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Soil organic carbon (SOC) is a key component of the global carbon cycle, yet it is not

well-represented in Earth systemmodels to accurately predict global carbon dynamics in

response to climate change. This novel study integrated deep learning, data assimilation,

25,444 vertical soil profiles, and the Community Land Model version 5 (CLM5) to

optimize the model representation of SOC over the conterminous United States.

We firstly constrained parameters in CLM5 using observations of vertical profiles of

SOC in both a batch mode (using all individual soil layers in one batch) and at

individual sites (site-by-site). The estimated parameter values from the site-by-site

data assimilation were then either randomly sampled (random-sampling) to generate

continentally homogeneous (constant) parameter values or maximally preserved for their

spatially heterogeneous distributions (varying parameter values to match the spatial

patterns from the site-by-site data assimilation) so as to optimize spatial representation

of SOC in CLM5 through a deep learning technique (neural networking) over the

conterminous United States. Comparing modeled spatial distributions of SOC by CLM5

to observations yielded increasing predictive accuracy from default CLM5 settings (R2

= 0.32) to randomly sampled (0.36), one-batch estimated (0.43), and deep learning

optimized (0.62) parameter values. While CLM5 with parameter values derived from

random-sampling and one-batch methods substantially corrected the overestimated

SOC storage by that with default model parameters, there were still considerable
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geographical biases. CLM5 with the spatially heterogeneous parameter values optimized

from the neural networking method had the least estimation error and less geographical

biases across the conterminous United States. Our study indicated that deep learning in

combination with data assimilation can significantly improve the representation of SOC

by complex land biogeochemical models.

Keywords: soil organic carbon representation, Earth system model, data assimilation, deep learning, Community

Land Model version 5 (CLM5), soil carbon dynamics

INTRODUCTION

Soil is a vast carbon reservoir in terrestrial ecosystems. It stores
more than three times as much organic carbon as terrestrial
vegetation does (Ciais et al., 2014). Due to its large reserve, a
small change in soil organic carbon (SOC) potentially results in
strong regulation of the global carbon cycle and its feedbacks
to climate change (Friedlingstein et al., 2006; Luo et al., 2015).
It is essential that Earth system models (ESMs) can reliably
represent historical and current soil carbon dynamics so that
they can realistically predict future changes in the land carbon
cycle (Le Quéré et al., 2018).

Presently, soil carbon dynamics simulated by ESMs are highly
variable and fit poorly with observations (Luo et al., 2015).
Modeled global soil carbon storage differs by up to 6-fold among
11 models in the Coupled Model Intercomparison Project phase
5 (CMIP5) (Todd-Brown et al., 2013). None of the 11 models
reproduces the spatial distribution of SOC stocks presented in the
Harmonized World Soil Database (HWSD) (Luo et al., 2015). In
the Multi-scale Synthesis and Terrestrial Model Intercomparison
Project (MsTMIP), an ensemble of 10 terrestrial biosphere
models showed a wide range in estimated global SOC storage in
2010, from 425 to 2,111 Pg C (1 Pg= 1015 g) (Tian et al., 2015).

It has been suggested that uncertainty in simulating
SOC dynamics in ESMs may result from variations in
parameterization in addition to model structure and external
forcings (Luo et al., 2009, 2016; Brovkin et al., 2013; Lovenduski
and Bonan, 2017; Bonan and Doney, 2018). Different parameter
values can strongly influence the projection of SOC dynamics
among different models or within the same model (Luo et al.,
2016). Parameter values in the current generation of ESMs are
mostly determined on an ad hoc basis and may be derived
from the results of field experiments, other models, or informed
from scientific or gray literature (Luo et al., 2001). It is
largely untested whether or not the ad hoc parameterization is
representative of the system properties to be simulated. Data
assimilation techniques have been used to estimate parameter
values from observations (Luo et al., 2003, 2016). Parameter
values constrained by data assimilation can improve ESM
simulation of SOC compared to default parameter values. For
instance, the global representation of SOC distribution in the
Community Land Model version 3.5 (CLM3.5) compared to the
HWSD database was improved (explained variation increased
from 27 to 41%) by constraining model parameters with a
Bayesian Markov Chain Monte Carlo (MCMC) data assimilation
method (Hararuk et al., 2014).

With the ever-increasing stream of high quality geospatial
data and developing data-processing approaches, more
comprehensive field-measured data and innovative methods
are called in improving the representation of carbon dynamics
in ESMs (Reichstein et al., 2019). Although the HWSD has
been used to constrain models (Hararuk et al., 2014), it is a
data product generated through harmonization of data points
from soil survey (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). The
harmonization itself potentially introduces significant errors to
the data product. Wu et al. (2019) showed that there is a limited
capacity to further improve ecosystem model skill for carbon
cycle assessment when using upscaled observational datasets.
This finding suggests that methods that can directly utilize point
observations rather than upscaled data products are preferable.
To avoid any errors introduced in generating maps from point
data, it is highly desirable to assimilate the original point data
instead of data products to constrain models. Meanwhile, new
techniques such as deep learning can improve the performance
of ESMs with deluge Earth system data (Reichstein et al., 2019).
By constructing computational models with multiple processing
layers and allowing the models to learn representations of
data from multiple levels of abstraction (LeCun et al., 2015),
deep learning techniques have promising applications in Earth
system science, such as pattern classification, anomaly detection,
regression, and space- or time-dependent state prediction
(Reichstein et al., 2019). Exploration is warranted on how
to properly employ deep learning techniques in reducing
uncertainties of simulated carbon dynamics in ESMs.

This study presents an innovative method, via combined
data assimilation and deep learning, that can be used to
optimally represent SOC in a complex land biogeochemical
model (CLM5) with an extensive dataset of vertical soil profiles
across the conterminous United States. We first applied two
data assimilation schemes (one-batch and site-by-site) to 25,444
vertical soil profiles with the matrix form of CLM5. In the
one-batch data assimilation, we used all the 25,444 profiles as
one batch to estimate parameter values of CLM5 (assuming
parameters to be spatially constant). In the site-by-site data
assimilation, one set of parameter values of CLM5 was estimated
from one vertical SOC profile at each site. Three methods were
then conducted to represent the spatial and vertical distribution
of SOC by CLM5 across the conterminous United States. The
one-batch method used the optimized parameter values from
one-batch data assimilation for each grid-cell in CLM5 to
generate continental SOC distributions. The site-level parameter
values optimized in the site-by-site data assimilation were
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assembled and randomly sampled to generate parameter values
for each grid-cell and produce continental SOC distributions
(random-sampling method). In the deep learning method,
parameter values estimated from the site-by-site data assimilation
were maximally preserved for their spatial distributions through
a trained neural network so that modeled SOC distributions over
the conterminous United States best represent those contained
in observations. In particular, we highlighted the potential of
hybridizing data assimilation and deep learning in advancing the
study of global carbon cycle in the big data era.

MATERIALS AND METHODS

Description of CLM5 Model
The Community Land Model version 5 (CLM5) is the latest
version of CLM models (Lawrence et al., 2018). Its soil carbon
module is similar to that in CLM4.5 (Koven et al., 2013), except
that it has an option to change the number of soil layers from
a default of 20. In this study, we used ten soil layers with a
vertical transformation among carbon pools from the surface
to a maximum depth of 3.8m as in CLM4.5. The soil carbon
component of CLM5 includes carbon transfer among four litter
pools (coarse woody debris, metabolic litter, cellulose litter, and
lignin litter) and three soil organic carbon pools (fast, slow, and
passive SOC) in each layer over 10 layers, totaling 70 pools.
The thickness of soil layers increases exponentially from the
surface layer (1.75 cm) to deep layers (151 cm), with the total
depth of 3.8m over the 10 layers (Figure S1). Vertical carbon
transfer between soil layers only occurs among the adjacent
layers and represents both diffusive and advective carbon flux
transportation as such caused by bioturbation and cryoturbation.
The baseline advective rate of carbon flux is set as 0m/yr in CLM5
as a default, and this was used for our study as well. A detailed
description of belowground biogeochemical processes in CLM4.5
and CLM5 is available in Koven et al. (2013) and Lawrence et al.
(2018), respectively.

The original CLM5 was converted to a matrix equation by
reorganizing carbon balance equations in the original model to
the matrix form (Xia et al., 2013; Luo et al., 2016, 2017). The
construction and validation of the matrix equation of model
CLM4.5 have been described in details (Huang et al., 2018). The
matrix equation has 70 carbon state variables [X(t)] and describes
carbon transfer among the 70 pools as:

dX(t)

dt
= Bu (t) − Aξ (t)KX (t) − V (t)X (t) (1)

where B is a vector (70 × 1) of partitioning coefficients from
C input to each of the pools (unitless), and u(t) is C input rate
(g C m−3 day−1). A represents the allocation coefficients among
litter and soil pools (unitless), including the transfer coefficients
from four litter pools to three soil carbon pools as well as the
transfer coefficients of SOC among soil carbon pools in the same
layer. ξ (t) represents the effects of environmental variables on
decomposition of litter and soil (unitless). It includes scalars
of temperature (ξT), soil water potential (ξW), and depth (ξD).
K indicates the decomposition rate of SOC in different litter

and soil carbon pools (day−1). Furthermore, V(t) represents
SOC mixing among vertical soil layers through cryoturbation
or bioturbation (day−1). t in parentheses indicates that the
corresponding element is time-dependent. The detailed matrix
representation of each part of Equation 1 is available in Huang
et al. (2018). By assuming a steady state of the carbon cycle in the

system ( dX(t)dt = 0), the SOC content of each carbon pool at each
layer can be calculated as:

X (t) = [Aξ (t)K + V (t)]−1
Bu (t) (2)

Data Sources
This study used all the SOC profiles in the
conterminousUnited States from the World Soil Information
Service (WoSIS) dataset. WoSIS (www.isric.org) is a worldwide,
quality-assessed, georeferenced soil dataset (Batjes et al., 2016,
2017). For SOC, the depth of vertical profiles varies from the soil
surface (at the top of organic or mineral soil material) of the land
to a depth of more than 3 meters across sites. The geographical
locations of all the soil profiles and the number of layers of
each profile are as shown in Figure S2. A total of 26,509 soil
profiles with a total of 240,148 layers at different depths in the
conterminous United States were available for our study.

In addition, we used the mean annual net primary
productivity (NPP), soil temperature, and soil water potential to
drive the data assimilation and SOC distribution representation.
The NPP data is from the MODIS NPP dataset (DAAC, 2018).
We took the mean value from 2000 to 2014 of the record.
Mean annual soil temperature and soil water potential were
obtained from the output of CLM5 model. After running
the model to a steady state by the pre-industrial climate
forcing (I1850CRUCLM45BGC), we collected 10-year records of
mean annual soil temperature and soil water potential of the
conterminous United States. The original CLM5 model was run
at the resolution of 1.2◦ (latitude) × 2.5◦ (longitude). The final
outputs were interpolate into the resolution of 0.5◦ × 0.5◦.

We used two sets of global SOC data, WISE30sec (Batjes,
2016) and SoilGrids250m (Hengl et al., 2017), as references
to compare with spatial and vertical distributions of SOC
obtained from our study over the conterminous United States.
WISE30sec is an updated version of the dataset HWSD
(FAO/IIASA/ISRIC/ISSCAS/JRC, 2012), generated by using
traditional mapping methods at a resolution of 30 by 30
arc sec. SoilGrids250m is a global gridded soil information
dataset generated by using machine learning techniques at 250m
resolution. We took data of SOC content over three depth
intervals from these two datasets, 0 to 30, 0 to 100, and 0 to
200 cm. All the original data with high resolution was resampled
to a resolution of 0.5 by 0.5 degrees.

Algorithm of Bayesian Markov Chain
Monte Carlo Method
According to Bayes’ Theorem, Bayesian probabilistic inversion
(Xu et al., 2006; Craiu and Rosenthal, 2014) can be expressed as:

p (θ |x) =
f (x|θ) p(θ)

p(x)
=

f (x|θ) p(θ)
∫

p(θ)f (x|θ)dθ
(3)
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where p(θ) is the prior probability density function of parameter
θ , representing the empirical knowledge before the observation.
F(x|θ) is the conditional probability density of observations x

given θ . P(x) is the probability of observations x. p(θ |x) is the
posterior probability density function of parameters θ . For a
given set of observation, posterior distribution of parameter θ is
in proportion with the product of p(θ) and f (x|θ):

p (θ |x) ∝ f (x|θ) p(θ) (4)

Given the assumption of normality and dependency of
prediction errors, the conditional probability density function
of observation x on θ can be expressed as in Equation 5.1
(Sambridge and Mosegaard, 2002):

f (x|θ) = Aexp (−Bφ (m)) (5.1)

φ (m) =

k
∑

i=1

(zi − xi)
2

2σ 2
i

(5.2)

where A and B are constants, φ is a misfit function (cost
function), and m represents the model used in this study. The
misfit function can be further expressed as Equation 5.2 (Hararuk
et al., 2014), where zi denotes the modeled results, xi represents
the observations, σi is the standard deviation of the observations,
and k is the number of observations. Considering the quantitive
uncertainty assessment of SOC content is absent in WoSIS
dataset, we assumed a standard deviation of 30% of the reported
value at each site (Harmon and Challenor, 1997).

We applied an adaptive Metropolis algorithm to generate
posterior distributions of parameters (Haario et al., 2001).
A parameter chain was generated by a proposal distribution
(prior distribution). The newly proposed parameter value would
be accepted with an acceptance probability of p(θk−1|θnew)
(Marshall et al., 2004):

p
(

θk−1|θnew
)

= min







1,
f
(

x|θnew
)

p
(

θnew
)

f
(

x|θk−1
)

p
(

θk−1
)







(6.1)

p
(

θk−1|θnew
)

= min
{

1, exp
[

−
(

φnew − φk−1

)]}

(6.2)

where θnew is the newly proposed parameter value and θk−1 is
the (k−1)th accepted parameter value. Equation 6.2 is equivalent
to Equation 6.1 after substituting equations in Equation 5 to
Equation 6.1. The value of the acceptance probability was then
compared with a value u which was randomly sampled from
a uniform distribution U[0, 1]. Parameter value θnew would be
accepted if p(θk−1|θnew) ≥ u; otherwise θk was set to θk−1.

We used two proposal distributions (prior distributions) in
the adaptive Metropolis algorithm. First, a test run triggered by
a uniform distribution was conducted. Parameter values were
proposed uniformly within a prior range (Haario et al., 2001; Xu
et al., 2006; Hararuk et al., 2014):

θnew = θk−1 + r
θmax − θmin

D
(7)

where θmax and θmin are the upper and lower limits of parameter
values (Table S1). R is a uniformly distributed random variable
over [−0.5, 0.5]. D is a coefficient controlling the step size of the
newly proposed parameter value. When D = 5, the maximum
step size of the newly proposed parameter values will be 1/10
of the range between the lower and upper limits. Second, a
multivariate Gaussian distribution was assumed for parameters
in the formal run of the adaptive Metropolis algorithm. The
newly proposed parameter values would depend on (k−1)th
accepted parameter values θk−1 as means of the multivariate
Gaussian distribution and covariance Ct = Ct(θ0, . . . , θt−1):

Ct =

{

C0 t < t0
sdcov (θ0, . . . , θt−1) + sdεId t ≥ t0

(8)

where covariance matrix C0 was calculated based on the accepted
parameter values after the test run, sd is a coefficient that depends
only on the dimension of parameters d, which was set to be
2.382/d for the theoretically most effective acceptance rate of
0.234 (Gelman et al., 1996; Rosenthal, 2011), ε is a constant with
a very small value, and Id represents the d–dimensional identity
matrix. The index t0 > 0 was selected for the length of an initial
period in the formal run.

Theoretically, the adaptive Metropolis algorithm has correct
ergodic properties (Haario et al., 2001). Therefore, the parameter
value chain created by adaptive Metropolis algorithm can
converge to a unique stationary distribution (Spall, 2005; Xu
et al., 2006). In our study, we used the Gelman-Rubin (G-R)
diagnostic method to test the convergence of three independent
runs. If parameter chains have reached convergence, the within-
run variation should be roughly equal to the between-run
variation (Gelman and Rubin, 1992). The within-run and
between-run variation are expressed as:







Bi =
N

K−1

∑K
k=1

(

c.,ki − c.,.i

)2

Wi =
1

K(N−1)

∑K
k=1

∑N
n=1

(

cn,ki − c.,ki

)2 (9)

where i denotes parameters investigated in this study, K is

the number of parallel runs, N is the length of each run, cn,ki
represents the nth accepted value of parameter i in the kth parallel
run after the burn-in period, and the length of burn-in period was
set to be half of the accepted parameter chain. The G-R statistics
is then defined as:

GRi =

√

Wi (N − 1)/N + Bi/N

Wi
(10)

Once the convergence is reached, Gri should approximately
approach 1.

Methods of Generating SOC Distributions
We explored three different methods to optimize parameter
values in CLM5 and generate the spatial and vertical distributions
of SOC across the conterminous United States. Two data
assimilation schemes (one-batch and site-by-site) were first
applied. The one-batch method was then applied directly based
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FIGURE 1 | Schema of integrating big data into SOC distribution maps by CLM5. In data assimilation (A), we used NPP, soil temperature, and soil water potential as

model inputs to drive the CLM5 model. The model output (i.e., analytical solution of vertical SOC content calculated through Equation 2 under the steady state

assumption) will be compared with the observed SOC content in the data assimilation framework, the results of which will further guide the adjustment of parameter

values of CLM5 to improve model representation of SOC distribution. The figure was adapted from https://www.hzg.de/institutes_platforms/cosyna/models/data_

assimilation/index.php.en. Two data assimilation methods were used and were further developed to generate SOC distribution maps across the conterminous

United States (B). Optimized parameter values at individual sites in the site-by-site method were either randomly sampled to generate the continentally homogeneous

parameter distribution (i.e., all the sites use the same posterior parameter distribution to generate SOC distribution) or used in training, validating, and testing a neural

network to predict parameter values at each grid of the map (continentally heterogenous parameter). The one-batch method can directly generate the continentally

homogenous parameter distribution by taking all observational SOC profiles as one batch in data assimilation. The continentally homogeneous distributions by the

random-sampling method and one-batch method and gridded maps of parameters by the neural networking method were then applied to CLM5 to generate the

SOC distribution of the conterminous United States.

on the results of one-batch data assimilation. The random-
sampling and neural networking methods were conducted based
on the results of site-by-site data assimilation. The workflow is as
shown in Figure 1.

Data Assimilation by One-Batch and Site-by-Site
The one-batch data assimilation used all the observations of
SOC content as one batch in the MCMC process (as described
in section Algorithm of Bayesian Markov Chain Monte Carlo
Method) to constrain parameter values. Three parallel MCMC
chains each containing 50,000 iterations as test run and 200,000

iterations as formal run were generated. To effectively capture
the vertical distribution pattern of soil content along the depth,
we put weights to observations at different depth in calculating
the discrepancy between modeled and observed SOC content
(i.e., cost function). The weight values assigned to observations
at different soil layers decreased exponentially with the depth

(i.e., weighti = e−|depthi|, where i refers to the layers along
the soil depth in observations) except for the top layer and the
bottom layer, where a weight of 10 was assigned to accelerate
calibrating the upper and lower bounds of SOC distribution
curve. Meanwhile, to monitor the efficiency of MCMC process,
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a acceptance rate threshold was characterized. For Markov
chains whose acceptance rate was higher than 50% or lower
than 15%, the corresponding data assimilation results were
rejected (Roberts et al., 1997; Roberts and Rosenthal, 2001).
After the MCMC process, we first discarded the first half
accepted parameter values of the formal run as burn-in. The G-R
statistics for each parameter was then calculated. We randomly
selected one Markov chain after eliminating the burn-in period
to generate the posterior distribution for each parameter.

The site-by-site data assimilation constrained parameter
values of CLM5 with one data set of a vertical SOC profile
at each site with the MCMC process. Three parallel chains
each containing a test run of 20,000 iterations and a formal
run of 30,000 iterations were generated. Weights at different
depth in calculating cost function and acceptance control were
the same as those in the one-batch method. After the MCMC
process, the first half of the accepted parameter values in the
formal run were discarded as burn-in. The G-R statistics of each
parameter was then calculated for each soil profile. Meanwhile,
we randomly selected one chain after eliminating burn-in period
to generate the posterior distributions of parameters. For each
soil site, we randomly sampled parameter values from the
posterior distributions of parameters for 500 times and applied
them into CLM5 matrix model to estimate the vertical SOC
content distribution. The final estimations were the average of all
sampling results.

In the site-by-site data assimilation, to evaluate the
effectiveness of data assimilation, the coefficient of determination
(R2) in linear regression of modeled against observed SOC (i.e.,
SOCmod vs. SOCobs) was calculated for each soil profile after
MCMC. Coefficients of the linear model were fixed, where the
slope is 1 and the intercept is 0. In this context, negative R2 values
indicate the effect of estimations on SOC content after data
assimilation is even worse than taking the average observed value
as predictions. In this study, we took profiles having negative
R2 values as invalid and hereby discarded them from the whole
dataset. Moreover, at those sites where only one observational
data was available along the depth of the soil, we did not apply
the data assimilation to the data point. After those data sets were
excluded, 25,444 out of 26,905 soil profiles were used in our
study, which accounted for 94.57% of the entire dataset.

One-Batch Method
After the one-batch data assimilation, we randomly sampled
parameter values from the posterior distributions 1,000 times and
applying the sampled parameter values to CLM5 matrix model.
We estimated SOC content distributions at different sites by
calculating the average of the results. Meanwhile, we provided the
uncertainty of simulation by showing the 5 and 95% quantiles of
the 1,000 simulations. The same sampled parameter values were
further assigned in CLM5 to estimate SOC content distributions
at each grid on the map of the conterminous United States at a
resolution of 0.5 degrees.

Random-Sampling Method
After site-by-site data assimilation, the Maximum Likelihood
Estimates (MLE) of parameters’ posterior distributions were

identified at each site, assuming the posterior probability
distribution is generalized extreme distributed (Xu et al., 2006;
Hararuk et al., 2014). We assembled MLE values from the 25,444
profiles to build the probability density functions of parameters
at the continental scale (i.e., continentally homogeneous
distribution), from which we randomly sampled parameter
values for 1,000 times to simulate the SOC content distribution
in CLM5 matrix model at each soil profile. The average value of
sampling outcomes was taken as the final simulation result. Same
with the one-batch method, the uncertainty of the simulation
results was given by the 5 and 95% quantiles of the 1,000
simulations. We also applied the same sampled parameter values
in CLM5 to generate the vertical and spatial SOC content
map for the conterminous United States at a resolution of
0.5 degrees.

Neural Networking Method
Both the random-sampling and one-batch methods assume
that parameter values are spatially homogeneous (constant
parameter values across the continent). In reality, parameter
values in Equation 1 may be spatially heterogeneous. We
hybridized neural networking with the results of site-by-site
data assimilation to search for spatially heterogeneous parameter
values so that modeled SOC can fit best with observed SOC.
We set the mean values of parameters’ posterior distributions
obtained from the site-by-site data assimilation as target
parameter values (output in the neural network). By including
60 environmental covariates including climate variables and land
cover types as input, we explored predicting parameter values at
different sites by a trained neural network. The detailed list of
environmental covariates, as well as the data sources, are as listed
in Table S2.

We designed the neural network as containing four hidden
layers with backward propagation. The node numbers for each
hidden layer were 256, 512, 512, and 256. For each hidden
layer, the drop ratio was set as 0.2. The activation function for
hidden layers was RELU. We used mean squared error as the
loss function and Adadelta as the optimizer. Eighty percentage
of the results from the site-by-site data assimilation were used
in training and validating the neural network with a validation
split ratio of 0.2, and the remaining 20% of the site-by-site data
assimilation results were used as the testing set. The number of
epochs was set as 400, and the batch size was 64. After the neural
network training and validation, parameter values for soil sites
in the testing set were predicted based on the trained neural
network and corresponding auxiliary environmental covariates.
The predicted parameter values were then assigned into CLM5
to estimate the SOC content distributions at corresponding
sites. Moreover, to represent SOC content distributions for
the whole conterminous United States, we used the trained
neural network and auxiliary environmental covariate masks
of the continent at a resolution of 0.5 degrees to propose
parameter values at each grid of the map. The map of SOC
content for the conterminous United States was generated by
applying the neural network based parameterization into CLM5
matrix model.
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FIGURE 2 | The agreement between observed and modeled SOC content with different methods. For comparison, we also include the results from CLM5 with default

parameterization (A,B) and from the site-by-site data assimilation (E,F). SOC estimates modeled by CLM5 at different depth of the model setting were extrapolated to

the depths of observations to evaluate model performance. The left panels indicate the deviation of the modeled SOC storage from the observation of the whole profile

(Continued)
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FIGURE 2 | for each site. The right panels show the results of the linear regression between observed and modeled vertical SOC content at different depths in different

methods. In calculating the deviation of modeled SOC storage from observations, for better presentation, the positive (overestimation) and negative (underestimation)

discrepancy between the observed and modeled SOC content were scaled based on the 95% quantile of the positive discrepancy and 5% quantile of the negative

discrepancy, respectively. Meanwhile, only the results of the training set were presented in neural networking method. The SOC content was presented by log axes.

RESULTS

Model Representation of SOC Content
Across Observation Sites
The original CLM5 model with default parameterization
presented significant geographical biases on the estimation of
SOC content in comparison with observations. Modeled SOC
in the grid in which the site of observation was located
was compared with observations (Figure 2A). SOC storage
was systematically overestimated by the original model on
the east and west coasts of the conterminous United States
but underestimated in the Midwest. The consistency between
observed and modeled SOC content was low, with R2 = 0.32 and
RMSE= 15.9 kg C m−3 (Figure 2B and Table 1).

The one-batch method was designed to generate the
distribution of SOC from continentally homogeneous posterior
distributions of parameters from assimilating all the observation
data once in data assimilation. Using the one-batch method,
the mismatch between observed and modeled SOC content in
the original CLM5 model was moderately reduced in the north
and east parts of the conterminous United States (Figure 2C).
However, geographical biases in model representation of SOC
were not eliminated. The one-batchmethod underestimated SOC
storage in the Intermontane Plateaus and southern Great Plains
(see Figure S3 for physiographical regions of the conterminous
United States). Meanwhile, overestimation still existed in the
Great Lakes areas and the northeast conterminous United States.
Overall, the one-batch method explained 43% variation in the
observed SOC content with RMSE = 11.4 kg C m−3 (Figure 2D
and Table 1).

In the site-by-site data assimilation, the optimized parameters
at individual sites can fit modeled SOC storage with observations
very well. No obvious geographical biases occurred across the
conterminous United States (Figure 2G). 95% variation of the
observed SOC content was explained by CLM5 through the site-
by-site data assimilation, and the RMSE was reduced to 3.3 kg C
m−3 (Figure 2H and Table 1).

Similar to the one-batch method, the random-sampling
method retrieved continentally homogeneous posterior
distributions of parameters by assembling estimated parameter
values in site-by-site data assimilation. Overestimation of SOC
storage in the northeast and underestimation in the southwest
of the conterminous United States still exist in this method
(Figure 2E). Across observational sites, the random-sampling
method explained 36% variation in the observed SOC content
with RMSE= 12.39 kg C m−3 (Figure 2F and Table 1).

Through a trained neural network with site-level
environmental covariates, the neural networking method
obtained the optimized parameter values at each site across the
conterminous United States. This method achieved a better
representation of SOC distribution than the random-sampling

TABLE 1 | Performance of CLM5 in representing SOC distribution under different

methods.

Methods Model performance

R2 r RMSE (kg C/m3)

Default 0.32 0.57 15.86

One Batch 0.43 0.65 11.41

Site by Site 0.95 0.98 3.32

Random Sampling 0.36 0.60 12.39

Neural Networking 0.62 0.79 8.95

The results from the default parameterization in CLM5 and the site-by-site data

assimilation were also included as references. R2 is the coefficient of determination in linear

regression between the observed and modeled SOC content. r is the Pearson correlation

coefficient between the observed and modeled SOC content. RMSE is the root mean

square error.

and one-batch methods. No systematic geographical biases in
estimating SOC storage were observed across the conterminous
United States (Figure 2I). The modeled and observed SOC
content were highly correlated with R2 = 0.62 and RMSE =

9.0 kg C m–3 (Figure 2J and Table 1).

Spatial Distribution of SOC Across the
Conterminous United States
We took point observations (Figures 3A–C) and estimations
from WISE30sec (Figures 3D–F) and SoilGrids250m
(Figures 3G–I) as references for the SOC representation by
default CLM5 model and the methods explored in this study. At
the continental scale, all the references suggested large volumes
of SOC in the northeast and northwest of the conterminous
United States The magnitude of SOC content in these regions
could be as high as 30 kg C m−2 for the 0 to 200 cm depth
interval. Meanwhile, a gradient of SOC with decreasing content
from the northeast to the southwest was also observed. In
sub-regional representation, high SOC content existed in areas
across the Great Plains, extending from Texas to the Great Lakes.

In representing the spatial distribution of SOC across
the conterminous United States, the default CLM5 model
(Figures 3J–L) captured the continental SOC content gradient
from the northeast to the southwest but failed to reproduce
sub-regional features of SOC distribution in the Great Plains.
Meanwhile, SOC content in the east and northwest conterminous
United States estimated by the original CLM5 was significantly
higher than that indicated by the references. Using data
assimilation, both the one-batch method (Figures 3M–O)
and random-sampling method (Figures 3P–R) reproduced the
continental SOC content gradient from the northeast to the
southwest with reasonable values. However, high SOC content
in the Great Plains was still not properly represented by
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FIGURE 3 | Modeled spatial and vertical SOC distribution across the Conterminous United States by different methods and datasets. Three depth intervals were

presented, which were 0–30, 0–100, and 0–200 cm respectively. Because the site-by-site method obtained an almost linear agreement between observed and

modeled SOC content, the estimations of SOC content distribution at each site by the site-by-site method was taken as observations for comparison. The results of

WISE30sec and SoilGrids250m were also presented as references. The uncertainties of the simulation by the random-sampling method and one-batch method were

shown in Figure S4.
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FIGURE 4 | SOC storage estimated by different methods and data sources. Estimations on the SOC storage of the conterminous United States by different methods

discussed in this study (one-batch, random-sampling, and neural networking methods) and data sources (original model output with default parameterization,

WISE30sec, and SoilGrids250m) were presented by three depth intervals, which are 0–30, 30–100, 100–200 cm, respectively. The error bars for the random-sampling

method and the one-batch method present the intervals between the 5 and 95% quantiles in the 1,000 simulations.

these two methods. Significantly, the neural networking method
hybridized with data assimilation helped CLM5 mapped the
most comprehensive spatial SOC distribution in this study
(Figures 3S–U). In addition to capturing the continental SOC
distribution pattern, the neural networking method presented
relatively accurate sub-regional SOC distribution patterns in the
Great Plains, similar to the references.

Vertical Distribution of SOC Across the
Conterminous United States
We took results from WISE30sec and SoilGrids250m as
references in estimating SOC stocks at different depth intervals
(Figure 4 and Table S3). Along the soil depth, WISE30sec
suggested 98 Pg C at the 0 to 30 cm interval, 81 Pg C at the 30
to 100 cm interval, and 64 Pg C at the 100 to 200 cm interval.
SoilGrids250m estimated 102, 86, and 81 Pg C at 0 to 30, 30 to
100, and 100 to 200 cm depth intervals, respectively.

The original CLM5 model with default parameterization
substantially overestimated SOC stocks than the references in all

three soil depth intervals. CLM5 with default parameterization
estimated 158, 368, and 526 Pg C at 0 to 30, 30 to 100,
and 100 to 200 cm depth intervals, respectively (Figure 4 and
Table S3). Compared with the references, the overestimation on
SOC storage made by the original CLM5 model becomes bigger
with increasing soil depth.

All the methods used in this study (the one-batch, random-
sampling, and neural networking methods) estimated more
reasonable SOC storage of the conterminous United States than
the original CLM5 model along the soil depth (Figure 4 and
Table S3). At the 0 to 30 cm interval, we estimated 7711249 Pg
C using the one-batch method, 8426311 Pg C using the random-
sampling method, and 101 Pg C using the neural networking
method. At the 30 to 100 cm interval, the values for SOC
storage estimated using the one-batch, random-sampling, and
neural networking methods were 527434, 63

197
4 , and 77 Pg C,

respectively. At the 100 to 200 cm interval, the estimations
were 365124 Pg C using the one-batch method, 581632 Pg C
using the random-sampling method, and 68 Pg C using the
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FIGURE 5 | Estimated SOC content in different vegetation types by different methods. Model performance at 0–30, 30–100, 100–200 cm depth intervals by different

methods (i.e., neural networking, one-batch, and random-sampling methods) was presented. The observation bars were plotted from the results of the site-by-site

method considering its very good linear agreement between observed and modeled SOC content. The number in the parentheses after the names of vegetation types

suggests the number of sites at corresponding vegetation type in the dataset we used in this study. The error bars indicate the ±0.5 standard deviation. The

distribution of different vegetation types on the conterminous United States is shown in Figure S7.

neural networking method. As a more robust method, the one-
batch method holistically considered all the observations in one
optimization algorithm instead of simply assembling individual
optimization results, and therefore presented less uncertainty
than the random-sampling method in model simulation.

In different vegetation types, the neural networking method
presented more accurate estimations of the vertical SOC
distribution than the other methods (Figure 5). Both the one-
batch and random-sampling methods underestimated the SOC
content in the evergreen forest, shrubland, savanna, grassland,
and wetland regions along the soil depth. The neural networking
method, in contrast, presented the least biased estimations in
comparison with observations at all depth intervals in the
aforementioned regions.

Posterior Probability Density Functions of
Parameters After Data Assimilation
The Gelman-Rubin (G-R) statistics for all the parameters
were evaluated for convergence of the site-by-site method and
one-batch method (Table S1). The G-R values approaching

1.0 indicated the repeatability of the posterior distribution
for each parameter in the MCMC process for the site-by-
site method at individual sites and the one-batch method
(Craiu and Rosenthal, 2014).

In the random-sampling method, the assemblages of the MLE
values for most parameters were constrained to their narrow
ranges (Figure S5, yellow curves). However, some parameters
were poorly constrained after the MCMC process in the site-by-
site method as their variances were quite large. Parameters such
as tau4l2l3, tau4l1, and fs2s1 (see Table S1 for the functions of
parameters in CLM5) tend to have flat posterior distributions,
with mean variance being larger than 0.06 across the continent
(Table S1). Conversely, parameters such as tau4s2, tau4s3, and
efolding had mean variance not larger than 0.04 in the site-by-
site method, which indicated the posterior distributions were
constrained to their narrow ranges (Table S1). In the one-batch
method, the posterior distributions of parameters (Figure S5,
blue curves) had either similar shapes or mean values to the MLE
distributions from the random-sampling method (Figure S5 and
Table S1).
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Some of the estimated parameter values by the neural
networking method were linearly correlated with the mean
values of parameter’s posterior distributions obtained from the
site-by-site data assimilation (Table S1 and Figure S6). Well-
constrained parameters from the site-by-site and one-batch
methods (efloding, fs1s2, fs1s3, and fs2s3) were usually well-
predicted by the trained neural network. Those parameters
having flat posterior distributions (tau4l2l3, tau4l1, fs2s1, and
fs3s1) after data assimilation usually cannot be predicted well by
the neural networking method.

DISCUSSION

Toward More Realistic Representations of
SOC Distribution
To the best of our knowledge, this study is the first to
systematically explore how to best represent SOC distribution
in Earth system models, either by conventional data assimilation
methods alone or in combination with a deep learning technique.
We have demonstrated that massive observational datasets can
be assimilated into ESMs. It has long been recognized that large
gaps exist between the representation of SOC distribution by
ESMs and observations. Although Bayesian data assimilation has
been applied to integration of observations with process-oriented
models to improve simulation performance at individual sites
(Xu et al., 2006; Li et al., 2016), the complexity of ESMs and
the computational cost in the MCMC process hindered the
progress of using big data to inform models at a continental
or global scale. In this study, we took advantage of the matrix
representation of CLM5 to obtain the analytical solution of SOC
content along the soil depth under a steady state assumption (Xia
et al., 2012; Luo et al., 2017; Huang et al., 2018). The analytical
solution saves the computational time of the spin-up process and
therefore makes the data assimilation feasible for ESMs. Due to
the matrix approach to spin-up, the large amount of high-quality
obseravtional data on SOC available across the conterminous
United States can be assimilated into CLM5 to improve the
representation of modeled SOC distributions.

Both data assimilation and deep learning are powerful tools
in understanding complex processes of the Earth system from
rapidly increasing data. In this study, data assimilation methods
(i.e., the one-batch method) successfully corrected considerable
overestimation of the total carbon storage, especially in the
deep soil layers, by CLM5 with its original parameterization
(Figures 3, 4). However, geographical biases still existed across
the conterminous United States when we used data assimilation
methods alone (Figure 2). The neural networking method, which
optimally reproduces spatial patterns of parameters as in those
obtained from the site-by-site data assimilation, corrected the
geographical biases from the one-batch or random sampling
methods and generated the least geographical bias in SOC
representation. As soil carbon is among the most significant and
vulnerable components of the terrestrial carbon cycle, realistic
representation of spatial and vertical SOC distributions by ESMs
is essential to evaluate how the Earth system will respond to
the unprecedented climate change and human disturbances.
Thus, CLM5 with spatially heterogenous parameter values

estimated from the neural networking method generates the
best representation of SOC and should be used to assess SOC
feedbacks to global warming.

Varied Parameter Values With
Environmental Conditions
We have found that it is essential to have spatially heterogeneous
parameter values in generating realistic distributions of SOC over
the continental scale. Continentally homogeneous parameter
values are apparently insufficient in describing the heterogeneity
of SOC distribution among different ecosystems (Figure 5).
In this study, both the one-batch and random-sampling
methods harmonized individual site information to generate
the continental posterior probability density functions of
parameters for simulating the SOC distribution. These methods
captured the general features of the SOC distribution across the
conterminous United States and yielded reasonable total SOC
stocks (Figure 4), but failed to represent spatial patterns of the
SOC distribution (Figure 5). In contrast, the neural networking
method generated a SOC distribution with the minimal spatial
biases by producing spatially heterogeneous parameter values.
Taking advantage of parameter values estimated at individual
sites, the neural networking method associated the mean values
of parameter’s posterior distributions obtained from the site-by-
site data assimilation with 60 auxiliary environmental covariates.
The spatially heterogeneous parameter values optimized from
the trained neural network contributed to the more accurate
estimation of SOC distribution by CLM5 than the other methods.

Although a text-book doctrine of simulation modeling is that
parameter values must be constant (Forrester, 1961), constant
parameter values may not be sufficient to describe the enormous
heterogeneity of carbon cycle dynamics (Luo et al., 2003). For
instance, in a study of assimilating soil data into a forest
ecosystem carbon model, constrained parameters representing
allocation and turnover processes in the soil carbon cycle
presented significant variation in different climate zones across
China (Ge et al., 2018). In another study, using observational
SOC data to retrieve the global pattern of temperature sensitivity
of soil respiration (Q10), after data assimilation, the results
showed spatially heterogenous Q10 values across the globe (Zhou
et al., 2009). Constant parameter values in ESMs may lead to
strong biases in regional or global simulation of the carbon cycle.
Future research may further explore whether or not and how
parameter values may vary over space for SOC dynamics.

Terrestrial Carbon Cycle Studies in the Big
Data Era
Data assimilation techniques bridge the gap between the
simulation of process-oriented models and observations. ESMs
informed by observations through data assimilation present
more realistic simulations on soil carbon dynamics than the
conventional ad hoc parameterization (Hararuk et al., 2014).
However, limited data sets may not constrain all the parameters
as shown in this study (Table S1 and Figure S5). Uncertainties
from the unconstrained parameters will be propagated to the
projection of SOC dynamics in future scenarios (Luo et al.,
2009, 2016). On one hand, we need more types of high-quality
observations to constrainmore parameters in ESMs. On the other
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hand, we may never collect enough data sets to constrain all
the parameters in complex models such as CLM5. It becomes
a philosophical question of how complex a model is supposed
to be so that it can capture enough processes in a system
yet be constrained by observations. Data assimilation offers
information on which parameters can and cannot be constrained
by a given set of observations. Such information can inform the
development of ESMs.

Deep learning, another technique we used in this study, is a
powerful tool that can be used to extract patterns from big data.
Several studies have applied deep learning techniques to emulate
ESM output, drive submodels in Earth system modeling, and
evaluate model-observation mismatches (Reichstein et al., 2019).
One of the most relevant applications of deep learning for this
study is to generate static spatially-explicit soil maps for model
input or evaluation. However, knowledge of how to combine
deep learning with process understanding of biogeochemical
cycles in ESMs is still in its infancy. As a pioneer study in this
field, our study combined deep learning with data assimilation
to retrieve the most realistic SOC distribution by CLM5.
The successful representation of SOC distribution across the
conterminous United States by the neural networking method
points toward a novel direction in hybridizing deep learning with
process-oriented modeling for better projections of terrestrial
carbon dynamics at regional and global scales. In this study, the
high agreement between observed and modeled SOC content
(R2 = 0.623 across the conterminous United States) achieved by
the hybrid data assimilation-deep learning was comparable with
that for harmonization mapping in SoilGrids250m by machine
learning (R2 = 0.635 across the globe) (Hengl et al., 2017), and
greater than the agreement between separate gridded empirical
data products (Wu et al., 2019). However, the SOC mapping
provides only the static spatial patterns of SOC, which differ
greatly among different data products (Tifafi et al., 2018; Dai
et al., 2019). This version of CLM5 that is constrained by big data
of SOC vertical profiles and optimized by deep learning enables
us to not only map SOC distributions but also examine the
spatiotemporal dynamics of SOC in response to climate change.

In summary, our study integrated deep learning, data
assimilation, and a large amount of high-quality observational
data to improve the representation of SOC distribution
in a land biogeochemical model (CLM5) across the
conterminous United States Our results indicated that the
ad hoc parameterization in CLM5 cannot adequately represent
SOC content spatially or vertically. CLM5 with default parameter
values dramatically overestimated the total SOC storage of the
conterminous United States and presents severe geographical
biases in the representation of SOC distribution. Constrained
parameter values after data assimilation improved SOC storage

estimates in CLM5 and yielded better spatial and vertical
distributions of SOC than the original model. Deep learning
hybridized with data assimilation identified the spatially
heterogenous parameters across the conterminous United States
The spatial variation in the parameterization of CLM5 further
improves the quantification of SOC in different ecosystems
with the highest agreement and least bias in comparison with
observations. The realistic representation of SOC distribution
via data assimilation and deep learning techniques pave a way for
a more accurate evaluation of terrestrial carbon dynamics and its
feedbacks to climate change in ESMs.
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