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Lung cancers and malignant pleural mesothelioma (MPM) have some of the worst 5-
year survival rates of all cancer types, primarily due to a lack of effective treatment
options for most patients. Targeted therapies have shown some promise in thoracic
cancers, although efficacy is limited only to patients harboring specific mutations or
target expression. Although a number of actionable mutations have now been identified,
a large population of thoracic cancer patients have no therapeutic options outside of
first-line chemotherapy. It is therefore crucial to identify alternative targets that might
lead to the development of new ways of treating patients diagnosed with these diseases.
The multifunctional oncoprotein Y-box binding protein-1 (YB-1) could serve as one such
target. Recent studies also link this protein to many inherent behaviors of thoracic cancer
cells such as proliferation, invasion, metastasis and involvement in cancer stem-like
cells. Here, we review the regulation of YB-1 at the transcriptional, translational, post-
translational and sub-cellular levels in thoracic cancer and discuss its potential use as a
biomarker and therapeutic target.

Keywords: lung cancer, mesothelioma, targeted therapy, biomarker, Y-box binding protein-1

INTRODUCTION

Lung cancers are the leading cause of cancer death worldwide (Islami et al., 2015; Kris et al., 2017),
and malignant pleural mesothelioma patients continue to experience some of the worst 5-year
survival rates of all malignancies (Mutti et al., 2018). Therefore, advances in therapeutic options
are urgently needed and require a more thorough understanding of the underlying biology of both.

While SCLC represents ∼15–20% of all lung cancers, NSCLC represent the majority of cases
(∼80–85%). NSCLC are further subtyped into adenocarcinomas (ADC; ∼40–50% of NSCLC),
squamous cell carcinomas (SCC; ∼20–40%) and large cell carcinomas (LGC; ∼20%). Whilst all
of these carcinomas are significantly associated with tobacco consumption, this association is much
stronger in SCLC and SCC than in ADC and LGC (Khuder, 2001).
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Malignant pleural mesothelioma arises from the pleural
linings of the lung and is strongly linked to asbestos exposure
(Tossavainen, 2004). MPM is currently subtyped as epithelioid,
sarcomatoid or biphasic, which are characterized by a mixture
of epithelioid and sarcomatoid cells (Marshall et al., 2015). At
times, this review refers to lung cancer and mesothelioma as
“thoracic cancers,” although we acknowledge that this term also
encompasses tumors of the trachea, esophagus and thymus.

The current clinical practice guidelines for NSCLC, SCLC, and
MPM all recommend the use of platinum-based chemotherapy
in combination with other agents as the standard mode of
care (Vogelzang et al., 2003; Rudin et al., 2016; Bradbury
et al., 2017; Kris et al., 2017; Nagasaka and Gadgeel, 2018;
Szolkowska et al., 2018). Diagnosis in the early stages of
NSCLC affords better survival odds, however, the majority
of patients are diagnosed with advanced disease (Kris et al.,
2017; Visconti et al., 2017). Such individuals face a 5-year
survival rate of only 23% and treatment options are often
limited to chemotherapy (Kris et al., 2017). SCLC patients
face similarly poor survival odds. Patients usually respond
initially to platinum-based chemotherapy but inevitably develop

Abbreviations: 1NP63α, Isoform p63α – protein isoform of p63; ADC, lung
adenocarcinoma; AKT, lrotein kinase B; ALK, anaplastic lymphoma kinase; APE1,
apurinic/apyrimidinic endonuclease 1; BAP1, BRCA associated protein-1; Bcl-
2, B-cell lymphoma 2; BER, base-excision repair; BMP7, bone morphogenetic
protein 7; BRAF, proto-oncogene B-Raf; C1QBP, complement component 1 Q
subcomponent-binding protein; CAR10, CAR intergenic 10; CCND1, cyclin D1;
CDC25A, M-phase inducer phosphatase 1; CDKN2A, cyclin-dependent kinase
inhibitor 2A; COPD, chronic obstructive pulmonary disease; CRS, cytoplasmic
retention signal; CSC, cancer stem-like cell; CSD, cold shock domain; CTD,
C-terminal domain; DANCR, differentiation antagonizing non-protein coding
RNA; E/M, hybrid epithelial/mesenchymal state; EGF, epidermal growth factor;
EGFR, epidermal growth factor receptor; EMT, epithelial-mesenchymal transition;
EPO, human erythropoietin; EZH2, enhancer of zeste homolog 2; FGFR1,
fibroblast growth factor receptor 1; FOXO3a, forkhead box O3; G3BP1, Ras
GTPase-activating protein-binding protein-1; GAS5, growth arrest specific 5;
HACE1, HECT domain and ankyrin repeat containing E3 ubiquitin protein
ligase 1; HER2, human epidermal growth factor receptor 2; HIF1α, Hypoxia-
inducible factor 1-α; HMGB1, high mobility group box 1 protein; HULC,
highly up-regulated in liver cancer; LGC, large cell carcinoma; LINC00312,
long intergenic non-protein coding RNA 312; LMO3, LIM domain only protein
3; lncRNA, long non-coding RNA; LRP/MVP, lung resistance protein/major
vault protein; MAPK/ERK, Mitogen-activated protein kinase/extracellular-signal-
regulated kinase; MDCK, Madin-Darby canine kidney cell; MDR1, multi-drug
resistance 1; MET, tyrosine-protein kinase Met; MIR22HG, MIR22 host gene;
miRNA, microRNA; MPM, malignant pleural mesothelioma; MRP1, multidrug
resistance-associated protein 1; mTOR, mammalian target of rapamycin; NANOG,
homeobox protein NANOG; ncRNA, non-coding RNA; NEIL1, nei like DNA
glycosylase 1; NER, nuclear excision repair; NF2, neurofibromatosis type 2; NLS,
nuclear localization signal; Notch1/NOTCH1, notch homolog 1; Notch3, notch
receptor 3; NSCLC, non-small cell lung cancer; nt, nucleotide; Oct4, octamer-
binding transcription factor 4; OGT, O-linked N-acetylglucosamine transferase;
PABP, Poly(A)-binding protein; PARP1, Poly(ADP-ribose) polymerase 1; PARP2,
Poly(ADP-ribose) polymerase 2; PCNA, proliferating cell nuclear antigen;
PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit α;
RBBP6, retinoblastoma binding protein 6; RSK p90, ribosomal S6 kinase; SAHA,
suberoylanilide hydroxamic acid; SCC, lung squamous carcinoma; SCLC,small cell
lung cancer; SETD2, SET domain containing 2; SILAC, stable isotope labeling
with amino acids in cell culture; siRNA, small interfering RNA; Snail, Zinc finger
protein SNAI1; SOX2, sex determining region Y-box 2; SPHK1, sphingosine kinase
1; SRC3, steroid receptor co-activator 3; ssDNA, single-stranded DNA; TCGA,
The Cancer Genome Atlas; TGFβ1, transforming growth factor β1; TP53/p53,
tumor protein 53; TP53TG1, TP53 target 1; Twist1, Twist-related protein 1;
XPC, xeroderma pigmentosum; YB-1, Y-box binding protein-1; YB-1/p18, 18 kDa
fragment of YB-1.

chemoresistant tumors (Rudin et al., 2016). Overall survival rates
of SCLC patients currently sit at 10–12 months post diagnosis
(Rudin et al., 2016). In MPM, the standard of care consists
of a combination of cisplatin with pemetrexed, providing an
overall survival rate of only 12.1 months (Vogelzang et al.,
2003; Mutti et al., 2018). Epithelioid mesotheliomas present
with the best prognosis, with the median overall survival being
between 12 and 27 months (Yap et al., 2017). Patients with
biphasic mesothelioma have median overall survival rates of 7–
18 months, while sarcomatoid patients are afforded the worst
prognosis of 4–12 months (Yap et al., 2017). Recent trials of
immunotherapy strategies, such as the anti-PD-1 checkpoint
inhibitors pembrolizumab and nivolumab, have shown promise
as first-line and second-line therapies in some thoracic cancers
(Visconti et al., 2017; Forde et al., 2019). However, response
to immunotherapy is unpredictable due to a lack of robust
biomarkers, so predicating which patients will respond is not
yet possible (Ventola, 2017). Acquired resistance to these drugs
also remains a significant problem (Ventola, 2017). Improved
treatment options for patients suffering malignancies of the lung
and mesothelial linings are therefore still desperately needed.

Toward Personalized Therapy for
Thoracic Cancer Patients
The development of next-generation sequencing has fostered a
deeper understanding of the molecular drivers and mutational
landscape of thoracic cancers. Multi-region whole-exome
sequencing of 100 early stage NSCLC patients demonstrated
that clonal alterations of oncogenes such as the growth receptor
EGFR and the kinases MET, and BRAF were commonly found
in ADC (Jamal-Hanjani et al., 2017). These were accompanied
by sub-clonal modifications of the oncogene PIK3CA and the
tumor suppressor neurofibromin 1 (Jamal-Hanjani et al., 2017).
Alterations of PIK3CA, the transmembrane receptor NOTCH1,
growth factor receptor FGFR1 and transcription factor SOX2
were also observed in early SCC (Jamal-Hanjani et al., 2017).
TP53 or p53 mutations were frequent clonal events in both
subtypes, while oncogenic ALK translocations were not observed
in any tumors (Jamal-Hanjani et al., 2017).

As for MPM, next-generation sequencing of 216 MPM
patients showed that the tumor suppressors BAP1, NF2, and
SETD2 were significantly mutated through gene fusions and
splicing alterations (Bueno et al., 2015). CDKN2A, which encodes
the tumor suppressor p16INK4a, is also frequently deleted in
up to 75–90% of MPM cases (Ladanyi, 2005; Sementino et al.,
2018). Data from TCGA reflects the above findings, apart from
ALK alterations in ADC, which were present in 7% of cases
(Figures 1A–C). An important distinction must between lung
cancer and MPM is that lung cancers are generally characterized
by an increase in oncogenic drivers, while MPM appears to be
more commonly defined by loss of tumor suppressors (Ladanyi,
2005; Bueno et al., 2015; Jamal-Hanjani et al., 2017; Figure 1C).
This makes identifying new therapeutic targets in MPM more
challenging. Apart from bevacizumab, which targets vascular
endothelial growth factor A, no targeted therapies are currently
available to MPM patients (Brosseau et al., 2017).
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FIGURE 1 | YB-1 is altered in NSCLC (ADC and SCC) and MPM patients and high YBX1 mRNA expression correlates with poor prognosis in both diseases.
Reported alteration frequencies of YBX1 and commonly altered genes in current TCGA Provisional datasets for all complete tumors with RNASeq V2 RSEM mRNA
and RPPA protein Expression for (A) Lung Adenocarcinoma (ADC; n = 584), (B) Lung Squamous Cell Carcinoma (SCC; n = 511) and (C) Mesothelioma (MPM;
n = 87). Panels (A–C) were adapted from the open-source platform cBioPortal for Cancer Genomics (cBioPortal.org). (D) High YBX1 expression correlates with poor
prognosis in NSCLC patients (p = 1.5 × 10−10). Kaplan-Meir plot of 1,926 NSCLC patients generated using Lung Cancer KM plotter. Univariate analysis with probe
set 20862_s_at (YBX1) using auto-selected cutoff and excluded biased arrays. (E) High YBX1 expression correlates with poor prognosis in MPM patients
(p = 8.6 × 10−3). Kaplan-Meir plot was generated using PROGgene V2 with the TCGA mesothelioma dataset (n = 83) using “DEATH” as the survival measure and
median as the cutoff.

The story for SCLC patients is similar with no breakthrough
changes in treatment in over 25 years despite decades of research.
The only exception to this is the approval of topotecan as a
second-line therapy (Hirsch et al., 2017), and immunotherapy,
which has shown some promise in Phase I/II trials in PD-L1
positive relapsed SCLC patients (Ott et al., 2015). Unfortunately,

immunotherapy success has been limited by rapid disease
progression, which can result in patient death before an effective
anti-tumor response has time to occur (3–6 months), and
severe immuno-related toxicities (encephalitis or myasthenia
gravis) that are already highly associated with SCLC (Oronsky
et al., 2017). Other drugs such as PARP inhibitors and
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transcription inhibitors have shown some preclinical promise,
but have yet to translate into clinical benefits for SCLC patients
(Oronsky et al., 2017).

For NSCLC, targeted therapies have provided promising,
albeit limited, results. The best known of these are the EGFR
tyrosine kinase inhibitors such as erlotinib and osimertinib,
which have proved effective for EGFR mutant ADC tumors
(Hirsch et al., 2017; Winther-Larsen et al., 2019). In the
ADC TCGA dataset, 21% of patients had EGFR alterations
(Figure 1A), although the occurrence of EGFR mutations can
vary between populations in ADC and NSCLC as a whole. For
example, while EGFR mutation can occur in up to 40% of all
NSCLC patients of Asian descent, the frequency of mutation in
non-Asian NSCLC populations drops to 10–20% (Hirsch et al.,
2017). Another problem is that response to EGFR inhibitors is
almost always followed by the emergence of resistance (Hirsch
et al., 2017). ALK inhibitors are similarly effective in patients
harboring ALK translocations (Hirsch et al., 2017), present in 2%
of all NSCLC patients (Hirsch et al., 2017). Alterations of ALK in
ADC tumors specifically is found in up to 7% of cases, according
to TCGA data (Figure 1A). Inhibitors targeting BRAF mutant
tumors (3–5% of lung cancers), MET overexpressing tumors (3–
4% of ADC cases) and tumors harboring RET fusion proteins
(1–2% of NSCLC) are also currently undergoing preclinical and
clinical studies (Hirsch et al., 2017). The remaining majority of
patients with ADC have no known actionable targets.

Patients with SCC have even fewer options with only∼13% of
SCC tumors reported to harbor at least one currently actionable
alteration (Lindquist et al., 2017). There is no subset of patients
known to benefit from targeted drugs at the moment, although
there is some benefit from immunotherapy (Hirsch et al.,
2017; Friedlaender et al., 2019). TP53 mutations are a common
alteration in SCC patients (33%; Figure 1B), however, existing
targeted TP53 treatments have proven ineffective (Friedlaender
et al., 2019). PIK3CA is also frequently altered in thoracic cancer,
particularly in SCC (Friedlaender et al., 2019) (71%; Figure 1B),
indicating that it may have significance as a therapeutic target.
However, despite promising preclinical studies of PIK3CA
inhibitors, the benefit of these drugs appears to be negligible in
trials with NSCLC patients (Friedlaender et al., 2019). This has
also been the case in other cancers where, generally, patients show
limited response and many experience prohibitive toxicity (Janku
et al., 2018). This pathway mediates a multitude of downstream
effects, which may attest to the observed relative ineffectiveness of
PIK3CA inhibitors in lung cancer. FGFR1 amplification occurs in
20–25% of SCC cases (Friedlaender et al., 2019; Figure 1B), but
again, targeting it in the clinic has provided limited efficacy and
its potential as a viable target remains under contention (Hirsch
et al., 2017; Friedlaender et al., 2019). There are a few targets
that have been the focus of preclinical studies showing promising
results, such as the transcription factor SOX2. SOX2 is involved
in cell lineage-survival (Friedlaender et al., 2019) and is often
upregulated in SCC (Karachaliou et al., 2013; Friedlaender et al.,
2019) (60%; Figure 1B), as well as SCLC (Rudin et al., 2012;
Karachaliou et al., 2013) and to a lesser degree ADC (Karachaliou
et al., 2013). Finding such targets and translating them to the
clinic is essential to improve outcomes for patients with SCC.

The heterogeneity of thoracic cancer biology makes finding
clinically relevant therapeutic targets inherently difficult.
Identifying other penetrant driver events in thoracic cancers may
uncover alternative targets, which could yield more therapeutic
options for patients down the line. One such potential target
is YB-1. YB-1 is downstream of the commonly dysregulated
PI3K-AKT-mTOR pathway, so targeting it may refine the
effects of inhibiting this signal cascade. Thus, anti-YB-1 agents
may provide more tumor-specific results than their upstream-
targeting counterparts, such as PIK3CA inhibitors (Janku
et al., 2018). Adding to this, YB-1 upregulates PIK3CA at the
transcriptional level in breast cancer (Astanehe et al., 2009). This
implies that YB-1 may be involved in a feed-forward loop with
the PI3K-AKT pathway and that targeting it could be an effective
strategy in tumors with heightened PIK3CA, such as SCC. YB-1
is also upstream of SOX2 (Jung et al., 2014) and a host of other
oncogenic drivers (Lasham et al., 2013), so the downstream
effects of YB-1 inhibition may still be broad enough to make it
an interesting candidate. This review therefore outlines recent
literature focusing on YB-1 in cancer and makes the case for
its possible use as a biomarker and future therapeutic target in
thoracic malignancies.

Y-Box Binding Protein-1 in Thoracic
Cancers: An Overlooked Target?
Y-box binding protein-1, encoded by the YBX1 gene, is a
multifunctional oncoprotein involved in many hallmarks of
cancer development including driving proliferation, invasion and
metastasis, CSC biology, resistance to chemotherapy, hypoxic
response, DNA repair and exosomal sorting. Despite these links
YB-1 has received limited attention as a therapeutic target or
biomarker in oncology (Lasham et al., 2013). Although mutations
of YBX1 are rare [∼1% in all cancers types (Cerami et al., 2012;
Gao et al., 2013)], overexpression of YB-1 is found in a wide range
of cancers and is often associated with poor prognosis (Lasham
et al., 2013), including NSCLC and MPM. Analysis of TCGA data
shows that elevated YBX1 expression was highly prognostic in a
cohort of 1,926 NSCLC patients (Győrffy et al., 2013; Figure 1D)
and in 83 mesothelioma patients (Goswami and Nakshatri, 2014;
Figure 1E). This supports the results of a recent meta-analysis
of data from 692 NSCLC patients which found that high YB-
1 protein expression significantly correlated with poorer overall
survival and clinicopathological features (Jiang et al., 2017). YB-
1 is overexpressed in mesothelioma compared to non-malignant
mesothelial cells in vitro (Johnson et al., 2018) and a small
study of 33 MPM patients showed a trend toward higher YB-1
expression in sarcomatoid MPM tumors, which are associated
with shorter survival (Iwanami et al., 2014). Unfortunately,
TCGA data is currently not available for SCLC, likely because
surgically resected tissue specimens are relatively rare (Byers and
Rudin, 2015) and, to our knowledge, a prognostic study on YB-1
expression in SCLC is yet to be conducted.

In the above datasets, alterations were seen in 12, 11, and 8% in
ADC, SCC, and MPM, respectively, and mRNA upregulation was
predominant (Figures 1A–C). While only PIK3CA and SOX2
were significantly co-expressed in the SCC dataset (q < 0.001;
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Figure 1B), notably, this analysis did not show YBX1 alteration to
be significantly associated with the current targetable oncogenes
ALK, BRAF or EGFR in ADC (Figure 1A), despite there being a
small proportion of tumors that had elevated levels of both YBX1
and EGFR. This suggests that YB-1 deregulation may represent a
unique subpopulation of patients that may not have a targetable
mutation. This combined with the prognostic significance of YB-
1 in NSCLC and MPM, suggests that YB-1 may be a clinically
relevant target worthy of further investigation.

YB-1: A MALIGNANT JACK OF ALL
TRADES

A Driver of Malignant Phenotypes
Y-box binding protein-1 was first discovered as a negative
transcriptional factor of major histocompatibility complex Class
II where it binds to the Y-box (5′-CTGATTGG-3′) (Didier et al.,
1988). Further investigation found that YB-1 stimulated the
transcription of a wide variety of genes, including important
oncogenes such as EGFR and HER2 (Lasham et al., 2013). YB-
1 is a part of the cold-shock protein superfamily and contains a
conserved nucleic acid binding region termed the CSD (Wolffe
et al., 1992; Figure 3). Along with the CSD, YB-1 is comprised
of two other highly disordered domains, the alanine/proline rich
variable N–terminal domain and the C–terminal domain (CTD),
each facilitating different biological interactions (Lyabin et al.,
2014; Suresh et al., 2018). This versatility affords YB-1 a range of
functions including transcriptional regulation, DNA repair and
pre-mRNA splicing (Lyabin et al., 2014). YB-1 is also a major
component of messenger ribonucleoprotein complexes and is
integrally involved in mRNA stabilization and the translational
activation or repression of many genes (Suresh et al., 2018).
This assortment of functions manifest themselves in an equally
broad spectrum of biological roles in cancer (Lasham et al.,
2013; Lyabin et al., 2014). The general cancer-related activities
of YB-1 have been previously reviewed (Lasham et al., 2013;
Kosnopfel et al., 2014; Lyabin et al., 2014) and therefore we
will primarily focus on recent publications on the role of YB-
1 specifically in lung cancer and MPM here. The evidence
supporting each phenotype driven by YB-1 and the relevant
interaction partners for the following sections is summarized
in Table 1.

A Promoter of Cell Proliferation and Cell
Cycle Progression
The proliferative role of YB-1 in cancer has been demonstrated in
many malignancies, driven by its regulation of highly penetrant
downstream oncogenic growth promoting genes (Lasham et al.,
2013). A prime example is the transcriptional activation of EGFR
by YB-1. A study of 105 NSCLC samples showed that YB-1 and
EGFR were significantly co-expressed and knockdown of YB-1 in
two NSCLC cell lines resulted in reduction of EGFR (Hyogotani
et al., 2012). Similar results have also been observed in basal-
like breast cancer and spinal chordoma (Stratford et al., 2007;
Liang et al., 2019). Notably, overexpression of EGFR in lung

cancer and mesothelioma promotes cell growth, invasion and
angiogenesis (Ciardiello et al., 2004; Destro et al., 2006). Several
cell cycle regulators are also under YB-1 control, including the
E2F family. YB-1 specifically binds to the promoter of cell cycle
activators transcription factor E2F1 and transcription factor E2F2
and YB-1 knockdown reduced cell proliferation of a NSCLC
cell line in vitro and in vivo (Lasham et al., 2011). In NSCLC
cells, YB-1 transcriptionally activates CCND1 a protein critical
for progression through the G1 phase (Harada et al., 2014). YB-
1 also binds to and activates the promoter of the dual specific
phosphatase CDC25A, driving G1/S cell cycle progression (Zhao
et al., 2016). These studies demonstrate the important role of YB-
1 by showing that its knockdown with siRNA induces G0/G1
cell cycle arrest in vitro and in vivo (Harada et al., 2014; Zhao
et al., 2016). Similarly, we have also shown that targeting YB-
1 with siRNA can inhibit the growth of MPM cells in vitro
(Johnson et al., 2018).

Y-box binding protein-1-driven proliferation may require
a region within its N–terminal domain. Breast cancer cells
overexpressing a YB-1 CTD fragment (from amino acid 125
onward) exhibited proliferation inhibition in vitro and in vivo
(Shi et al., 2016). It is possible that the removal of Ser102,
a site commonly phosphorylated and associated with growth
(discussed further in section “Post-Translational Modification in
the Control of YB-1 Activity and Localization”), could explain the
lack of growth promotion here. However, as growth was actively
inhibited in response to the upregulation of the YB-1 CTD, this
could also suggest that YB-1, or certain regions of it, may inhibit
proliferation under specific gene dosages or biological contexts.
For example, YB-1 overexpression in Ras-MAPK activated breast
cancer cells led to YB-1-mediated translational repression of
growth-promoting genes, lowering proliferation rates. This was
accompanied by the induction of EMT-like changes which
promoted migration, invasion and allowed cells to survive in
anchorage-independent conditions (Evdokimova et al., 2009b).
This suggests that YB-1 expression levels determine its function,
driving either a proliferative or invasive phenotype.

YB-1 Is a Central Player in EMT, Invasion
and Metastasis
Invasion and metastasis are key behaviors of lung cancer and
mesothelioma cells that contribute to patient death and the
poor prognosis observed with these tumors. YB-1 is known
to play a role in the migration of thoracic cancer cells. Stable
overexpression of YB-1 in lung ADC cells induced E-cadherin
downregulation, N-cadherin upregulation, accelerated TGFβ1-
induced EMT and cell migration (Ha et al., 2015). In support,
silencing YB-1 inhibited the invasion and metastasis of lung
cancer cells in vitro and in vivo (Guo et al., 2017). YB-1
overexpression also significantly increased the invasive capacity
of these cells in vitro (Guo et al., 2017). Similarly, knockdown
of YB-1 inhibited lung cancer migration (Zhao et al., 2016) and
MPM migration and invasion (Johnson et al., 2018) in vitro.
YB-1 has also been implicated in the migration and invasion
of breast cancer (Lim et al., 2017), melanoma (Jia et al., 2017),
nasopharyngeal cancer (Zhou et al., 2017b), skin squamous
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TABLE 1 | Roles and interaction partners of YB-1 related to thoracic cancer biology.

Phenotype Role in thoracic cancer behavior Targets or interactions Other cancers/evidence

Proliferation and cell cycle
progression

Knockdown induces growth inhibition
of NSCLC (Harada et al., 2014; Zhao
et al., 2016) and MPM (Johnson et al.,
2018)

Transcriptional regulation of EGFR
(Hyogotani et al., 2012), E2F family
members (Lasham et al., 2011),
CCND1 (Harada et al., 2014) and
CDC25A (Zhao et al., 2016)

Basal-like breast cancer (Stratford
et al., 2007) spinal chordoma (Liang
et al., 2019)

Migration, EMT, invasion and
metastasis

Overexpression in lung ADC promotes
E- to N-cadherin shift, EMT and
migration (Ha et al., 2015)
Knockdown inhibits invasion and
metastasis of lung cancer cells (Zhao
et al., 2016; Guo et al., 2017)
Knockdown inhibits migration and
invasion of MPM cells (Johnson et al.,
2018)

Translational activation of SNAI1
(Evdokimova et al., 2009a,b)
Involvement in E/M related Wnt
signaling – β-catenin (Chao et al., 2017)

Breast cancer (Lim et al., 2017),
melanoma (Jia et al., 2017),
nasopharyngeal cancer (Zhou et al.,
2017b), skin squamous cell carcinoma
(Wang W. et al., 2017) spinal chordoma
(Liang et al., 2019)
Overexpression induces E/M
phenotype (Gopal et al., 2015)

Cancer stem-like cells Drives metastatic CSC-like properties in
lung cancer (Guo et al., 2017)

Transcriptional regulation of SOX2
(Jung et al., 2014; Bledzka et al., 2017),
NANOG (Bledzka et al., 2017; Chao
et al., 2017; Guo et al., 2017) and Oct4
(Bledzka et al., 2017; Chao et al., 2017)

Hepatocellular carcinoma (Chao et al.,
2017), brain (Mantwill et al., 2013),
osteosarcoma (Xu et al., 2015), and
breast (Davies et al., 2015) CSCs

Hypoxic response Requires further investigation Translational regulation of
HIF1α(El-Naggar et al., 2015) and
FOXO3a (Emerling et al., 2008; Chou
et al., 2015)
Transcriptional repression of EPO
(Rauen et al., 2016)

Translocation to nucleus under hypoxic
stress (Rauen et al., 2016)

LRP downregulation after YB-1
knockdown and correlation with
LRP (Hyogotani et al., 2012)
response

LRP downregulation after YB-1
knockdown and correlation with LRP
(Hyogotani et al., 2012)

Transcriptional regulation of LRP (Stein
et al., 2005) and MRP1 (Stein et al.,
2001; Mantwill et al., 2006)

Neuroblastoma (Wang H. et al., 2017),
esophageal SCC (Xu and Hu, 2016),
bladder cancer (Shiota et al., 2011),
melanoma (Schittek et al., 2007),
ovarian cancer (Yahata et al., 2002)

DNA repair Involved in cigarette-smoke induced
guanine oxidization prevention and
correlations in COPD patients (Deslee
et al., 2010)

Complex with PCNA at
cisplatin-modified DNA (Ise et al., 1999;
Gaudreault et al., 2004)
PARP1 poly(ADP-ribosyl)ation of YB-1
(Alemasova et al., 2015)
Scaffold for BER proteins (Dutta et al.,
2015; Alemasova et al., 2016)
Scaffolds for XPC (NER protein)
(Fomina et al., 2015)

Preferential binding to
cisplatin-modified DNA (Ise et al., 1999)

Exosomes Requires further investigation ncRNA (Shurtleff et al., 2017; Suresh
et al., 2018)

Presence in non-malignant and
malignant exosomes (Shurtleff et al.,
2017; Suresh et al., 2018)
Role in exosomal ncRNA sorting
(Shurtleff et al., 2017; Suresh et al.,
2018)

cell carcinoma (Wang W. et al., 2004) and spinal chordoma
(Liang et al., 2019).

Epithelial-mesenchymal transition is thought to be a primary
mechanism facilitating cancer cell invasion and metastasis
through inducing phenotypic plasticity (Brabletz, 2012). Current
evidence suggests that EMT is a progressive, transient and
reversible process and that cells in a hybrid E/M state
- partial EMT – exhibit significantly higher tumorigenic
potential compared to exclusively epithelial or mesenchymal cells
(Pastushenko et al., 2018; Kröger et al., 2019).

Hybrid epithelial/mesenchymal state hybrids can be promoted
by Zinc finger protein SNAI1 (Snail, gene SNAI1) transcription
factor activity, the expression of which is specific to E/M

populations of basal breast cancer cells (Kröger et al., 2019).
Snail protein was found to be 5-fold higher in such cells
compared to mesenchymal populations, while epithelial cells
displayed undetectable levels (Kröger et al., 2019). However,
this was only accompanied by a 1.5-fold increase in SNAI1
transcript expression, implying that translational activation is
more important in Snail overexpression than transcriptional
regulation (Kröger et al., 2019). YB-1 translationally upregulates
Snail expression (Evdokimova et al., 2009a,b), suggesting that YB-
1 could also be a key promoter the E/M state. In support, stable
YB-1 overexpressing epithelial Madin-Darby canine kidney
(MDCKYB−1) cells exhibited a partial EMT-like phenotype and
establish viable tumor xenografts in mice, while parental MDCK
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cells did not (Gopal et al., 2015). This increased tumorigenicity
was also accompanied by elevated secretion of angiogenic
factors (Gopal et al., 2015). Treatment of endothelial cells with
concentrated conditioned medium from MDCKYB−1 cells also
stimulated cell migration (Gopal et al., 2015).

Wnt signaling is also a primary driver of partial and complete
EMT. β-catenin-dependent canonical Wnt signaling is thought
to be preferentially active in E/M populations (Reya and Clevers,
2005; Kröger et al., 2019), while β-catenin-independent non-
canonical signaling is more associated with a mesenchymal
state, migration and invasion (Weeraratna et al., 2002; Gujral
et al., 2014). Knockdown of YB-1 in hepatocellular carcinoma
cells disrupted stemness and suppressed β-catenin protein
expression and nuclear translocation, which was rescued by
overexpression of the active form of β-catenin (Chao et al.,
2017). This regulation of β-catenin-dependent Wnt signaling
further supports a potential role for YB-1 in driving a partial
EMT state. Interestingly, populations in the partial EMT state
are also enriched with CSCs (Kröger et al., 2019), suggesting
that YB-1 may also play are role in regulating these important
cancer progenitors.

Involvement in Cancer Stem-Like Cells
Cancer stem-like cells are becoming recognized as important
drivers of disease progression and are thought to be a major
contributing factor toward metastasis, the development of
drug resistance and recurrence of most cancers, including
those of the thorax (Leon et al., 2016; MacDonagh et al.,
2016; Makena et al., 2018). CSCs are a heterogeneous, slow
growing population of cells within a tumor. They have self-
renewal ability but one subpopulation, termed metastatic CSCs,
can disseminate through blood vessels and initiate metastasis
(Dalerba and Clarke, 2007). This was clearly demonstrated
in pancreatic cancer, where eradicating the metastatic CSC
population dramatically reduced metastatic but not tumorigenic
potential, implying that a subgroup of CSCs are responsible for
metastasis (Hermann et al., 2007).

One recent study has shown that YB-1 enforces lung
cancer metastatic CSC-like properties in vitro and in vivo
through transcriptional upregulation of NANOG, a marker
of CSCs required for the invasion and sphere formation
of ADC cells in vitro (Guo et al., 2017). Supporting this,
knockdown of YB-1 in hepatocellular carcinoma cells reduced
NANOG and Oct4, as well as α-fetoprotein transcript expression
(Chao et al., 2017). This follows findings showing NANOG
and Oct4 are upregulated in ADC, which induce sphere
formation, drug resistance and EMT (Chiou et al., 2010).
YB-1 also regulates SOX2 in breast CSCs, maintaining stem-
like properties and tumorigenic potential (Jung et al., 2014).
Given the probable importance and frequent upregulation
of SOX2 in lung cancer (Rudin et al., 2012; Karachaliou
et al., 2013; Friedlaender et al., 2019; Figure 1B), a study
investigating the relationship between YB-1 and SOX2 in
thoracic cancer may further implicate YB-1 in the biology
of these diseases.

Y-box binding protein-1 has been shown to be important
in other cancer CSCs as well. Brain CSCs were shown to

have high expression of YB-1 which was utilized in a YB-
1-based virotherapy in vitro (Mantwill et al., 2013). The re-
expression of the microRNA miR-382 in osteosarcoma cells
significantly decreased the CSC population resulting in reduced
relapse after doxorubicin treatment, EMT and metastasis
both in vitro and in vivo (Xu et al., 2015). The authors
attributed these tumor suppressive functions of miR-382 to
targeting and downregulating YB-1 (Xu et al., 2015). This
microRNA is downregulated in NSCLC and exogenous miR-
382 expression inhibits NSCLC growth, migration and invasion
via the suppression of SETD2 (Chen T. et al., 2017) and
LMO3 (Chen et al., 2019). In breast cancer, inhibition of
p90 RSK, a major kinase involved in YB-1 phosphorylation;
see section “Post-Translational Modification in the Control
of YB-1 Activity and Localization”) using the small molecule
LJI308 eradicated the population of breast CSCs and induced
apoptosis in breast cancer cells (Davies et al., 2015). RSK
is thought to have potential as a therapeutic target as it
is involved in the proliferation of lung cancer (Poomakkoth
et al., 2016). Furthermore, knockdown of WAVE3, a protein
required for nuclear translocation of YB-1, prevented YB-1
mediated transcriptional activation NANOG, SOX2 and Oct4 in
breast CSCs (Bledzka et al., 2017). WAVE3 expression was also
correlated with that of YB-1 and more aggressive phenotypes of
breast cancer (Bledzka et al., 2017).

YB-1 Is Involved in Hypoxic Response
The maintenance of CSCs is intertwined with the effects of
hypoxia (Li and Rich, 2010). Supporting its role in thoracic CSC
biology, hypoxia promotes an aggressive phenotype in MPM and
upregulates Oct4, a marker of CSCs (Kim et al., 2018). Oct4 is also
important in gefitinib-resistant lung CSCs and cisplatin-induced
stemness in NSCLC has been linked to hypoxia-inducible factors
(Kobayashi et al., 2016). Hypoxia occurs in most solid tumors
and has been linked to CSC maintenance and behavior (Li and
Rich, 2010; Bao et al., 2012), as well as disorganized tumor
vascularization, EMT and metastasis (Muz et al., 2015). Factors
such as HIF1α drive hypoxia-mediated transcription, influencing
cell immortalization, metastasis and vascularization (Semenza,
2014). YB-1 translationally regulates HIF1α (El-Naggar et al.,
2015) and acts as a transcriptional repressor for the HIF1α

inhibitor FOXO3a via competition for p300 during vascular
development (Emerling et al., 2008; Chou et al., 2015). Under
hypoxic conditions YB-1 translocates to the nucleus where it
binds to hypoxia response elements within the 3′ enhancer of
the EPO gene and blocks its expression (Rauen et al., 2016).
Hypoxia plays an important role in driving malignant cellular
behavior, including resistance to chemotherapy (Rohwer and
Cramer, 2011). While YB-1-driven response to hypoxia may
contribute toward chemoresistance, its activity as a transcription
factor may also play a role in drug inefficacy.

A Possible Role for YB-1 in Resistance to
Platinum-Based Chemotherapy
Although the role of YB-1 has not yet been studied in lung
cancer or MPM, it has been shown to be involved in the
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chemoresistance of many cancers including that of platinum-
based chemotherapies (To et al., 2010; Kang et al., 2013; Lasham
et al., 2013; Shiota et al., 2014; Yamashita et al., 2017). Silencing
YB-1 induces cisplatin sensitization in neuroblastoma (Wang
H. et al., 2017), esophageal SCC (Xu and Hu, 2016), bladder
cancer (Shiota et al., 2011) and melanoma (Schittek et al., 2007).
Treatment with cisplatin also stimulates YB-1 production in
bladder cancer (Shiota et al., 2010), while ovarian cancer cells
with acquired cisplatin resistance show an increase in nuclear
YB-1 expression (Yahata et al., 2002), suggesting that cancer
cells may increase YB-1 production as a protective measure.
The reasons why YB-1 may provide protection are still unclear.
However, YB-1 does transcriptionally upregulate LRP, aka MVP
(Stein et al., 2005), the principal component of vaults in human
cells. Vaults are highly conserved ribonucleoproteins which have
been suggested to play a role in the resistance of cancer cells
to cisplatin, among other chemotherapies, by sequestering drugs
away from their intended targets (Wang W. et al., 2004; Lara
et al., 2011). YB-1 knockdown in lung cancer cell lines resulted in
LRP downregulation and nuclear staining of YB-1 correlated with
LRP expression in 105 NSCLC samples, conferring significantly
lower overall survival (Hyogotani et al., 2012). However, this
study did not investigate the effect of this knockdown on the
chemoresistance of any drug.

Y-box binding protein-1 has also been linked to MRP1
gene activation (Stein et al., 2001; Mantwill et al., 2006), an
efflux ATP-binding cassette transporter which is thought to
contribute toward multidrug resistance (Stefan and Wiese, 2019).
High levels of LRP and MRP1 correlated with lower response
to cisplatin chemotherapy, poorer progression free survival
and overall survival in advanced NSCLC patients receiving
cisplatin-based chemotherapy (Li J. et al., 2009; Li X.Q. et al.,
2009). Treatment with cisplatin also induces heightened LRP
expression in ADC and SCC cell lines (Xu et al., 2017a) and
LRP gene expression was significantly increased compared to
control pleura samples in a study of MPM patients (Singhal
et al., 2003). MDR1 gene (encoding P-glycoprotein 1), which
is dependent on the nuclease and base excision repair enzyme
APE1 expression, has also been implicated in YB-1-driven
cisplatin resistance (Ohga et al., 1998; Chattopadhyay et al.,
2008). However, the evidence supporting a clear role for
P-glycoprotein 1 as an integral player in the chemoresistance of
lung cancer and mesothelioma remains contentious, implying
that other targets may be more important (Soini et al., 2001;
Wangari-Talbot and Hopper-Borge, 2013).

An Agent of DNA Repair in Response to
Cisplatin and Oxidative Stress
Y-box binding protein-1 may drive chemoresistance through
the upregulation of the above targets and through driving a
hypoxic response. However, some of its other functions may
also contribute, such as its role as part of the DNA repair
machinery. Oxidative stress and resulting chronic inflammation
has long been implicated as a primary driver of cigarette
smoking-related diseases, including lung cancer (Park et al.,
2009; Sears, 2019). Altered DNA repair pathways have been

implicated in the carcinogenesis of lung cancer in response
to cigarette smoke-related DNA damage, particularly the NER
and BER pathways (Sears, 2019). There is also a body of
evidence supporting the suggestion that COPD leads to the
development of lung cancer, or at least that the two are
correlated (Sears, 2019). Chronic inflammation caused by
asbestos-related oxidative stress is a major driver of MPM
carcinogenesis (Benedetti et al., 2015; Chew and Toyokuni,
2015), implying that aberrations in DNA repair machinery in
response to oxidization play a role in the progression of many
thoracic cancers.

Y-box binding protein-1 has been suggested to be part of
the DNA repair machinery as it binds to enzymes involved
in BER, mismatch repair and DNA double-stranded break
repair, previously reviewed (Alemasova and Lavrik, 2017). YB-
1 binds preferentially to cisplatin-damaged DNA complexed
with PCNA, where it works to separate cisplatin-damaged
DNA strands, recruit DNA repair proteins and displays weak
endonucleolytic and exonucleolytic function (Ise et al., 1999;
Gaudreault et al., 2004). PARP1 has also been shown to catalyze
the poly(ADP-ribosyl)ation of YB-1 in the presence of DNA
damage, further supporting a role for YB-1 in DNA repair
(Alemasova et al., 2015).

Y-box binding protein-1 is also involved in NER and BER
in response to oxidative stress. DNA damage-related stress
stimulates YB-1 nuclear translocation (Cohen et al., 2010)
(discussed further in section “Control of YB-1 Subcellular
Localization”) where it can bind to oxidized DNA lesions,
structurally altering DNA to allow access to the damaged
site while recruiting and scaffolding proteins involved in BER
including PARP1, PARP2, NEIL1, and PCNA, among others
(Dutta et al., 2015; Alemasova et al., 2016). In ssDNA, YB-1
suppresses NEIL1-mediated apurinic/apyrimidinic site cleavage,
and it has been suggested that the role of YB-1 in DNA repair
can prevent ssDNA breaks and induce oxidative nucleotide
repair in double-stranded DNA (Dutta et al., 2015). YB-1
has also been linked to NER. Cross-talk between YB-1 and
XPC (an important player in NER which has significance
in lung cancer carcinogenesis and is affected by germline
mutation in MPM), results in their assembly at DNA damage
sites (Jin et al., 2014; Fomina et al., 2015; Betti et al., 2017;
Sears, 2019).

Y-box binding protein-1 was found to be involved in
mitigating cigarette smoke-induced guanine oxidization in
lung fibroblasts and mice chronically exposed to cigarette
smoke, and that lung samples of late-stage COPD patients
exhibited significantly lower YB-1 levels compared to early
mid stage patients or patients without COPD (Deslee et al.,
2010). The role YB-1 plays in DNA repair (particularly
from oxidization) and the fact that it is secreted under
oxidizing conditions (see section “YB-1 is Secreted Into the
Extracellular Space Under Cellular Stress”) implies that YB-1
may promote the oxidation-related carcinogenesis of lung cancer
and MPM. Cigarette-induced oxidative stress has additionally
been suggested to induce the release of exosomes (Ryu
et al., 2018), the sorting of which are also mediated in part
by YB-1.
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YB-1 and Exosomal RNA Sorting
Extracellular vesicles such as exosomes are used by cells
for intercellular communication to both their immediate and
distant surroundings (Mashouri et al., 2019). Exosomes carry
factors such as proteins, mRNA and miRNA to mediate
processes including embryonic development, injury response and
homeostasis (Mashouri et al., 2019). Exosomes also play versatile
and key roles in cancer cell behavior and remodeling of the
tumor microenvironment (Mashouri et al., 2019). A malignant
role for exosomes in lung cancer is well documented, where
exosomes can induce proliferation, angiogenesis, EMT changes
and metastasis (Vanni et al., 2017; Zhou et al., 2017a; Ryu et al.,
2018). Exposure to cigarette smoke is also thought to induce
the release of extracellular vesicles, such as exosomes, which
has been linked to the development of COPD and possibly
the development of lung cancers (Ryu et al., 2018). Asbestos
exposure also alters the exosomal cargo of lung epithelial
cells in vitro and exposing non-malignant mesothelial cells
to these exosomes induces gene expression changes related
to EMT and other cancer related pathways (Munson et al.,
2018). This indicates that exosomes may play an integral role
in the carcinogenesis of mesothelioma. MPM cell lines also
secrete higher levels of exosome-associated proteins linked
to stress response and proliferation compared to their non-
malignant counterparts (Creaney et al., 2017). Supporting this,
exosomes from MPM cells have a distinct oncogenic signature
and stimulate the migration of fibroblasts and endothelial cells
(Greening et al., 2016).

Y-box binding protein-1 is known to be involved in exosomal
RNA-sorting, reviewed previously (Suresh et al., 2018), which
may indicate it is involved in altering malignant exosomal
expression profiles. Briefly, the presence of YB-1 in exosomes
has been shown in both malignant and non-malignant cells
alike where it helps to define the levels of several RNA
species, including miRNA and tRNA (Shurtleff et al., 2017;
Suresh et al., 2018). However, to our knowledge no study has
investigated YB-1 in lung cancer and mesothelioma exosomal
sorting. Future studies following this line may shed further light
into the underlying mechanisms of exosomes and their role in
thoracic cancer biology.

A Role in Immune Evasion?
Evidence in other tumor types suggests that the upregulation
of YB-1 could drive immune evasion. For example, in
doxorubicin-resistant hepatocellular carcinoma cells, YB-1 is
overexpressed, which in turn transcriptionally upregulates the
expression of PD-L1 and decreases the secretion of the
chemokines IL1β, IL10, and TGFβ in vitro (Tao et al.,
2019). High YB-1 was also associated with resistance to
cisplatin, gemcitabine, docetaxel, dasatinib and gefitinib in
this study (Tao et al., 2019). This suggests that resistance
to these drugs may also result in heightened PD-L1 and
subsequent immunosuppression via YB-1 upregulation, at least
in hepatocellular carcinoma. In light of these results, investigating
the potential of a similar role in thoracic cancers would be
of great interest.

YB-1 Regulation: A Complex Network of
Transcriptional, Translational and
Post-translational Control
The wide-ranging roles of YB-1 in cell biology imply that its
expression, localization and function must be tightly regulated
in normal physiology. As YB-1 is frequently overexpressed in
cancer, dysregulation of these controlling systems may play a role
in malignant transformation. The expression and localization
of YB-1 is controlled by a complex network of transcriptional,
translational and autoregulatory signals discussed below.

Transcriptional Control
Several transcription factors have been found to promote YB-
1 transcription by binding to motifs in the YBX1 promoter.
For example, YBX1 transcription has been shown to be
promoted by GATA transcription factors, although recent
evidence suggests the GATA family is less important for
promoting YBX1 expression in ADC (Yokoyama et al., 2003;
Murugesan et al., 2018). Possibly more important are the six
E-boxes located in the promoter of YBX1 (Makino et al.,
1996). The first is located at 48–53 nucleotide residues away
from the promoter, the second at 353–358, the third at 458–
463, the fourth at 531–536, the fifth at 1147–1152, and the
sixth at 1201–1206 (Makino et al., 1996). The E-box binding
transcription factor Twist1 also stimulates YBX1 transcription,
driving cell growth and EMT (Shiota et al., 2008; He et al.,
2015; Figure 2). A recent meta-analysis of 572 NSCLC patients
showed that high Twist1 expression significantly correlated
with poorer patient prognosis, recurrence-free survival and
lymph node or other metastasis (Li et al., 2018). A small
retrospective study of mesothelioma samples also showed that
Twist1 expression was significantly higher in sarcomatoid tumors
(expressed in 7/7 of samples) compared to biphasic (6/10) and
epithelioid tumors (7/17) (Iwanami et al., 2014). Although the
percentage of samples positive for YB-1 was almost identical
to that of Twist1 in this study (6/7 in sarcomatoid, 6/10 in
biphasic and 7/17 in epithelioid), whether YB-1 and Twist1
were co-expressed in the same samples was not determined
(Iwanami et al., 2014).

An E-box within the YB-1 promoter is also trans-activated
by Myc and p73 to drive the transcription of YBX1 (Uramoto
et al., 2002; Figure 2). The ability of Myc to transcriptionally
activate YBX1 is interesting, not only as Myc drives malignant
behavior and is often associated with poor prognosis in
thoracic cancers (Jiang et al., 1992; Volm and Koomagi,
2000; Riquelme et al., 2014), but because YB-1 can itself
initiate Myc translation by acting as a specific internal
ribosome entry segment-trans-activating factor (Cobbold
et al., 2010). YB-1 was also shown to regulate Myc at the
transcriptional level in bladder cancer, with implications on
aerobic glycolysis (Warburg effect) (Xu et al., 2017b). This
feed forward loop was first described in multiple myeloma
(Bommert et al., 2013), however, it is quite possible that
a similar feed forward loop accounts for both YB-1 and
Myc overexpression in thoracic cancers, driving malignant
progression and aggressiveness.
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FIGURE 2 | Control of YB-1 expression. A network of factors controls YBX1 expression at the transcriptional and translational levels. The E-box binding proteins
Twist1, Myc and p73 interact with the promoter of YBX1 and initiate transcription of YBX1 mRNA. YBX1 mRNA expression is downregulated by targeting miRNA,
including miR-137 and miR-216a. YBX1 translation is stimulated by mTOR, which itself is influenced by proliferation rate. YB-1 protein function and expression are
modulated by lncRNA, including MIR22HG and LINC00312. YB-1 is involved in an autoregulatory feedback loop and binds to YBX1 mRNA at two sites (nucleotides
1133–1145 and 1165–1172), inhibiting its own translation. PABP stimulates YBX1 translation by binding to a site located at 1149–1196, overlapping the second
YB-1 binding site. Poly(A)-binding protein (PABP) and YB-1 compete for this site and hence regulate the level of YB-1 protein expression. Created with
Biorender.com.

Translational Regulation of YB-1
Y-box binding protein-1 expression is also regulated at the
translational level, most notably via signaling through the
mTOR pathway (Figure 2), which regulates cell growth, motility,
survival, transcription and protein synthesis via the integration of
signals from hormone and growth factor stimulation, availability
of nutrients, and stress (Zarogoulidis et al., 2014). mTOR
signaling promotes the translation of YBX1 and increases
the phosphorylation of RSK, a serine/threonine kinase which
phosphorylates and thereby activates YB-1 (Mendoza et al., 2011;
Lyabin et al., 2012). RSK has been implicated in lung cancer
proliferation and has itself been suggested as a target with
therapeutic significance (Poomakkoth et al., 2016).

The division rate of eukaryotic cells affects YBX1 translation
via mTOR regulation. Slow dividing and serum-starved cell
populations exhibit attenuated mTOR signaling, which in turn
inhibits YBX1 translation (Lyabin et al., 2012). This pathway
is frequently activated in lung cancer and antagonizing mTOR
in such cells has proven to be a potential therapeutic avenue
(Zarogoulidis et al., 2014). The PI3K/mTOR pathway is also
highly activated in mesothelioma, but not in non-malignant
mesothelial cells (Zhou et al., 2014) or adjacent tissue (Hoda
et al., 2011), and phospho-mTOR was significantly associated
with poorer overall survival in a cohort of 107 mesothelioma

patients (Bitanihirwe et al., 2014). Dactolisib (BEZ235) treatment
inhibited mesothelioma cell growth by targeting mTOR (Zhou
et al., 2014) and similarly, treatment with the mTOR inhibitor
temsirolimus stopped MPM cell proliferation and was synergistic
with cisplatin treatment in vitro and in vivo (Hoda et al., 2011). It
stands to reason that YB-1 overexpression is likely to be, at least
in part, linked to the prominent role mTOR signaling plays in
thoracic cancers.

Autoregulation of YB-1 – An Unsolved
Piece of the Puzzle
Y-box binding protein-1 is controlled by an autoregulatory
feedback loop in which YB-1 binds its own mRNA at two
8 nucleotide motifs at (nt) 1133–1145 and nt 1165–1172,
inhibiting translation prior to 40S ribosomal subunit binding
(Skabkina et al., 2005; Figure 2). PABP competes with YB-1 at
one of these overlapping sites (nt 1149–1196), and stimulates
YBX1 translation (Skabkina et al., 2003, 2005). Considering
YB-1 overexpression is frequently observed in cancer, this
feedback system may be dysregulated before or during malignant
progression. It is possible that PABP upregulation could cause a
bias for PABP translational activation of YBX1, although PABP
itself is controlled by a similar autoregulatory loop (Ma et al.,
2006). Nonetheless, recent expression and interactome analysis
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FIGURE 3 | Post-translational modification of YB-1. The presence of various sites before or after proteasomal cleavage of YB-1 modulates its function and
localization, which has implications on antibody use. YB-1 is comprised of a CSD shown in dark gray, an N-terminal domain in white and a CTD, also in white. Within
the CTD there are three nuclear localization signals (NLS-1 from amino acid (aa) 149–156, NLS-2 from aa 185 to 194 and NLS-3 from aa 276 to 292), shown in light
gray, and one cytoplasmic retention signal (CRS from aa 247 to 267), shown in black. YB-1 is proteolytically cleaved at Glu216 and Glu219 (shown in red and
highlighted with a scissors icon), which is thought to stimulate YB-1 translocation. Three commonly used antibodies targeting YB-1 are also shown, two of which
have been validated using mass spectrometry (in yellow) and one which is known to cross react with hnRNP1A (in red). If the proteolytic theory of YB-1 translocation
is correct, this would also have implications on the use of antibodies. Various post-translational modifications also effect the downstream function and nuclear
localization of YB-1. Green dots indicate acetylation, yellow glycosylation, blue phosphorylation, red sumoylation and orange ubiquitination. Solid black arrows
indicate a post-translational modification that is produced by a known upstream regulator, or a known function of YB-1. Dotted black arrows indicate a
post-translational modification or function that is yet to be fully proven. Blue and dotted blue arrows indicate the movement or supposed movement of YB-1
throughout cellular compartments, respectively. Created with BioRender.com.
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of YB-1 showed that PABP significantly correlated with YB-1
expression in ADC, implying it plays a central role in YB-1
upregulation and highlighting the need for further investigation
into the PABP/YB-1 loop (Murugesan et al., 2018).

Non-coding RNA Modulate YB-1
Expression
Various families of ncRNAs also play a role in regulating YB-1
levels (Figure 2). One such family are miRNAs – a conserved class
of short, ncRNAs that regulate gene expression by binding to and
initiating RNA-induced silencing complex-mediated degradation
of target mRNA (Jonas and Izaurralde, 2015). The inhibition
of YBX1 by several miRNAs has been shown in other cancers,
although to our knowledge such interactions have not been
investigated in thoracic cancers. We recently demonstrated
regulation of YBX1 by miR-137 in MPM cells, inhibiting growth,
migration and invasion (Johnson et al., 2018). This miRNA is also
known to act as a tumor suppressor in lung cancer by targeting
SRC3 (Chen R. et al., 2017) and BMP7 (Yang et al., 2015). Another
miRNA known to target YBX1 is miR-216a, which suppresses
YB-1-mediated metastasis in pancreatic cancer (Lu et al., 2017).
MiR-216a acts as an tumor suppressor in SCLC by targeting and
downregulating the anti-apoptotic protein B-cell lymphoma 2
(Bcl-2) (Wang et al., 2018), although it is likely that these effects
are also, in part, due to YBX1 downregulation.

The lncRNA DANCR has been implicated in reducing the
levels of this miRNA through its complimentary miR-216a
binding site, sequestering it away from miR-216a targets (Zhen
et al., 2018). DANCR is associated with advanced tumor grade
and poor prognosis in lung cancer and promotes ADC cell
growth in vitro and in vivo (Zhen et al., 2018). Dysregulation of
DANCR and subsequent lowering of miR-216a could represent
one mechanism of YB-1 overexpression in thoracic cancer,
representing an area which requires further investigation.

In addition to DANCR, other lncRNAs as well as transfer
RNA-derived fragments can also play a role in regulating YB-
1 expression, reviewed previously (Suresh et al., 2018). One
example is the lncRNA GAS5, which interacts with YB-1
protein and activates YBX1 translation, upregulating p21 and
initiating G1 cell cycle arrest in stomach cancer (Liu et al.,
2015). Interestingly, GAS5 knockdown did not affect YBX1
mRNA expression, something the authors attribute to possible
interactions with other proteins (Liu et al., 2015). GAS5 is a
known competing endogenous RNA for miR-137, which targets
YBX1 in thoracic cancers (see above in this section) (Chen
et al., 2018), so it is possible that this may contribute toward
YBX1 translational upregulation. However, GAS5 knockdown
does not affect YBX1 mRNA expression (Liu et al., 2015), as
would be expected by an increase in miR-137 availability, so
this does not fully explain this relationship. Further inquiry into
the GAS5/YB-1 and possibly miR-137 relationship is required.
GAS5 acts as a tumor suppressor and is lost in lung cancer and
mesothelioma (Renganathan et al., 2014; Shi et al., 2015), which
is consistent with findings in other cancer types (Gutschner
et al., 2018). The apparent discrepancy between the tumor
suppressive function of GAS5 and GAS5-mediated translational

upregulation of the oncogene YBX1 remains unanswered and
also warrants further study.

More recently, the lncRNA MIR22HG was shown to prevent
proteasomal degradation of YB-1 in lung cancer cells, which
might contribute to YB-1 overexpression (Su et al., 2018).
LINC00312 also interacts with YB-1 driving invasion, migration
and vascular mimicry of ADC cells, and LINC00312 is associated
with metastasis in ADC patients (Peng et al., 2018). HULC is
another lncRNA that binds to YB-1 in hepatocellular carcinoma
cells, promoting Ser102 phosphorylation, the significance of
which is further described in section “Post-Translational
Modification in the Control of YB-1 Activity and Localization”
(Li et al., 2017). HULC is overexpressed in NSCLC and
can promote proliferation via SPHK1 upregulation, which is
upstream of the PI3K/AKT pathway (Liu L. et al., 2018).
This implies that HULC may also be involved in PI3K-
mediated YB-1 activation. TP53TG1, yet another lncRNA,
can also bind to YB-1 and inhibit its nuclear translocation,
stopping it from transcriptionally activating its oncogenic targets
(Diaz-Lagares et al., 2016). TP53TG1 is downregulated in
NSCLC and its upregulation sensitized cisplatin resistant NSCLC
cells to cisplatin (Xiao et al., 2018). This was attributed to
the downregulation of miR-18 (Xiao et al., 2018), however,
considering the likely role of YB-1 transcriptional regulation in
cisplatin resistance (see section “A Possible Role for YB-1 in
Resistance to Platinum-Based Chemotherapy”), it is possible that
cytoplasmic retention of YB-1 also played a part in the cisplatin
sensitivity seen here. Finally, CAR10 binds to and stabilizes YB-
1, leading to the upregulation of EGFR in lung cancer and
promoting proliferation (Wei et al., 2016). ncRNA therefore play
an integral role in the expression and activity of YB-1, and
dysregulation of these families is likely to contribute to YB-1
overexpression in cancer.

Post-translational Modification in the
Control of YB-1 Activity and Localization
The activity of YB-1 is modulated through various post-
translational modifications (Figure 3), with phosphorylation
being the best studied. Ser102 (located in the CSD of YB-1)
is currently the most comprehensively studied phosphorylation
site. This site is a target of AKT and RSK, making it downstream
of both the MAPK/ERK and PI3K/AKT pathways (Sutherland
et al., 2005; Stratford et al., 2008; Mendoza et al., 2011). Several
additional phosphorylation sites on YB-1 have been identified
including Tyr281, which is located within a NLS toward the
C-terminal of YB-1 and correlates with the nuclear localization
of either a YB-1 C-terminal fragment or full length YB-1 (van
Roeyen et al., 2013) (refer to next section for more detail).
Tyr162 on YB-1 is also reportedly phosphorylated by FGFR1
(Kasyapa et al., 2009), an important oncogenic driver in lung
cancer (Jamal-Hanjani et al., 2017; Friedlaender et al., 2019) and
mesothelioma (Schelch et al., 2014; Quispel-Janssen et al., 2018),
however, to our knowledge the significance of this modification
has not yet been established. Ser165 and Ser176 on YB-1 are
also phosphorylated, each promoting distinct groups of nuclear
factor-κB target gene expression. This pathway is commonly
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dysregulated in thoracic cancers and drives cell survival, chemo-
and radiotherapy resistance (Chen et al., 2011; Nishikawa et al.,
2014; Prabhu et al., 2015; Martin et al., 2017).

In the case of Ser102, it seems that phosphorylation is
linked to the hexosamine biosynthetic pathway, in which
OGT and O-linked N-acetylglucosamine add or remove
N-acetylglucosamine groups to serine or threonine residues,
respectively. OGT-mediated O-linked glycosylation of YB-1 at
Thr216 aids in the phosphorylation of Ser102 and subsequent
transcriptional activity of YB-1 in hepatocellular carcinoma (Liu
et al., 2016; Figure 3).

Sumoylation, acetylation and ubiquitination are also
prominent post-translational modifications that can contribute
toward regulating YB-1 activity and localization. In addition,
the nuclear localization of YB-1 has been linked to three
NLS, mapped to amino acid residues 149–156 (NLS-1),
residues 185–194 (NLS-2) and residues 276–292 (NLS-3)
(van Roeyen et al., 2013).

Y-box binding protein-1 is sumoylated at three distinct sites
in response to circadian rhythm in zebra fish cells, which has
implications on its nuclear shuttling (Pagano et al., 2017). One of
these sites is a canonical inverted sumoylation site (at amino acids
287–290 within NLS-3), while the other two are non-canonical
sites (at 60–63 which is within the CSD and at 151–154, within
NLS-1; Figure 3) (Pagano et al., 2017). Circadian disruption has
been correlated with an increased risk of cancer development
(Hansen, 2017; Liu W. et al., 2018) and many processes integral
to tumorigenesis follow circadian rhythms (cell cycle regulation
and DNA repair, for example). Although one study failed to find
a link between night shift work and lung cancer among a cohort
of female textile workers in Shanghai, China (Kwon et al., 2015),
preclinical data indicates that disturbance of the circadian clock
can promote lung tumor growth in vivo (Papagiannakopoulos
et al., 2016). Modulation of YB-1 localization in response to
light may represent one contributing factor in the observed
correlation between circadian rhythm and cancer and warrants
further investigation.

Acetylation of YB-1 has been reported to occur in lung cancer
cells, however, the significance of this remains unclear. YB-1 was
one of 542 proteins acetylated by the histone deacetylase inhibitor
SAHA in SILAC experiments in a NSCLC cell line (Wu et al.,
2015). Here, YB-1 was acetylated at Lys64 (Figure 3). Lys301/304
of YB-1 can also be acetylated and the amount of acetylated YB-1
is significantly increased in monocytes of hemodialysis patients
(Ewert et al., 2018).

Ubiquitination may also play an important role in YB-
1 expression and subcellular localization. RBBP6 initiates
proteasomal degradation of YB-1 by binding to and
ubiquitinating it within a 62-residue fragment of the YB-1
CTD (Chibi et al., 2008). The protein isoform of p63 1Np63α

counteracts this by preventing proteolysis of full-length YB-1
and stimulating accumulation of poly-ubiquitinated YB-1 in
the nucleus (di Martino et al., 2016), possibly supporting the
role of proteolytic cleavage-dependent YB-1 nuclear shuttling
(discussed further in section “Control of YB-1 Subcellular
Localization”; Figures 3, 4). Further supporting this theory, UV
irradiated DNA damage stimulates YB-1 ubiquitination at Lys64

(Boeing et al., 2016) (the same lysine residue that is acetylated,
above in this section; Figure 3). Considering the DNA repair
function of YB-1 and the aforementioned ubiquitination-driven
proteasomal cleavage of YB-1, this possibly induces a similar
nuclear translocation of YB-1. This is further supported by
results showing that YB-1 is shuttled to the nucleus upon UV
irradiation (Koike et al., 1997).

Ubiquitination is also important in the secretion of YB-1
via the multi-vesicular body pathway. The E3 ligase activity
of HACE1 polyubiquitinates YB-1 at K27, facilitating tumor
susceptibility gene 101 binding, which initiates YB-1 secretion
(Palicharla and Maddika, 2015). In summary, post-translational
modification influences the levels, activity and localization of
YB-1, which in turn impacts the downstream effects of YB-1.

Control of YB-1 Subcellular Localization
In non-malignant cells, YB-1 is primarily located in the
cytoplasm and functions as a major component of free messenger
ribonucleoprotein complexes, where it can inhibit or stimulate
cap-dependent translation depending on the ratio of YB-1 to
mRNA (Suresh et al., 2018). Under certain stresses such as
cisplatin treatment (Yahata et al., 2002), hypoxia (Rauen et al.,
2016), UV radiation (Koike et al., 1997), and hyperthermia
(Stein et al., 2001), YB-1 translocates to the nucleus, however,
the underlying mechanism of this remains unclear. As above,
YB-1 has three NLS sites which have been mapped to amino
acid residues 149–156, residues 185–194 and residues 276–292
(van Roeyen et al., 2013), which are recognized by transportin-1
(Mordovkina et al., 2016) and WAVE3 (Bledzka et al., 2017). In
addition YB-1 also contains a CRS at residues 247–267 (Woolley
et al., 2011; Figure 3). The locations of these sites are postulated
to regulate YB-1 nuclear-cytoplasmic translocation.

One line of evidence suggests that nuclear translocation is
preceded by a specific proteolytic cleavage by the 20S proteasome
of YB-1 at Glu216 and Glu219 under cellular stress (Sorokin et al.,
2005; Kim et al., 2013; Figures 3, 4). This results in loss of a 105-
amino acid sequence from the C-terminus, including the CRS,
and accumulation of the remaining N–terminal fragment in the
nucleus (Sorokin et al., 2005; Kim et al., 2013). The presence
of an NLS in the CTD suggests that a C–terminal fragment
may also be shuttled to the nucleus, presumably if the nearby
CRS has been cleaved off (van Roeyen et al., 2013; Figures 3,
4). Supporting this, breast cancer cells preincubated with the
proteasome inhibitor MG-132 before treatment with doxorubicin
displayed reduced nuclear and enhanced cytoplasmic levels of
YB-1 (visualized with a C-terminal-targeting antibody; Figure 3),
compared to cells treated with doxorubicin alone (van Roeyen
et al., 2013). However, this does not rule out whether full-length
YB-1 translocation occurs by some other mechanism.

Countering the proteasomal theory is one study that suggests
the YB-1 N-terminal fragment has been misidentified as another
protein, hnRNP1A, and that only full-length YB-1 is found
in the nucleus (Cohen et al., 2010). Full-length YB-1 nuclear
translocation could be facilitated by its phosphorylation. For
example, there is evidence showing that YB-1 is phosphorylated
at Ser102 by the serine/threonine kinase AKT before being
shuttled to the nucleus (Sutherland et al., 2005; Figures 3, 5).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 13 October 2019 | Volume 7 | Article 221

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-07-00221 November 21, 2019 Time: 15:7 # 14

Johnson et al. YB-1 in Thoracic Cancers

FIGURE 4 | Subcellular localization of YB-1 – the proteolytic theory of nuclear localization. YB-1 can be found in the nucleus, cytoplasm and extracellular space and
its localization is mediated by various factors. Secretion can be preceded by Ubiquitination (orange dot) by HACE1 and acetylation (green dot) by a currently
unknown protein. Oxidative stress stimulates stress-granule localization and eventual section of YB-1, where it can bind to the transmembrane protein Notch3 on
other cells. YB-1 is cleaved by the proteasome prior to nuclear translocation. Ubiquitination by RBBP6 initiates YB-1 proteolytic cleavage. 1Np63α prevents full
length proteolysis by partially inhibiting YB-1 degradation, resulting in the removal of the CRS. Transportin-1 or WAVE3 bind to NLS of YB-1 and translocate it to the
nucleus. RSK can cross into the nucleus, phosphorylating nuclear YB-1 fragments. Solid black arrows indicate a post-translational modification that is produced by
a described or known mechanism. Dotted black arrows indicate a post-translational modification whose significance is yet to be realized. Blue and dotted blue
arrows indicate the movement or supposed movement of YB-1 throughout cellular compartments, respectively. Created with BioRender.com.

This may cause a conformational change which could block
the CRS of YB-1, stimulating its nuclear shuttling. However, a
recent study found that while ionizing radiation, EGF stimulation
and overexpression of the KRAS G12V mutant induced Ser102
phosphorylation of YB-1 in both the nucleus and the cytoplasm,
there was no increase in YB-1 expression in nuclear fractions
(Tiwari et al., 2018). The authors attribute this to nuclear
translocation of RSK, phosphorylating pre-existing nuclear YB-
1 – not the shuttling of YB-1 itself (Figure 4). It may be that
the translocation of either YB-1, RSK or both is dependent on
the type of cellular stress applied. As mentioned in section “Post-
Translational Modification in the Control of YB-1 Activity and
Localization,” phosphorylation of Thr281 within the NLS 276–
292 of YB-1 also correlates with its nuclear translocation (van
Roeyen et al., 2013), however, it is not yet clear whether this
modification is actively involved in YB-1 shuttling.

The localization of YB-1 also appears to be dependent on
its ability to bind RNA and other proteins in the cytoplasm as
YB-1 nuclear localization is hampered by higher cytoplasmic
mRNA levels (Tanaka et al., 2018). This group also found that p53

(along with 4 other nucleocytoplasmic-shuttling proteins) binds
to a YB-1 NLS and co-accumulates with YB-1 in the nucleus
in response to actinomycin D treatment (Tanaka et al., 2016).
This implies that YB-1 nuclear localization is a p53-mediated
response to DNA stress. Another factor, C1QBP inhibits
nuclear localization by binding to and blocking an NLS region
(Matsumoto et al., 2018). C1QBP binding also moderately
attenuated YB-1-mediated mRNA stabilization (Matsumoto
et al., 2018). It is likely that the balance of this cytoplasmic
interactome determines where YB-1 is localized under different
conditions and that a disruption of this balance may lead to
malignant progression.

YB-1 Is Secreted Into the Extracellular
Space Under Cellular Stress
Stress-related secretion of factors found in the nucleus and
cytoplasm have been found to be biologically relevant in
thoracic cancer biology and may serve as potential non-invasive
biomarkers. Secretion of the nuclear protein HMGB1 in response
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FIGURE 5 | Subcellular localization of YB-1 – the phosphorylation theory of nuclear localization. YB-1 can be found in the nucleus, cytoplasm and extracellular
space and its localization is mediated by various factors. Secretion can be preceded by Ubiquitination (orange dot) by HACE1 and acetylation (green dot) by a
currently unknown protein. Oxidative stress stimulates stress-granule localization and eventual section of YB-1, where it can bind to the transmembrane protein
Notch3 on other cells. Phosphorylation is required before nuclear shuttling can take place. Ser102 is phosphorylated by upstream kinases, changing the
configuration of YB-1 to block the CRS and allow nuclear shuttling via Transportin-1 or WAVE3. Phosphorylation of Tyr281 by a currently unknown upstream
regulator may play a role here too. Solid black arrows indicate a post-translational modification that is produced by a described or known mechanism. Dotted black
arrows indicate a post-translational modification whose significance is yet to be realized. Blue and dotted blue arrows indicate the movement or supposed
movement of YB-1 throughout cellular compartments, respectively. Created with BioRender.com.

to asbestos-related necrosis in MPM cells, which acts as an
alarmin to stimulate inflammation is one example (Yang et al.,
2010). Serum HMGB1 has shown prognostic relevance as a
possible biomarker in MPM (Tabata et al., 2013).

Y-box binding protein-1 is related on an evolutionary level
to HMGB1 and is also secreted under certain cellular stresses.
This was first evident in monocytes stimulated with bacterial
lipopolysaccharide through an active, non-classical pathway and
appears to require the same two lysine residues (Lys301/304)
that are the site of acetylation in hemodialysis patients (Frye
et al., 2009; Ewert et al., 2018; Figures 3–5). Secreted YB-
1 stimulated DNA synthesis, cell proliferation and migration
of kidney cells (Frye et al., 2009). More pertinent to thoracic
cancer, YB-1 is also secreted under oxidative stress. YB-1
translationally upregulates G3BP1 under oxidative stress and
localizes to cytoplasmic stress granules where it is involved in
pro-survival mRNA reprogramming (Somasekharan et al., 2015).
G3BP1 also promotes the invasion and metastasis of sarcoma cells
in vivo (Somasekharan et al., 2015). In support, YB-1 enrichment
in stress granules is also linked to its secretion to the extracellular
space under oxidizing conditions (Guarino et al., 2018; Figures 4,
5). Secretion of YB-1 resulted in depletion of cytoplasmic YB-1,

leaving nuclear expression intact (presumably to allow for YB-1-
mediated DNA repair), while secreted YB-1 inhibited the growth
of neighboring keratinocytes (Guarino et al., 2018).

Extracellular YB-1 acts as a ligand for Notch3, binding to
epidermal growth factor-like repeats 17–24 on Notch3 and
subsequently promoting YBX1 translation in a feed-forward,
autoregulatory fashion (Rauen et al., 2009; Raffetseder et al.,
2011; Gera and Dighe, 2018; Figures 4, 5). Notch3 is frequently
overexpressed in NSCLC where high levels correlate with
poor prognosis, making it a candidate target for therapeutic
intervention (Zong et al., 2016). Considering the prevalence of
oxidative stress and Notch3 in thoracic cancers, the secretion of
YB-1 may be biologically important, although more studies are
required to fully understand this process.

YB-1 IN THORACIC CANCERS:
CLINICAL RELEVANCE

YB-1 as a Prognostic Biomarker
There is evidence supporting the use of YB-1 as a prognostic
biomarker in thoracic cancers, and subcellular localization is
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important in this regard. Analysis of TCGA data demonstrate
that high levels of YBX1 mRNA correlate significantly with poor
prognosis in NSCLC and MPM patients (Figures 1D,E). YB-
1 protein has been correlated with poor prognosis previously
(Shibahara et al., 2001; Gessner et al., 2004), supported by a recent
meta-analysis of six studies covering data on 692 NSCLC patients,
where YB-1 was associated with worse overall survival, tumor
stage and depth of invasion (Jiang et al., 2017). A study in MPM
patients also supports the TCGA data (albeit tentatively due to
the low number of patients in the cohort) (Iwanami et al., 2014).
Here, YB-1 levels were shown to be higher in sarcomatoid MPM
tumors, which confer the worst prognosis (Iwanami et al., 2014).

There has been some contention surrounding the use of
particular YB-1 antibodies in prognostic studies across cancer
types. One N-terminal targeting YB-1 antibody that binds to
residues 23–52 has been used in prognostic studies in the past
(Figure 3). However, this antibody has been shown to cross
reacts with the ubiquitously expressed hnRNPA1 protein via mass
spectrometry making it unsuitable for such application (Woolley
et al., 2011). Antibodies targeting the extreme N-‘terminus of
YB-1 (residues 1–12) or residues 299–313 in the CTD (C-
terminal) have been shown to be specific for YB-1, again by
mass spectrometry (Woolley et al., 2011; Figure 3). However,
the N–terminal antibody has been suggested as more suitable
for prognostic applications as this region does not interact with
other proteins, so this epitope may be more accessible (Woolley
et al., 2011). Notably, all prognostic studies cited in this review
utilize the C-terminal targeting antibody. Regardless, a universal
standardization of one reliable antibody would significantly
enhance the prognostic potential of YB-1 for diagnosis using
traditional pathological tissue staining.

Secreted YB-1 may also have prognostic significance in cancer.
One study of 44 breast cancer patients with bone metastases
found that serum YB-1 was present in 50% of patients and
associated with extra-bone metastases and faster bone disease
progression (Ferreira et al., 2017). There was a trend toward
poorer overall survival in high-YB-1 patients, although a bigger
cohort is needed to provide a more definitive answer (Ferreira
et al., 2017). Another group found an YB-1/p18 in the plasma of
patients with various diseases (including 32/38 lung cancers) but
not in healthy controls via Western Blot using a monoclonal YB-
1 antibody (Tacke et al., 2014). This study found no prognostic
significance of YB-1/p18 in any of the cancers tested, but they
assert that YB-1/p18 may have diagnostic significance (Tacke
et al., 2014). The small sample number in this study should be
noted before the prognostic applicability of secreted YB-1 is ruled
out. Investigating the prognostic significance of secreted full-
length or other fragments of YB-1, not just YB-1/p18, may also
be of interest. The potential of YB-1 as a circulating biomarker is
intriguing as a non-invasive method of prognosis and diagnosis,
although more studies with larger cohorts are required.

Targeting YB-1: An Achievable Feat?
In the past YB-1 has been overlooked as a therapeutic target
because of its role as a transcription and translation factor,
which have been traditionally hard to target with small molecule
inhibitors. However, recent advancements in the delivery of

RNA-based drugs has opened up new potential avenues of
targeting oncoproteins such as YB-1 (Seton-Rogers, 2012; Afonin
et al., 2014). We and others have shown that miRNA or
siRNA can be used to target YBX1 in thoracic cancer cells in
preclinical studies (Xu et al., 2015; Johnson et al., 2018). The
delivery of miRNA mimics in the clinic is now thought to be
a viable anti-cancer strategy. For example, MRX34 (a liposomal
miR-34a mimic) showed evidence of efficacy and safety in a
phase I trial in patients with various solid tumors including 1
NSCLC patient (Beg et al., 2017). More pertinently, a phase
1 clinical trial delivering miR-16-based mimics using bacterial
minicells (EnGeneIC Dream Vectors) in mesothelioma and
advanced NSCLC patients demonstrated the safety and efficacy
of miRNA-based therapy (van Zandwijk et al., 2017), evidencing
the potential for miRNA replacement therapy in patients with
thoracic cancer.

There are a number of systems which pose as attractive
options to deliver RNA-based drug payloads in thoracic cancer
such as lipid, RNA, inorganic and polymer-based nanoparticles,
all with their respective advantages and drawbacks (Shu et al.,
2014). The delivery of siRNA or miRNA using nanoparticles in
lung cancers, and to a lesser extent MPM, has been achieved
in vitro and in vivo, evidencing the potential of these delivery
systems (Lee et al., 2016). The in vivo transport of siRNA to
large cell lung carcinoma tumors using lipoprotein nanoparticles
(Tagalakis et al., 2018) and ADC tumors using polyethylene
glycol nanoparticles (Wen et al., 2017) has demonstrated
the applicability of nanoparticle delivery systems for targeted
therapy. However, these studies treated subcutaneously grown
tumors, which do not reflect the orthotopic context of thoracic
cancer and the problems with delivery that come with it. Recently
though, an siRNA targeting anti-EZH2 was successfully delivered
to orthotopically grown NSCLC tumors in mice using modified
polyethyleneimine nanoparticles (Yuan et al., 2017), and delivery
and retention of amiloride-sensitive epithelial sodium channel-
specific siRNA into the lungs of normal mice was achieved
(Tagalakis et al., 2018). The successful delivery of miR-215-5p
miRNA mimics complexed in an atelocollagen vehicle was also
recently achieved in an orthotopic MPM mouse model, which
significantly suppressed tumor growth (Singh et al., 2019). The
advances in RNA-based drug delivery in preclinical and clinical
studies mean that siRNA or miRNA delivery is an appealing YB-
1 targeting strategy in thoracic cancers. However, other potential
strategies may also be of interest, although these are yet to be
investigated in humans.

Inhibiting YB-1 activation may be one such viable targeting
strategy. Fisetin (3,7,3′,4′-tetrahydroxy flavone) is a flavanol that
binds to the CSD of YB-1, inhibiting its phosphorylation at
Ser102 and blocking EMT in prostate cancer cells in vitro (Khan
et al., 2014). Targeting YB-1 using fisetin also attenuated the
growth of melanoma cells in vitro and in vivo (Sechi et al.,
2018). Fisetin was also found to inhibit mTOR and PI3K/Akt
signaling in NSCLC cells, both of which are important in
both thoracic cancer biology and YB-1 regulation (see section
“Translational Regulation of YB-1”) (Khan et al., 2012). Another
possible method for targeting YB-1 was demonstrated by using an
interference cell permeable peptide that prevented YB-1 Ser102
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phosphorylation. This led to an inhibition of EGFR expression
and reduced growth of prostate and breast cancer cells, but not
of non-malignant mammary epithelial cells (Law et al., 2010).
Upstream inhibitors such as those targeting mTOR may also be
an option (Hoda et al., 2011; Zhou et al., 2014), but would not be
specific. A recent study showed that 2,4-dihydroxy-5-pyrimidinyl
imidothiocarbomate antagonizes YB-1, inhibits YB-1 nuclear
translocation and increases doxorubicin accumulation in breast
cancer cells (Gunasekaran et al., 2018).

The use of oncolytic viruses that require YB-1 for replication
is another potential therapeutic approach. XVir-N-31-mediated
lysis of brain CSCs and virus production was significantly
reduced in non-malignant astrocyte cells that expressed
significantly less YB-1 compared to CSC cells (Mantwill
et al., 2013). XVir-N-31 also repressed the growth of bladder
cancer cells with strong YB-1 expression in vitro and intra-
tumor delivery significantly repressed tumor volume in vivo
(Lichtenegger et al., 2018). Consequently, virotherapy may prove
to be an interesting avenue for targeting YB-1 overexpressing
lung cancer and MPM.

Preclinical evidence in other tumors suggests that targeting
YB-1 could also benefit immunotherapy in some cases. YB-
1 knockdown increased the efficacy of IFN-α in renal cell
carcinoma cells in vitro and in vivo (Takeuchi et al., 2013).
IFN-α in combination with cisplatin provided a partial response

in five out of ten patients in an open-label non-comparative
phase II study of NSCLC patients (Chao et al., 1995). A phase
II randomized study in SCLC patients with limited disease
also showed a survival benefit of IFN-α in combination with a
chemotherapy regime of carboplatin, ifosfamide and etoposide
(Zarogoulidis et al., 2013). Based on these results, further
investigating whether targeting YB-1 could increase the modest
efficacy of IFN-α in thoracic cancer is warranted.

The use of YB-1 as a tumor-associated antigen in therapeutic
vaccination has also shown promise in other cancers. YB-1
was identified as a tumor-associated antigen in neuroblastoma
by serological expression of cDNA expression libraries (Zheng
et al., 2009). In the context of regulatory T-cell depletion, YB-1
immunization enhanced CD8+ response against neuroblastoma
cells and conferred significantly higher mouse survival compared
to control groups (Zheng et al., 2012). Adoptive T-cell therapy
from immunized mice into neuroblastoma tumor-bearing mice
also conferred a significant survival benefit and reduced tumor
growth (Zheng et al., 2012). Again, further study in the context of
thoracic cancer is warranted.

It must be noted that as with all current targeted therapies,
it is likely that a YB-1-based approach to thoracic cancer
management would benefit only a sub-population of patients.
YB-1 overexpression, rather than mutation, would probably be
the best predictive marker as mutations of YB-1 are very rare

FIGURE 6 | Further study required to understand the role of YB-1 and use it in the treatment and management of thoracic cancer patients. Various upstream and
downstream regulatory loops and the role of YB-1 in platinum drug resistance, exosomal sorting and proliferation need further study to fully understand the biology
of YB-1 in lung cancer and MPM. The mechanism of YB-1 nuclear localization is also under contention and the occurrence and significance of secreted YB-1 is yet
to be determined. Standardization of a suitable YB-1 antibody for prognostic application would also be a step forward. Finally, evaluating the current strategies of
YB-1 inhibition in vivo further would build a stronger case for translation into humans. Created with BioRender.com.
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(Cerami et al., 2012; Gao et al., 2013). TCGA data (Figure 1)
suggests that ∼10% of thoracic cancer patients would benefit,
making it comparable to ALK inhibitors in ADC according
to these datasets.

FUTURE DIRECTIONS AND AREAS
REQUIRING FURTHER STUDY

Throughout this review we have highlighted some avenues
for potential future research that currently require further
consideration, summarized briefly below. The YB-1/SOX2 axis
needs to be further investigated in lung cancer, particularly
in SCC and SCLC where the development of new therapeutic
strategies is most urgent. The feed-forward loop of YB-1
and Myc also requires further investigation in the context
of thoracic cancer. The roles of certain ncRNA in the
dysregulation of YB-1 are also still unclear, namely the
relationship between GAS5, miR-137 and YB-1 and the
potential DANCR/miR-216a/YB-1 loop. Also, the apparent
tumor suppressor function of GAS5 does not fit with its role
in promoting YB-1 translation, which is another area requiring
further attention.

While there is strong evidence supporting YB-1-driven
resistance to platinum chemotherapy in other cancers, a study
looking at the effect of YB-1 knockdown on cisplatin or other
platinum drug sensitivity in lung cancer or MPM cells is still
required. Also, while YB-1 has been shown to upregulate LRP
and MRP1, the effect of these interactions on cisplatin resistance
are yet to be determined. Determining the involvement of YB-
1 in thoracic cancer exosomes would also be of interest. And
while the mechanism underlying YB-1-driven growth in lung
cancer has been studied well, similar studies in MPM cells are yet
to be conducted.

Perhaps the most contentious area warranting further study
relates to the regulation of YB-1 localization. Determining
whether the proteolytic theory, phosphorylation theory or
both is correct remains an important determination to be
made. While these theories represent the most studied lines
of evidence covering YB-1 nuclear localization, other post-
translational modifications could also play a role and deserve
further attention, including the phosphorylation of Tyr281.
However, what upstream regulator phosphorylates YB-1 here
and whether this post-translational modification actually plays
an important role is not yet known. Determining whether
sumoylation and circadian-related YB-1 translocation occurs
and is important in lung cancer and MPM patients would
also be of interest.

The secretion of YB-1 into the extracellular space in response
to oxidative stress has been reported in other cell types but is yet
to be studied in thoracic cancers. If secretion does occur in these
contexts, it would be interesting to determine whether acetylation
of Lys301/304 is required, as in immune cells. Evaluating the
potential interaction between secreted YB-1 and Notch3 here

would also be interesting. It is also possible that secreted YB-1
could be used as a biomarker down the line, however, studies with
larger patient numbers are required to determine this. Regardless,
the evidence supports utilizing YB-1 as a prognostic tissue
biomarker, however, universal standardization of an appropriate
YB-1 antibody is would be favorable.

Finally, YB-1 remains an interesting target in thoracic cancer,
but further in vivo studies delivering YB-1-targeting drugs need
to be done before translation into humans can occur. This section
is summarized in Figure 6.

CONCLUSION

In summary, this review covers recent advances in the
understanding of YB-1 in cancer biology with a focus
on thoracic cancers. YB-1 plays an important role in the
malignant behaviors of lung cancer and MPM including
proliferation, invasion and metastasis. It also has been
shown to be involved in the maintenance and behavioral
regulation of CSCs. The demonstrated prognostic significance
of YB-1 and developments in the delivery of RNA-
based drugs mean that utilizing this multifunctional
oncoprotein in the management of thoracic cancer may soon
become a reality.
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