAFFA, and 4—ChimeraScan. All
three tools (STAR-Fusion, FusionCatcher, JAFFA) correctly predicted TMPRSS2:ERG in
positive and negative controls; however, STAR-Fusion significantly outperformed Fusion-
Catcher and JAFFA in terms of sensitivity. STAR-Fusion also performed on average more
efficiently. All programs output the names of the two genes involved in the fusion event
together with the chromosomal locations. Of the programs utilized, JAFFA was the only
one to provide a confidence level for the predicted gene fusions, allowing further filtering
to be undertaken by removing low-confidence predictions. For fusions to be classified as
high confidence, certain conditions must be met, including having one or more spanning
reads and pairs, breakpoints aligning to exon boundaries, and evidence of a rearrangement
genomic gap greater than 200 kb [22]. Both FusionCatcher and JAFFA utilize more than
one alignment tool. This increased the accuracy of the alignment and fusion break-point
detection and may explain why these programs detected more fusion genes than STAR-
Fusion [54]. JAFFA was the only tool that was able to predict fusions using SE50 samples.
STAR-Fusion and FusionCatcher analyze SE reads; however, the reads must be at least 100
and 130 bases long, respectively. Reads less than the recommended length impacted the
ability to predict fusions.

Of the gene fusions found with these fusion detection programs, a few stand out for
future study, particularly those commonly detected with at least three of the four tools and
those identified in multiple patients of the same race. Fusions were cross-checked with
existing fusion databases including the Mitelman Database of Chromosome Aberrations
and TumorFusions.org to determine if they are novel or have already been associated
with cancer [27,28]. There were no previous descriptions for the fusions NAIP:OCLN,
PDE1C:DNAJC6, KANSL1:ARL17B, FOXP2:CREM, and AHSA1:DLG3 in the context of
prostate cancer. NAIP:OCLN has been previously described as an NAIP->OCLN promoter
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swap and associated with ectopic rearrangements contributing to evolutionary/genomic
instability in humans. [55,56].

Our results show that there were many more fusion genes predicted for AA men
compared to the EA men, even with fewer AA patients in our cohort. This emphasizes the
high prevalence of predicted fusion genes within men of African descent. FusionCatcher,
JAFFA, and Chimerscan all outputted the fusion gene NAIP:OCLN. This fusion was shared
in three AA patients (Patient IDs AA20, AA22, and AA24) and one EA patient (ID EA15)
(Supplemental Table S5). NLR family apoptosis inhibitory protein (NAIP) is a gene that is
part of a 500 kb inverted duplication located on chromosome 5q13. Chromosome 5 is one of
the largest chromosomes, yet it has a low gene density due to the presence of a high number
of noncoding gene regions. Chromosome 5 is susceptible to rearrangements, deletions,
and duplications. Deletion of this chromosome is common in PC and correlates with more
aggressive disease [57]. This genetic alteration has also been observed with poor prognosis
in chronic myelogenous leukemia [58]. Additionally, 5q13 lesions have been identified as
a molecular target for increased risk in lung cancer [59] and are a common anomaly in
breast cancer patients harboring BRCA1 mutations [60]. Significant upregulation of NAIP in
response to androgen deprivation therapy has been identified, suggesting it may have the
ability to enhance survival of PC following androgen deprivation therapy [61]. Occludin
(OCLN) encodes a main component of tight junctions and is involved in several cellular
functions, with dysregulation in its function leading to neurological disorders [62,63]. Both
NAIP and OCLN are upregulated 7.9-fold and 4.3-fold, respectively, in AA relative to
EA (q = 1 × 10−6) [18]. The fusion of NAIP and OCLN was described previously by Micci
et al., in endometrial stroma sarcoma [64] and by Iwakawa et al., in lung cancer cells [65];
however, this study is the first to report this gene fusion in prostate cancer.

PDE1C:DNAJC6 was also detected by JAFFA, FusionCatcher, and ChimeraScan in
one AA patient (ID 24) (Supplemental Table S5). This fusion has previously been detected
in thyroid cancer [66]. DNAJ heat shock protein family (Hsp40) member C6 (DNAJC6)
is involved in the regulation of molecular chaperone activity through the stimulation of
ATPase activity and is associated with Parkinson’s disease [67]. Phosphodiesterase 1C
(PDE1C) encodes an enzyme that regulates proliferation and migration of vascular smooth
muscle cells [68]. The group of phosphodiesterases (PDEs) regulates cyclic AMP and cyclic
GMP. Variants in PDE genes have been linked with prostate cancer predisposition and
progression [69].

AHSA1:DLG3 was uncovered using three of the programs: STAR-Fusion, Fusion-
Catcher, and JAFFA, in one EA patient (ID 15). AHSA1 (activator of HSP90ATPase activity 1)
is a gene involved in cell growth and proliferation, and migration and invasion through
the Wnt/beta-catenin signaling pathway. It acts as a regulator of HSP90, and its activation
by AHSA1 influences the metabolism of androgen in prostate cancer [70,71]. DLG3 (discs
large MAGUK scaffold protein 3) is upregulated in breast and ovarian carcinomas and
downregulated in esophageal and papillary thyroid carcinoma [72].

MYH11:THBS1 was found in one AA patient (ID 18) using STAR-Fusion, Fusion-
Catcher, and JAFFA (Supplemental Table S5). Thrombospondin 1 (THBS1) encodes a pro-
tein that is a subunit of a homotrimeric protein that mediates cell-to-cell and cell-to-matrix
interactions [73]. The decreased expression of THBS1 has previously been seen in some
human tumors, and its expression can be regulated by the tumor suppressor gene p53 [74].
Myosin heavy chain 11 (MYH11) encodes smooth muscle myosin heavy chain 11 protein,
involved in transporting materials between and within cells.

KANSL1:ARL17B was predicted by FusionCatcher, JAFFA, and ChimeraScan in EA
patients (ID EA5, EA6, and EA15) (Supplemental Table S5). KAT8 regulatory NSL complex
subunit 1(KANSL1) encodes a protein that regulates gene expression through the modifi-
cation of chromatin, playing a major role in the development of many body tissues [75].
ADP-ribosylation factor-like GTPase 17B (ARL17B) is involved in protein trafficking by
modulating vesicle budding in the Golgi apparatus [76]. The fusion of KANSL1 and ARL17B
has been seen in leukemia [77] and in normal karyotype chronic myelogenous leukemia by
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Wen et al. (2012), where it is referred to as KIAA1267-ARL17 but has not previously been
observed in prostate cancer [78]. KANSL1:ARL17A was found by FusionCatcher, JAFFA,
and ChimeraScan. ARL17A (ADP-ribosylation factor-like GTPase 17A) and its fusion with
KANSL1 has previously been seen within a cohort of patients with relapsing malignancies
and is predicted to predispose a patient to cancer as it is linked to histone acetylation, but it
has not yet been associated directly with prostate cancer [79].

The FOXP2:CREM gene fusion was detected by FusionCatcher, JAFFA, and ChimeraS-
can in one EA patient (ID 1) (Supplemental Table S5). Forkhead box p2 (FOXP2) is involved
in the production of a transcription factor protein that regulates the activity of other
genes [80]. Its dysregulation is thought to be involved in cancer progression as its aberrant
expression has been seen in various cancer types, either downregulated or upregulated [81].
CAMP responsive element modulator (CREM) is a gene that also encodes a transcription
factor that helps to regulate the response to CAMP pathways, which can be mediators of
cellular proliferation [82]. The fusion of FOXP2 and CREM is novel and has not yet been
associated with prostate cancer.

5. Conclusions

The goal of this study was to exploit computational biology approaches to predict
novel fusion genes and analyze these in the context of prostate cancer, especially as it relates
to differences between EA and AA men. With this objective in mind, we interrogated the
prostate transcriptome using prostate tissue specimens obtained at surgery from prostate
cancer patients and assessed the samples for the presence of novel fusion genes using four
different tools. We discovered that the predicted fusion gene burden is almost three times
higher in AA patients compared to EA. A previous study investigating the burden of
observed genomic alterations in the context of genetic ancestry (AA vs. EA) in PC observed
the total number of identified fusion genes did not significantly differ based on ethnicity
(p = 0.59) [17]. Thus, further predictive computational studies are required to characterize
the prostate cancer fusion gene transcriptome.

The underlying genetic elements behind cancer differ between patients, meaning their
responses to generic treatments will vary. Precision medicine is an expanding field of cancer
treatment and diagnosis, aiming to identify those at higher risk of cancer development [83].
The continued development of fusion gene detection pipelines has enabled an expansion
in fusion gene discoveries with higher accuracy and shorter computing times. These
fusion discoveries have the potential to improve cancer diagnosis, prognosis, and guide
therapeutic development. As the fusions above were found by more than one of the
computational approaches tested, it is likely that these are significant in the context of
prostate cancer biology in AA patients. Future work will assess whether these gene fusions
are drivers of cancer progression or passenger mutations. Gene ablation studies are required
to assess whether these fusion genes in prostate cell lines of AA origin influence growth
and development of prostate cells.

The limitations of this study are the small sample size and the lack of germline genomic
data from these individuals. Although the dataset was from a relatively small sample of
patients, its high-quality, depth of sequencing, and representation of a patient group under-
represented in genomic studies make it a unique resource and allowed us to develop
a framework for fusion gene predictions. The fact that many of these fusions were not
described previously from genome sequencing efforts suggests that these somatic fusion
gene mutations may be relevant in the context of prostate cancer disparities.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology11050625/s1, Figure S1: Overview of fusion NAIP:OCLN
for African American patient 22; Figure S2: Overview of fusion NAIP:OCLN for African American
patient 24; Figure S3: Overview of fusion NAIP:OCLN for European American patient 15; Figure S4:
Overview of fusion PDE1C:DNAJC6 for African American patient 24; Figure S5: Overview of fusion
KANSL1:ARL17B for European American patient 6; Figure S6: Overview of fusion KANSL1:ARL17B
for European American patient 15; Figure S7: Overview of fusion FOXP2:CREM for European

https://www.mdpi.com/article/10.3390/biology11050625/s1
https://www.mdpi.com/article/10.3390/biology11050625/s1


Biology 2022, 11, 625 17 of 20

American patient 1.; Figure S8: Overview of fusion FOXP2:CREM for European American patient 1.;
Table S1: Patients IDs, demographic and clinical information; Table S2: Summary of model cell lines;
Table S3: Cell line results organized by tool; Table S4: Predicted fusions detected by each of the four
programs, STAR-Fusion, FusionCatcher, JAFFA and ChimeraScan respectively; Table S5: Summary of
predicted fusion genes; Table S6: Racial differences in predicted fusion genes in in African American
and European American men; Table S7: Shared fusions across EA patients using the fusion prediction
tools.; Table S8: Shared fusions across AA patients using the fusion prediction tools.
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