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Abstract
This is the first report of a NACC2- NTRK2 fusion in a histological glioblastoma. 
Oncogenomic analysis revealed this actionable fusion oncogene in a pediatric cer-
ebellar glioblastoma, which would not have been identified through routine diagnos-
tics, demonstrating the value of clinical genome profiling in cancer care.

1 |  INTRODUCTION

Pediatric brain tumors represent the most common solid child-
hood cancer and the leading cause of death among childhood 
cancers, with an age- adjusted incidence rate of 5.26 per 100,000 
in children 0- 14 years of age.1 The most common tumor types 
are medulloblastoma and pilocytic astrocytoma, while pediatric 
glioblastoma is comparatively rare, accounting for only 2.5% of 
childhood brain tumors, of which only ~ 5% arise in the cere-
bellum.2,3 Glioblastoma is associated with very poor outcomes, 
with a mean survival of approximately one year.4

The rapid expansion of oncogenomics has led to incorpora-
tion of molecular markers into the 2016 WHO CNS tumor clas-
sification that describes distinct subgroups such as the H3F3A 

K27M- mutant diffuse midline glioma.5 These tumors are often 
seen in the pons, thalamus, and spinal cord but have also been 
reported in the cerebellum, among other locations.6 Subsequent 
molecular analysis of over 1,000 high- grade pediatric gliomas 
gave further insight into the heterogeneity of H3/IDH- wild- type 
tumors, illustrating their divisibility into several prognostically 
distinct molecularly defined subgroups.7

Oncogenic gene fusions are increasingly recognized as 
drivers in a wide range of cancer types, with estimates that 
20% of cancer morbidity may be attributable to fusion- driven 
malignancies.8 With the recent success of drugs like crizo-
tinib,9 gene fusions are generating significant interest as an 
avenue for targeted personalized oncology. However, tradi-
tional methods of fusion identification, such as FISH and 
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RT- PCR, are inadequate for the large- scale identification 
of novel fusions, highlighting the importance of clinical se-
quencing and bioinformatics.10

The Neurotrophic Receptor Tyrosine Kinase genes 
NTRK1- 3 encode for the tropomyosin receptor kinase (TRK) 
proteins A- C, a family of receptor tyrosine kinases that are in-
volved in the maturation of the nervous system, through their 
roles in neuronal differentiation, proliferation, and migra-
tion, as well as synapse development.11 The primary TRKB 
ligand is brain- derived neurotrophic factor, the binding of 
which leads to receptor dimerization, auto- phosphorylation, 
and downstream activation of several potential pathways, 
including PI3K- AKT and RAS- MAPK. NTRK fusions have 
been implicated in numerous cancer types, and recent phase 
1/2 basket trials using the pan- TRK inhibitor Larotrectinib 
in both children and adults have demonstrated positive re-
sults.12,13 Activating NTRK fusions are only seen in 5% of 
pediatric high- grade gliomas; however, half of these are in 
children under age three.14

2 |  CLINICAL HISTORY

An eleven- month- old girl presented with a three- week his-
tory of head tilt to the right side, irritability, and develop-
mental regression, and a one- week history of daily emesis. 
She was no longer cruising and had significantly decreased 
motor activity. Her fontanels were open and an ultrasound 
showed dilated 3rd and 4th ventricles. A subsequent MRI re-
vealed a large (40 × 57 × 47 mm) ring- enhancing posterior 
fossa mass, causing significant obstructive hydrocephalus 
(see supplemental Figure  S1) and multiple satellite lesions 
in the posterior fossa, measuring up to 16 mm. There was no 
evidence of spinal disease on imaging, and the CSF was free 
of malignant cells. Pathology reported a glioblastoma and cy-
togenetics demonstrated homozygous CDKN2A loss with no 
other driver mutations identified by immunohistochemistry. 
A postoperative MRI showed a remaining satellite nodule 
above the resection cavity, with the majority of the left cer-
ebellar tumor resected. Family history was negative for other 
CNS tumors, and genetic testing for neurofibromatosis type I 
(NF1) was negative.

Primary treatment consisted of a left occipital craniotomy 
for subtotal resection of the tumor, which was complicated 
by significant blood loss and hemodynamic instability. This 
was followed by four cycles of induction chemotherapy with 
Vincristine, Carboplatin, and Temozolomide, per Head Start 
III regimen C.15 Carboplatin was reduced by 50% during 
cycle 4 due to bilateral high- frequency hearing loss. She un-
derwent subsequent consolidation chemotherapy with high- 
dose Carboplatin and Thiotepa with autologous stem cell 
rescue. The disease was stable in the resection cavity, but a 
second lesion (19 x 8 x 8 mm) was identified in the vermis. 

A biopsy from the resection cavity was obtained during the 
second- look surgery, six months after primary diagnosis, and 
submitted for genomic analysis.

Despite the identification of a NTRK gene fusion, the 
family decided against enrollment in an NTRK inhibitor 
clinical trial. Instead, the patient received a course of 
proton beam radiation therapy (total dose of 50.84  Gy), 
followed by a maintenance course of Temozolomide and 
Lomustine.

The patient is now three years old and at most recent fol-
low- up, over 2 years after initial diagnosis, is in disease re-
mission with stable follow- up imaging. She attends daycare 
and wears hearing aids for her hearing loss. Her motor, fine 
motor, and social development are excelling with a Lansky 
Play- Performance score of 100.

3 |  RESULTS

3.1 | Pathology

Histopathology from the initial resection (Figure  1A- F) 
showed a moderate to highly cellular tumor infiltrating cere-
bellar white matter and cortex, composed of highly pleomor-
phic tumor cells in a fibrillary background. Numerous mitotic 
figures were present alongside pseudopalisading necrosis 
and microvascular proliferation. There were no features sug-
gestive of a low- grade precursor.

Immunohistochemistry (IHC) showed strong GFAP posi-
tivity, with a high Ki- 67 index. IDH R132H, BRAF V600E, 
and H3F3A K27M were negative, p53 was focally positive, 
and ATRX and INI1 expression were retained. Cytogenetic 
analysis demonstrated homozygous deletion of CDKN2A 
on chromosome 9. Sections from the recurrent tumor 
(Figure  1G- H) exhibited similar morphology, but with de-
creased mitotic activity and Ki- 67 staining, and the absence 
of necrosis or microvascular proliferation. Subsequent PD- L1 
IHC (SP142 antibody), confirmed the molecular testing re-
sults and demonstrated strong membranous positivity in both 
the initial tumor and recurrence.

3.2 | Molecular

Whole genome sequencing (WGS) data showed a homozy-
gous deletion of both CDKN2A and CDKN2B, suggesting a 
dysregulated cell cycle. Both genomic and transcriptomic 
data showed a NACC2:NTRK2 fusion, combining exons 
1- 4 of NACC2 with exons 15- 21 of NTRK2 (Figure  2), 
with a one- copy gain for each gene. Notably, a similar 
NACC2:NTRK2 e4:e13 fusion has been reported in pilo-
cytic astrocytoma.6 This NACC2:NTRK2 e4:e15 fusion 
contained the kinase domain of NTRK2, while losing its 
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ligand binding domain, suggesting constitutive activation of 
NTRK2. Therefore, NTRK2 inhibition was recommended as 
a therapeutic option.

Transcriptomic results revealed aberrant gene expression 
in several pathways. When compared to TCGA glioblastoma 
samples, a high percentile of expression was found in JAK1, 
JAK2, JAK3, and STAT1 in the JAK- STAT pathway. In the 
IGF signaling pathway, IGF1 and IGF2 showed high expres-
sion levels, as did their receptor, IGF1R, and downstream 
substrates, IRS1 and IRS2. Several growth factors and their 
receptors, such as PDGFRB, NFGR, ALK, RET, and MET 
were also highly expressed.

Interestingly, this case showed a very high expression 
of CD274 (PD- L1), which was later confirmed by IHC 
(Figure 1F and 1H). The mutation load of this case was low, 
at only 22 mutations. We did not find a high score of T cells 
as predicted by Cibersort,16 so the cause of the high expres-
sion of this gene remains unclear.

4 |  DISCUSSION

This clinical case report of a multifocal cerebellar glio-
blastoma in an eleven- month- old girl has several points of 

F I G U R E  1  Histology from the original 
tumor (A- F) and recurrence (G- H). 1A) 
Pseudopalisading necrosis (H&E, 100x). 1B) 
Microvascular proliferation (H&E, 200x). 
1c) Routine staining and high magnification 
reveal pleomorphic tumor astrocytes and an 
atypical mitotic figure (H&E, 400x).  
1d) GFAP immunohistochemistry reveals 
strong reactivity in tumor cells (200x).  
1E) The Ki67 proliferative index is high and 
estimated at 30%- 40% (200x).  
1F) Immunoreactivity for PDL1 is strong in 
the tumor cells (right) and negative in the 
adjacent molecular layer of the cerebellar 
cortex (200x). 1G) Pleomorphic tumor 
astrocytes in the recurrent tumor (200x). 
1H) PDL1 immunoreactivity remains strong 
in the tumor cells (200x)

(A) (B)

(C) (D)

(E) (F)

(G) (H)
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interest. Glioblastoma carries a very poor prognosis and is 
rare in children, particularly when localized to the cerebel-
lum. As such, this patient was enrolled into the BC Cancer 
Personalized OncoGenomics (POG) trial, leading to the iden-
tification of potentially targetable mutations that would not 
have been discovered during routine workup. Ultimately, a 
targeted molecular approach to treatment was not pursued by 
the family, and the patient received standard treatment at our 
institution for infants with high- grade brain tumors. Despite 
receiving standard treatment, the patient was doing very 
well at last follow- up, over two years after initial diagnosis. 
This favorable preliminary outcome of glioblastoma is note-
worthy and raises the possibility of an underlying favorable 
tumor biology.

In pediatric high- grade gliomas, H3F3A mutations are 
the most common driver7; however, our case demonstrates a 
novel molecular profile. The major findings were an NTRK 
fusion and upregulation of PD- L1 (as per transcriptomic data 
and IHC), both of which represent options for targeted ther-
apy in clinical trials. The NACC2:NTRK2 fusion, resulting 
from a complex inversion on chromosome 9, has been pre-
viously reported in a pilocytic astrocytoma.17 This fusion 
contains the kinase domain of NTRK2 and a 5’ dimerization 
domain, likely leading to constitutive ligand- independent 
activation of the protein product. Multiple NTRK inhibitors 
are in clinical trials, with some examples of successful use 
in brain tumors. For example, a heterogeneous glioblastoma 
in an adult, driven in part by a EML4- NTRK3 fusion, was 
treated by Larotrectinib and exhibited a significant response 
in portions of the tumor.18

There is evidence that PD- L1 is often expressed in glio-
blastomas, with reports of 61%- 88% of cases demonstrating 
some degree of staining.19,20 Several checkpoint inhibitors 
have been approved, predominantly for use in melanoma 
and nonsmall cell lung cancer, and evidence from animal 
studies indicates that this treatment may impact glioblasto-
mas.21 While the first phase- 3 clinical trial of Nivolumab 
in recurrent glioblastoma failed to prolong overall survival 
compared with Bevacizumab, several other clinical trials 
are in progress assessing checkpoint inhibitors, in combi-
nation with various other treatments.22 Despite the success 
that checkpoint inhibitors have had in treating non- CNS 
tumors, there are several challenges to adapting immune- 
onocologic strategies to glioblastomas, including the 
blood- brain barrier, immunosuppressive tumor microenvi-
ronment, global immune dysfunction in these patients, and 
intratumoral heterogeneity.

The analysis by Mackay et al of over 1000 pediatric high- 
grade gliomas identified a set of H3/IDH1- wild- type cases 
that had similar methylation profiles to pleomorphic xanth-
oastrocytoma (PXA) or low- grade gliomas (LGG).7 These 
tumors were predominantly hemispheric, although some 
were seen in the cerebellum, and had improved survival, par-
ticularly in children under 12 months. Interestingly, our case 
demonstrates changes associated with both groups, as the 
PXA- like tumors had frequent CDKN2A/B deletions, while 
a number of LGG- like tumors had NTRK fusions. The possi-
bility that our case belongs to one of these groups provides a 
reasonable biological explanation for the prolonged survival 
in an unequivocal histologic glioblastoma.

F I G U R E  2  Putative fusion- inversion event. The 5' (in the fusion) transcript NACC2- 001(ENST00000371753) from the gene 
NACC2(ENSG00000148411) on the reverse strand is drawn top left with its corresponding breakpoint at 9:138 905 045. The 3' (in the fusion) 
transcript NTRK2- 001(ENST00000323115) from the gene NTRK2(ENSG00000148053) on the forward strand is drawn top right with its 
corresponding breakpoint at 9:87 482 158. Exons are drawn to scale relative to other exons in the same drawing. Introns are scaled to make up 
approximately ¼ of the final drawing. Domain(s) featured in the above figure(s) are labeled by their various external identifiers as follows BEN_
domain(PF10523); BTB_POZ(PF00651); Ig_I- set(PF07679); LRR- contain_N(PF01462); Prot_kinase_cat_dom(PF00069); Ser- Thr/Tyr_kinase_
cat_dom(PF07714)
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5 |  METHODS

For full methodology, please see the Supplemental 
Information. Histologic slides were prepared by standard 
techniques using the Ventana BenchMark XT Autostainer. 
PDL1 immunohistochemistry was performed using the pri-
mary clone SP142 as described previously.23 Molecular 
testing was done using frozen tissue and peripheral blood 
as a normal comparator. DNA and RNA sequencing was 
performed using the Illumina HiSeq platform v3, with ad-
ditional targeted deep sequencing using the Ion Ampliseq on-
cogene panel platform and the IonTorrent PGM sequencing 
platform. Bioinformatic analysis was performed using meth-
ods previously described by our group.24 WGS identified 
somatic mutations, copy number changes, loss of heterozy-
gosity, and structural variants. RNA sequencing confirmed 
the genomic findings from WGS and identified aberrant gene 
expression in comparison to the TCGA glioblastoma cohort. 
Additionally, RNA sequencing data from normal brain tis-
sue from the Illumina Bodymap were used to calculate fold 
change of gene expression relative to normal.
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