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Abstract
Lung adenocarcinoma (LUAD), the most common non-small-cell lung cancer, is char-
acterized by a dense lymphocytic infiltrate, which indicates that the immune system 
plays an active role in the development and growth of this cancer. However, no in-
vestigations to date have proposed robust models for predicting survival outcome 
for patients with LUAD in terms of tumour immunology. A total of 761 LUAD pa-
tients were included in this study, in which the database of The Cancer Genome Atlas 
(TCGA) was utilized for discovery, and the Gene Expression Omnibus (GEO) database 
was utilized for validation. Bioinformatics analysis and R language tools were uti-
lized to construct an immune prognostic model and annotate biological functions. 
Lung adenocarcinoma showed a weakened immune phenotype compared with ad-
jacent normal tissues. Immune-related gene sets were profiled, an immune prognos-
tic model based on 2 immune genes (ANLN and F2) was developed with the TCGA 
database to distinguish cases as having a low or high risk of unfavourable prognosis, 
and the model was verified with the GEO database. The model was prognostically 
significant in stratified cohorts, including stage I-II, stage III-IV and epidermal growth 
factor receptor (EGFR) mutant subsets, and was considered to be an independent 
prognostic factor for LUAD. Furthermore, the low- and high-risk groups showed 
marked differences in tumour-infiltrating leucocytes, tumour mutation burden, ane-
uploidy and PD-L1 expression. In conclusion, an immune prognostic model was pro-
posed for LUAD that is capable of independently identifying patients at high risk for 
poor survival, suggesting a relationship between local immune status and prognosis.
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1  | INTRODUC TION

Lung cancer is one of the most common causes of cancer deaths 
worldwide.1,2 For treatment purposes, lung cancers are catego-
rized as either non-small-cell lung cancer (NSCLC) or small cell 
lung cancer. Non-small-cell lung cancer comprises approximately 
85% of all lung cancers, with lung adenocarcinoma (LUAD) being 
the most frequently diagnosed histological subtype of NSCLC, 
followed by squamous cell carcinoma. The high morbidity rate of 
lung cancer is due to tobacco smoking, genetic alteration, outdoor 
pollution, indoor air pollution and other factors.3-5 Because LUAD 
is prone to metastasis at early stages, the prognosis for LUAD pa-
tients is usually poor, with an average 5-year survival rate of less 
than 20%.6 Although recent progress in targeted therapy and mo-
lecular pathology has enhanced clinical therapy, the 5-year overall 
survival (OS) rate of LUAD patients remains low.7,8 Hence, further 
understanding of the molecular mechanisms underlying tumori-
genesis and progression in LUAD may enhance the overall progno-
sis and treatment of this disease.

The immune evasion strategy utilized by tumour cells for 
evading host immune responses and maximizing the possibility 
for continued growth is a hallmark of cancer.9 Immune disorders 
in cancer are considered to promote oncogenesis and develop-
ment.10 Immune responses stimulated by cancer antigens, which 
should trigger the elimination of cancer cells, can be suppressed 
to offer an appropriate microenvironment for cancer growth.10 
Enormous efforts have been directed at understanding the inter-
action between the immune system and tumours, and significant 
success has been achieved in the form of tumour immune therapy 
to advance tumour treatment; however, this approach can be ap-
plied in only a subset of patients, as other patients either fail to 
respond or are unsuitable.11,12

Cancer immunotherapy has attracted considerable attention in 
recent years because the development of immune checkpoint block-
ade therapy can achieve durable, long-term responses in refractory 
malignancies, including lung cancers.13,14 The clinical development 
of immune checkpoint inhibitors in NSCLC began in patients being 
treated for metastatic diseases.15,16 At present, three immune check-
point inhibitors have received FDA approval as second-line NSCLC 
treatments (atezolizumab, pembrolizumab and nivolumab).17 These 
agents were also authorized in the European Union. Atezolizumab is 
an immune checkpoint inhibitor that targets programmed cell death 
ligand 1 (PD-L1), while pembrolizumab and nivolumab target pro-
grammed cell death 1 (PD-1).18 The immune response in the tumour 
microenvironment is now recognized as a significant factor that de-
termines tumour aggressiveness and progression, as well as respon-
siveness to immune-modulating agents. The densities and types of 
tumour-infiltrating immune cells, as well as their expression of cyto-
kines and immune genes, have been extensively studied as prognos-
tic biomarkers in lung cancers.19-21 Certain histopathologic patterns, 
such as intratumoral infiltration by cytotoxic lymphocytes, have also 
been linked to better responses in LUAD. Nonetheless, the molec-
ular features illustrating interactions between the immune system 

and cancer remain to be fully explored in terms of their prognostic 
potential in LUAD.

In this study, multiple gene expression datasets were combined 
to develop and validate an individualized immune prognostic model 
for LUAD on the basis of immune genes. To leverage the complemen-
tary value of clinical and molecular features, the immune prognostic 
model was combined with clinical features to build a composite prog-
nostic nomogram, enabling improved estimation of LUAD prognosis.

2  | MATERIAL S AND METHODS

2.1 | Gene expression data and clinical information

Level 3 raw counts of the RNA-seq data, tumour mutation bur-
den, aneuploidy scores and corresponding clinical data from a total 
of 535 patients with LUAD were acquired from the data portal of 
The Cancer Genome Atlas (TCGA) as of 16 January 2019. Clinical 
parameters, including gender, age and pathological stage, were also 
evaluated. Transcriptome profiling data of 226 patients with LUAD 
in the GSE31210 dataset from the GEO database were used for 
validation.22

2.2 | Identification of differentially expressed 
mRNAs (DEGs) in LUAD and adjacent normal tissues

To identify DEGs between adjacent normal tissues and LUAD, we 
performed differential expression analysis using the edgeR package 
(version: 3.26.5).23 The thresholds for screening DEGs were |log2 FC 
(fold-change) | > 2 and P < .01.

2.3 | Gene-set enrichment analysis

Gene-set enrichment analysis (GSEA) was conducted to explore 
whether immune functions, and the corresponding immune genes 
were significantly different between adjacent normal tissues and 
LUAD samples.24

2.4 | Immune prognostic model 
construction and validation

First, we normalized the RNA-seq expression value of the immune 
genes using log2 transformation. Then, we performed univariate Cox 
regression analysis to determine the relationship between patient 
survival and immune gene expression. Immune genes with P < .01 
were selected for least absolute shrinkage and selection operator 
(LASSO) Cox regression analysis. Next, using multivariate Cox re-
gression analysis based on the immune genes obtained from LASSO 
Cox regression analysis, in which we required selected genes to ap-
pear more than 990 times out of 1000 repetitions in total, we built 
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a formula to predict the risk score of each patient. X-tile software 
(version: 3.6.1) was used to identify the optimum cut-off value for 
dividing patients into low- and high-risk groups according to the 
highest χ2 value defined in the Mantel-Cox test.25,26 Afterwards, we 
conducted a log rank test to determine the difference between the 
low- and high-risk groups. We plotted a Kaplan-Meier OS curve for 
both groups and calculated the hazard rate (HR). Additionally, we 
conducted Cox multivariate analysis to test whether the immune 
prognostic model was independent of clinical characteristics, includ-
ing age, gender and pathologic stage, and we measured prognostic 
ability by calculating the area under the curve (AUC) of the receiver 
operating characteristic (ROC) curve.

2.5 | The evaluation of immune cells in LUAD

CIBERSORT, a deconvolution algorithm based on normalized gene 
expression profiles, can quantify the immune cell composition and 
has greatly expanded the potential of the genomic database.27 
Because CIBERSORT is superior to other methods, it has received 
increasing attention and has been successfully used to assess the 
composition of immune cells in liver and breast cancer.28,29 We uti-
lized CIBERSORT to assess the composition of 22 immune cells in 
the TCGA and GEO LUAD cohorts.

2.6 | Functional enrichment analysis

To explore the underlying biological processes and pathways 
of the immune genes, we utilized the Database for Annotation, 
Visualization, and Integrated Discovery (DAVID; version: 6.7) and 
KO-Based Annotation System (KOBAS; version: 3.0) to perform 
functional enrichment analysis, focusing on significantly enriched 
(P < .05) Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways and Gene Ontology (GO) biological processes.30,31

2.7 | Nomogram development and validation for 
prognostic risk prediction

To offer quantitative methods to clinicians to predict the 1-, 3-, and 
5-year survival probabilities of LUAD patients, a nomogram integrat-
ing a variety of clinical risk factors and the immune prognostic model 
was assembled. Then, validations, including discrimination and cali-
bration, were conducted. The discrimination of the nomogram was 
calculated by the C-index using a bootstrap method with 1000 resa-
mples. The concordance index (C-index) value was between 0.5-1.0, 
where 1.0 suggests a perfect capacity for correctly distinguishing 
outcomes with the model, and 0.5 suggests random chance. We 
graphically evaluated the nomogram calibration curve by plotting 
the prediction probability of the nomogram against the rates ob-
served. Overlap with the reference line showed that the agreement 
of the model was perfect.

3  | RESULTS

3.1 | Differentially expressed mRNAs in patients 
with LUAD

Analyses of mRNA expression profiles between adjacent normal tis-
sues and LUAD tissues identified 5774 DEGs in total (Figure 1A). 
Compared with normal lung samples, 4962 mRNAs were down-
regulated, and 812 were up-regulated in LUAD samples (Figure 1B; 
Table S1).

3.2 | A weakened immune phenotype in LUAD

Considering the different immune status between normal lung sam-
ples and LUAD samples, we initially utilized RNA-seq data for 5774 
DEGs from a total of 535 LUAD patients from the TCGA database to 
identify different immune biological processes and genes. Gene-set 
enrichment analysis analysis indicated that LUAD was significantly 
negatively related to 12 immune biological processes, indicating a 
weakened local immune response in the LUAD microenvironment 
(Figure 1C; Table S2). Among the 5774 DEGs, 353 immune genes 
were enriched in those 12 biological immune processes (Table S3). 
To validate the relationship between LUAD and immune biological 
processes, we extracted 353 immune genes for subsequent survival 
analysis.

3.3 | Establishment and evaluation of the immune 
prognostic model with the training dataset

To identify immune genes related to the survival of LUAD patients, 
univariate Cox regression analysis of 353 immune genes was per-
formed. We selected a set of 113 immune genes at a 0.05 signifi-
cance threshold (Table S4). The 113 immune genes were subjected 
to LASSO Cox regression analysis, and 2 immune genes were iden-
tified (Figure 1D,E). We then performed multivariate Cox regres-
sion analysis to establish an immune prognostic model for patients 
with LUAD on the basis of gene expression levels, as follows: risk 
value = (0.2518 × ANLN expression) + (0.0879 × F2 expression). 
The risk scores for patients were calculated, and patients were cat-
egorized as low risk or high risk according to the optimal cut-off. 
Low-risk patients had a longer OS than high-risk patients (P < .001; 
HR = 2.26; 95% confidence interval [CI] = 1.62-3.14; Figure 2A). The 
expression of the two immune genes and the distribution of risk 
scores for each patient were also analysed (Figure 2B). The gene ex-
pression levels of ANLN and F2 were significantly correlated with 
the risk scores, and these genes were significantly highly expressed 
in the high-risk group in the TCGA LUAD cohorts (Figure 2C-F). 
The ROC curves showed that the AUCs of the immune prognos-
tic model at 1, 2, 3 and 5 years were 0.7061, 0.6816, 0.6747 and 
0.6332, respectively (Figure 2G), indicating that the model has high 
sensitivity and specificity to predict the prognosis of LUAD patients. 



1236  |     LUO et aL.

Recently, Shukla et al32 proposed a prognostic model including 4 
genes (FRRS1, LINC00941, CD109 and RHOV) for OS prediction in 
LUAD patients. We calculated the C indexes to compare the prog-
nostic values of their model and our immune model. The C-index is 

the most commonly used performance measure for survival models; 
it ranges from 0.5 to 1 and is equal to the AUC.33 The higher the 
value of the C-index, the better the predictability of the model. The 
C-index of the immune prognostic model (0.6540) exceeded that of 

F I G U R E  1   Identification of prognostic immune genes. A, Volcano plot showing the differentially expressed genes (DEGs) between lung 
adenocarcinoma (LUAD) and adjacent normal tissues. B, Heatmap of DEGs. Rows represent DEGs, and columns represent samples. C, Gene-
set enrichment analysis of DEGs. D, Ten-time cross-validation for tuning parameter selection in the least absolute shrinkage and selection 
operator (LASSO) model. E, LASSO coefficient profiles of the 261 differentially expressed immune genes
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the previous model (0.6446), suggesting that our immune prognostic 
model had favourable efficacy for predicting both short- and long-
term prognosis.

3.4 | Validation and evaluation of the immune 
prognostic model with the validation dataset

To confirm the robustness of the immune prognostic model, the vali-
dation dataset (n = 226) was utilized for further validation analysis. 
In the validation dataset, we classified all patients into high-risk and 
low-risk groups using the same equation based on the optimal cut-
off value. Consistent with the results of the training dataset, patients 
with low-risk scores had markedly longer OS than high-risk patients 
(P < .001; HR = 2.98; 95% CI = 1.45-6.1; Figure 2H). Figure 2I shows 
the expression of the two immune genes and the distribution of risk 
scores for each patient in the validation dataset, demonstrating re-
sults similar to those of the training dataset. The expression levels 
of ANLN and F2 were significantly correlated with the risk scores, 
and these genes were significantly highly expressed in the high-risk 

group in the GEO LUAD cohorts (Figure 2G-M). Receiver operating 
characteristic analysis showed that the AUC of the immune prog-
nostic model reached 0.6802, 0.7549, 0.6574 and 0.6981 at 1, 2, 3 
and 5 years, respectively, suggesting that the proposed model per-
formed well in predicting 1-, 2-, 3- and 5-year OS with the validation 
dataset (Figure 2N).

3.5 | Validation of the immune prognostic model in 
clinically significant subsets

Stage I-II LUAD is considered early-stage disease and may be 
cured by adjuvant radio/chemotherapy and surgery. On the other 
hand, stage III-IV LUAD is considered advanced-stage disease and 
is characterized by unfavourable outcome, even with full-intensity 
multimodality therapy. Given the properties and clinical impor-
tance of early-stage LUAD, the immune prognostic model for pa-
tients with stage I-II LUAD was evaluated in the TCGA dataset. 
Low-risk patients had significantly favourable OS compared to 
the high-risk patients (P < .001; HR = 2.02; 95% CI = 1.32-3.08) 

F I G U R E  2   Survival analyses of lung adenocarcinoma (LUAD) patients in the TCGA training and GEO validation datasets. A, Kaplan-Meier 
analysis of the immune prognostic model in the TCGA training cohort. B, The distribution of the risk score of patients with LUAD and gene 
expression of ANLN and F2 in the TCGA training cohort. C, Correlation analysis of risk scores and gene expression of ANLN in the TCGA 
training cohort. D, Correlation analysis of risk scores and gene expression of F2 in the TCGA training cohort. E, Comparison of ANLN gene 
expression between the high- and low-risk groups in the TCGA training cohort. F, Comparison of gene expression of F2 between the high- 
and low-risk groups in the TCGA training cohort. G, The evaluation of the immune prognostic model in the TCGA training cohort. H, Kaplan-
Meier analysis of the immune prognostic model in the GEO validation cohort. I, The distribution of the risk scores of patients with LUAD 
and gene expression of ANLN and F2 in the GEO validation cohort. J, Correlation analysis of risk scores and gene expression of ANLN in the 
GEO validation cohort. K, Correlation analysis of risk scores and gene expression of F2 in the GEO validation cohort. L, Comparison of ANLN 
gene expression between the high- and low-risk groups in the GEO validation cohort. M, Comparison of gene expression of F2 between the 
high- and low-risk groups in the GEO validation cohort. N, The evaluation of the immune prognostic model in the GEO validation cohort. 
O, Kaplan-Meier survival analysis of stage I-II cases in the TCGA training cohort. P, Kaplan-Meier survival analysis of stage III-IV cases in 
the TCGA training cohort. Q, Kaplan-Meier survival analysis of epidermal growth factor receptor (EGFR) mutant cases in the TCGA training 
cohort
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with stage I-II LUAD (Figure 2O). We observed similar results in 
advanced-stage patients. Low-risk patients had a favourable prog-
nosis compared with high-risk patients (P = .003; HR = 2.09; 95% 
CI = 1.25-3.5; Figure 2P). Consistent with the above analyses, 
our proposed immune prognostic model was shown to be an in-
dependent factor in the survival of patients with LUAD. Because 
therapeutic epidermal growth factor receptor (EGFR) mutation 
frequency and the TKI agent response rate are high in LUAD in 
East Asia, immune prognostic model performance was analysed in 
patients with EGFR mutant status in the TCGA dataset. Patients 
in the low-risk group had significantly favourable OS compared 
with high-risk patients (P = .024; HR = 2.4; 95% CI = 0.88-6.51) 
in EGFR mutant LUAD who may receive EGFR-TKI as adjuvant 
therapy (Figure 2Q).

3.6 | Tumour immune landscape and genomic 
association

To further explore the correlation between the immune prognostic 
model and the immune response, B7 family-related metagenes, as 
well as seven previously studied inflammatory genes, were taken into 
consideration.34,35 The B7 family, interferon and STAT1 were found 
to be positively correlated with the risk score, while HCK, IgG, LCK, 
MHC-I and MHC-II were negatively correlated with the risk score 
(Figure 3A). In addition, the Microenvironment Cell Populations-
counter approach was used to assess the relationship between im-
mune cell populations and risk score.36 We found that the immune 
landscape was obviously different between low- and high-risk 

patients (Figure 3B). Patients in the low-risk group had a significantly 
higher proportion of B lineage cells, endothelial cells, myeloid den-
dritic cells, neutrophils and T cells, as well as a markedly lower pro-
portion of NK cells, compared with the high-risk group (Figure 3C).

PD-L1 (CD274) expression is a biomarker for selecting NSCLC 
patients for pembrolizumab treatment.37,38 Therefore, PD-L1 ex-
pression was investigated in patients stratified by the immune 
prognostic model. High-risk patients had markedly elevated PD-L1 
expression compared with low-risk patients (P < .001) and may re-
spond better and have better outcome when receiving pembroli-
zumab (Figure 3D).

Tumour mutation burden (TMB), meaning all the somatic mis-
sense mutations in a baseline tumour sample, serves as a predictor 
for predicting the efficacy of nivolumab.39 Patients with a high TMB 
have a higher response rate and favourable progression-free survival 
when receiving nivolumab treatment.39 The TMB of patients strat-
ified by the immune prognostic model was therefore investigated. 
The t test demonstrated a significant difference between the low-
risk and high-risk groups (P < .0001; Figure 3E).

Aneuploidy, also known as somatic cell copy number alteration 
(SCNA), has been proposed to drive oncogenesis and is widely found 
in human cancers. Aneuploidy is associated with reduced cytotoxic 
immune infiltration and tumour cell proliferation. High SCNA levels 
in cancers are associated with unfavourable survival in melanoma 
patients, and cancer SCNA scores are good predictors of survival 
after immunotherapy. Therefore, the aneuploidy of the patients with 
LUAD stratified by the immune prognostic model was investigated. 
High-risk patients had markedly higher aneuploidy scores than low-
risk patients (P < .001; Figure 3F).

F I G U R E  3   Immune profile related to the immune prognostic model. A, Association between risk score and immune response. B, 
Associations between risk score and immune cell populations. C, Relative proportion of immune cell expression in the high- and low-risk 
groups. D, The distribution of programmed cell death ligand 1 (PD-L1) expression in the high- and low-risk groups. E, The distribution of 
tumour mutation burden in the high- and low-risk groups. F, The distribution of aneuploidy scores in the high- and low-risk groups
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3.7 | The relationships of ANLN and F2 with 
immune cells

To explore which immune cells are associated with ANLN and F2, 
correlation analyses between immune cells and ANLN or F2 were 
performed. First, CIBERSORT was applied to assess the relative pro-
portions of 22 immune cells, presenting a comprehensive immune 
cell landscape of LUAD.27 Figure 4A,B shows the composition of 22 
immune cells in LUAD in the TCGA and GEO LUAD cohorts. Then, 
correlation analyses between immune cells and ANLN or F2 were 
conducted. The immune cells with correlation coefficients >.4 and 
P values <.05 in both the TCGA and GEO LUAD cohorts were con-
sidered to be associated with the investigated genes (Figure 4C). 
As a result, ANLN was associated with three immune cells (T cells 
CD4 memory activated, T cells regulatory (Tregs) and neutrophils; 
Figure 4D,E), and F2 was associated with three immune cells (Tregs, 
mast cells activated and neutrophils; Figure 4F,G).

3.8 | Identification of immune prognostic model-
related biological processes and pathways

To identify pathways underlying the immune prognostic model, differ-
ential expression analysis was performed on 353 immune genes be-
tween the low- and high-risk groups. Forty-five immune genes were 

highly expressed (|log2 FC | > 2 and P < .01) in the high-risk groups, and 
11 immune genes were highly expressed in the low-risk groups (|log2 
FC | > 2 and P < .01). Then, we performed functional enrichment anal-
ysis with the DAVID and KOBAS bioinformatics resources to explore 
the underlying biological function of these highly expressed genes in 
the high- and low-risk groups, respectively, revealing 143 enriched 
biological processes (Table S5) and 12 enriched pathways (Table S6) 
in the high-risk groups and 33 enriched biological processes (Table S7) 
and 39 enriched pathways (Table S8) in the low-risk groups (P < .05). 
The top three biological processes were defence response, regulation 
of response to external stimulus and response to wounding in the 
high-risk groups (Figure 5A; Table S5) and immune response, positive 
regulation of response to stimulus, and negative regulation of immune 
system process in the low-risk groups (Figure 5C; Table S7). The top 
three pathways were alcoholism, systemic lupus erythematosus and 
viral carcinogenesis in the high-risk groups (Figure 5B; Table S6) and 
regulation of lipolysis in adipocytes, prostate cancer and Ras signalling 
pathway in the low-risk groups (Figure 5D; Table S8).

3.9 | Relationship between the immune prognostic 
model and clinical parameters or patient outcome

To further understand the relationship between the immune prognos-
tic model and other clinical data, such as age, gender and pathologic 

F I G U R E  4   Relationship between immune cells and the immune genes. A, The landscape of immune cell infiltration of LUAD patients 
in the TCGA training cohort. B, The landscape of immune cell infiltration of LUAD patients in the GEO validation cohort. C, The left panel 
shows the intersection of immune cells that were significantly associated with the gene expression of ANLN from the TGCA and GEO 
datasets, respectively. The right panel shows the intersection of immune cells that were significantly associated with gene expression of 
F2 from the TGCA and GEO datasets, respectively. D, Correlation analyses between three immune cells and gene expression of ANLN in 
the TCGA training cohort. E, Correlation analyses between three immune cells and gene expression of F2 in the TCGA training cohort. 
F, Correlation analyses between three immune cells and gene expression of ANLN in the GEO validation cohort. G, Correlation analyses 
between three immune cells and gene expression of F2 in the GEO validation cohort
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F I G U R E  5   Enrichment analysis of the immune prognostic model. A, Functional enrichment analysis of the highly expressed genes in 
high-risk groups (showing the top 10 biological processes). B, Pathway enrichment analysis of the highly expressed genes in high-risk groups 
(showing the top 10 enriched pathways). C, Functional enrichment analysis of the highly expressed genes in low-risk groups (showing the 
top 10 biological processes). D, Pathway enrichment analysis of the highly expressed genes in low-risk groups (showing the top 10 enriched 
pathways)
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stage, we performed univariate and multivariate Cox analyses, which 
revealed that the immune prognostic model serves as an independ-
ent factor for predicting the prognosis of LUAD patients (Figure 6A).

3.10 | Development and validation of a 
predictive nomogram

To facilitate the use of our immune prognostic model, we estab-
lished a nomogram for predicting LUAD prognosis based on the 
multivariate Cox analysis in the TCGA database. Our nomogram 
contained two predictive factors: pathologic stage and immune 
prognostic model (Figure 6B). Each factor was assigned a score in 
accordance with the multivariate analysis. We derived the nomo-
gram score in total from the sum of the individual scores of all 
predictive factors. A high total score was predictive of low 1-, 3- 
and 5-year survival; however, a low total score showed the op-
posite pattern. The C-index of the established nomogram for OS 

prediction was 0.6621 (95% CI = 0.6182-0.7059), and a calibra-
tion plot demonstrated good agreement compared with the ideal 
model, indicating that our proposed nomogram has stability for 
predicting LUAD patient prognosis in clinical practice (Figure 6C). 
In addition, prediction accuracy was compared among the immune 
prognostic model, pathologic stage and the nomogram. The dis-
crimination performance of the nomogram was superior to that of 
the immune prognostic model or pathologic stage (Table 1). The 
AUC of the nomogram was also the largest (Figure 6D). These find-
ings show that compared with the individual prognostic factors, 
the nomogram is the optimal model for predicting the survival of 
LUAD patients.

4  | DISCUSSION

Lung adenocarcinoma, which constitutes approximately 30%-
40% of NSCLCs, is a global public health problem and the most 

F I G U R E  6   Nomogram for predicting the probability of overall survival (OS) in lung adenocarcinoma (LUAD) patients. A, Univariate and 
multivariate Cox analysis of clinical characteristics and the immune prognostic model. B, A nomogram for predicting OS in patients with 
LUAD. C, Calibration plot of the nomogram for the probability of OS at 1, 3 and 5 y. D, Comparison of time-dependent ROC curves among 
pathologic stage, immune prognostic model and the nomogram
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common cause of cancer-related death.40 Given the substantial 
heterogeneity (eg clinical, molecular, pathology, surgery and ra-
diology) observed in patients with LUAD, developing individual-
ized treatments and predicting outcome for patients with LUAD 
is challenging.41,42 Considering the significance of the immune 
environment in cancer progression, finding immune biomark-
ers to predict the prognosis of patients with LUAD is necessary, 
which might also play an important role in immune therapy.43 In 
the current study, clinical and mRNA expression data from LUAD 
level 3 RNA-seq were acquired from the TCGA database. Then, 
we performed differential expression analysis between normal 
lung and LUAD tissues. Gene-set enrichment analysis analyses of 
DEGs revealed that LUAD was strongly negatively related to 11 
immune-related gene sets, and 353 corresponding immune genes 
were extracted. We then used univariate, LASSO and multivari-
ate Cox regression analyses to identify survival-related immune 
genes. Next, we developed an immune prognostic model based 
on 2 immune genes to accurately predict LUAD patient progno-
sis. Receiver operating characteristic analysis suggested that the 
immune prognostic model has high statistical power. Additionally, 
multivariate Cox regression analyses revealed that the prognostic 
value of the immune prognostic model was independent of clinical 
characteristics. This model could be more routine and cost-effec-
tive in practice as it was based on targeted sequencing of specific 
genes and decreased the necessity for whole-genome sequencing.

A nomogram serves as a statistical tool with great clinical appli-
cations to assess the overall probability of specific outcome in in-
dividual patients. In the current study, a nomogram was built using 
pathological stage and the immune prognostic model to predict OS 
probability in LUAD patients. Calibration plots suggested that the 
actual prognosis closely corresponded to the predicted prognosis, 
indicating excellent prediction performance of the nomogram. At 
the same time, the nomogram was found to perform better than 
the individual risk factors according to AUC and C-index analyses. 
Importantly, the prediction power of the nomogram increases by 
6% (P < .001; C-index 0.6021 vs 0.6621) vs the conventional patho-
logic stage; thus, the nomogram might be routinely utilized in the 
future.

Two immune genes predicted in our study were previously 
shown to function as potential biomarkers. The anillin actin-binding 

protein (ANLN) gene is located on chromosome 7p14.2 and encodes 
a 1124 amino acid protein that contains four structural domains, 
including a RhoA-binding domain, a C-terminal pleckstrin homology 
domain and an actin- and myosin-binding domain.44,45 The ANLN 
protein localizes to the cytoplasm, nucleus, cell cortex, cleavage fur-
row and cytoskeleton and is expressed in the adult testis, placenta 
and spinal cord, as well as many foetal organs.46 ANLN was origi-
nally characterized as the human homolog of anillin, a Drosophila 
actin-binding protein present in the cortex following breakdown of 
the nuclear envelope, as well as in the cleavage furrow during cy-
tokinesis.47 Anillin plays a significant role in cell cycle progression, 
as well as in the assembly of the actin and myosin contractile ring 
separating the daughter cells.46 Importantly, anillin has been identi-
fied as a substrate of the anaphase-promoting complex/cyclosome 
(APC/C), which is a kind of ubiquitin ligase that controls mitotic 
progression.48 Thus, anillin is a conserved protein that functions in 
cytoskeletal dynamics in cytokinesis and cellularization. Previous 
studies have shown that anillin knockdown results in ingression 
of the cleavage furrow and cytokinesis failure in multinucleated 
monkey BS-C-1 cells.47 The relationship between carcinoma and 
cell cycle regulation is well known. ANLN has been shown to be a 
biomarker of unfavourable prognosis and is related to aggressive 
tumour phenotypes.49 Anillin plays a regulatory role in the cell cycle 
and an important role in the invasion of pancreatic and breast can-
cers.50,51 ANLN has been developed as a prognostic marker based 
on immunohistochemistry (IHC) and is clinically applicable to he-
patocellular carcinoma.52 Suzuki et al53 explored the importance of 
ANLN in lung cancers using cDNA microarrays and found that the 
growth of NSCLC was inhibited by ANLN small interfering RNAs. 
Moreover, the induction of exogenous ANLN overexpression en-
hanced the migratory capability of mammalian cells by interacting 
with RhoA. Univariate analysis of gene expression from 66 patients 
with squamous cell carcinoma found that ANLN had a significant 
prognostic ability, which was validated in an independent cohort 
study of 26 patients.53,54 Our results suggested that ANLN RNA is 
overexpressed in patients with LUAD. Patients with higher ANLN 
expression have a poorer prognosis.

The coagulation factor II (F2) gene encodes human prothrom-
bin and is located on the short arm of chromosome 11, at position 
11.2.55 The F2 gene has fourteen exons that span 21 kb, and the 
structural integrity of the gene is essential for viability. Mice lack-
ing prothrombin die prematurely at the embryonic stage because of 
bleeding complications.56 Single nucleotide polymorphisms (SNPs) 
in patients are usually related to moderate to serious bleeding phe-
notypes, while the G20210A mutation in the 3′ untranslated region 
of the F2 gene is a well-established risk factor for thrombophilia.57 
The interplay among cancer, thrombosis, and haemostasis is well 
known.57 Patients with tumours have a higher risk of venous throm-
boembolism, and certain coagulation factors are related to the de-
velopment of various types of cancers.57 F2 has been shown to be 
overexpressed and to act as a hub gene in colorectal cancer liver 
metastasis.58 In the present study, F2 was overexpressed in LUAD 
and was associated with poor prognosis in patients with LUAD. Our 

TA B L E  1   Comparison of predictive accuracy of the pathologic 
stage, immune prognostic model and nomogram

Models C-index (95%, CI) P-value

Pathologic stage 0.6021 (0.5626-0.6415) –

Immune prognostic 
model

0.6228 (0.5822-0.6634) –

Nomogram 0.6620 (0.6182-0.7059) –

Nomogram vs patho-
logic stage

– <.01

Nomogram vs immune 
prognostic model

– <.01
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immune prognostic model includes two immune genes that provide 
reference values for investigators and potential avenues for addi-
tional exploration from this perspective.

Correlation analyses showed that ANLN and F2 were signifi-
cantly related to Tregs and neutrophils in both the TCGA and 
GEO LUAD cohorts. Guo et al found that Tregs correlated with 
poor prognosis in LUAD, and Li et al found that the percentage of 
neutrophil infiltration was significantly higher in the high-risk im-
mune group than in the low-risk groups in non-squamous NSCLC, 
indicating that Tregs and neutrophils were risky immune cells for 
LUAD, which is in line with our research results.59,60 In our re-
search, ANLN and F2 were risky immune genes related to Tregs 
and neutrophils.

Our study has a few limitations. Although our study has the 
advantage of using massive cohorts from the TCGA and GEO da-
tabases to construct and validate the immune prognostic model, 
the present study nevertheless features a retrospective design. 
Hence, a prospective cohort is needed to validate our model. In 
addition, further functional studies are needed to explore the mo-
lecular functions of the two identified immune genes during LUAD 
progression.

To the best of our knowledge, our study is the first to identify and 
validate an immune prognostic model comprising two immune genes 
(ANLN and F2) in patients with LUAD, which is capable of serving as 
an independent prognostic marker for patients with LUAD, including 
early-stage LUAD. In addition, this model is capable of indicating the 
intensity of immune responses in the LUAD microenvironment and 
providing new clinical applications for LUAD, taking into account the 
immune target as well as immune-related treatment.
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