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A B S T R A C T

This paper presents a novel approach for classifying obsessive-compulsive disorder (OCD) in adolescents from
resting-state fMRI data. Currently, the state-of-the-art for diagnosing OCD in youth involves interviews with
adolescent patients and their parents by an experienced clinician, symptom rating scales based on Diagnostic and
Statistical Manual of Mental Disorders (DSM), and behavioral observation. Discovering signal processing and
network-based biomarkers from functional magnetic resonance imaging (fMRI) scans of patients has the po-
tential to assist clinicians in their diagnostic assessments of adolescents suffering from OCD. This paper in-
vestigates the clinical diagnostic utility of a set of univariate, bivariate and multivariate features extracted from
resting-state fMRI using an information-theoretic approach in 15 adolescents with OCD and 13 matched healthy
controls. Results indicate that an information-theoretic approach based on sub-graph entropy is capable of clas-
sifying OCD vs. healthy subjects with high accuracy. Mean time-series were extracted from 85 brain regions and
were used to calculate Shannon wavelet entropy, Pearson correlation matrix, network features and sub-graph
entropy. In addition, two special cases of sub-graph entropy, namely node and edge entropy, were investigated to
identify important brain regions and edges from OCD patients. A leave-one-out cross-validation method was
used for the final predictor performance. The proposed methodology using differential sub-graph (edge) entropy
achieved an accuracy of 0.89 with specificity 1 and sensitivity 0.80 using leave-one-out cross-validation with in-
fold feature ranking and selection. The high classification accuracy indicates the predictive power of the sub-
network as well as edge entropy metric.

1. Introduction

Obsessive-compulsive disorder (OCD) is a serious psychiatric illness
that affects about 2 - 3% of the population worldwide (Rasmussen and
Eisen, 1992). Onset of OCD is associated with excessive intrusive, un-
wanted thoughts (obsessions) and repetitive behaviors (compulsions).
This paper addresses discriminating and classifying the brain state of
adolescents with OCD from healthy controls using resting-state func-
tional magnetic resonance imaging (fMRI). Identifying features for
discriminating OCD in adolescents is an important topic of research that
could lead to useful clinical tools to aid in the diagnosis and manage-
ment of youth with OCD. The current psychiatric diagnostic practices
for adolescents include interviews with youths and their parents by
experienced clinicians, symptom rating scales and behavioral
examinations (Grabill et al., 2008; King et al., 1998). However, there
are no evidence-based neurobiological markers available to aid clin-
icians in the diagnosis. Finding the brain regions and functional

connections that are affected during OCD among adolescents is still an
active area of research.

Past research has shown that fMRI is a useful tool for understanding
psychiatric disorders (Bassett et al., 2012; Mitterschiffthaler et al.,
2006). Broadly, fMRI provides a non-invasive way to measure activity
of the brain during resting-state (rs-fMRI) or task (t-fMRI) using the
change of blood-oxygen level dependent (BOLD) signal (Sen and
Parhi, 2017). The fMRI scans of a person can be used to generate the
functional connectivity network of the brain. In particular, rs-fMRI
measures the spontaneous fluctuation of BOLD signal during awake
rest. In case of many psychiatric diseases, the rs-fMRI signal is highly
meaningful as it is not confounded by any task-based
performance (Dragomir et al., 2018; Greicius et al., 2003). The rs-fMRI
signal from a given brain region can yield particular properties of
neurobiological interest such as amplitude and signal
entropy (Bassett et al., 2012). In this paper, we are only concerned
about the rs-fMRI analysis for adolescents with OCD and healthy
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controls.
The human brain is a network of interconnected nodes or regions

functionally connected with each other (Atluri et al., 2016). Each re-
gional brain activity is described by a time-series that is calculated by
averaging all the time-series corresponding to the voxels for that region
and the functional connection is measured by correlation coefficients
between the regions (Bullmore and Sporns, 2009; Sporns, 2003). Recent
advancements in neuroimaging and network theory offer tools that may
be useful to advance understanding of psychiatric illnesses such as OCD.
For example, entropy is a concept with origins in physics but more
recently adopted by information theory and indexes unpredictability
and complexity. A univariate measure of entropy can be calculated
from any time-series data from a particular brain region. A multivariate
measure of entropy can also be calculated to describe the complexity of
a graph. We recently introduced the approach of examining entropy of
sub-graphs which was capable of classifying brain states with high
accuracy (Sen et al., 2019). Furthermore, sub-graph entropy can be used
to rank regions and edges within a brain network with respect to their
differential values between two groups, and the ranking carries useful
information about the disruption in brain network due to a disorder.

The goal of this study was to apply advanced rs-fMRI analytical
approaches for analyzing rs-fMRI data to classify adolescents with OCD
vs. healthy controls. We used time-series, absolute correlation coeffi-
cients and graph-theoretic properties of functional network for these
classifications. Although many brain network statistics exist in the lit-
erature and have been used to rank regions (nodes) or functional con-
nections (edges), the proposed approach has never been applied to
brain networks for diagnosing psychiatric disorders. First we used
univariate (e.g., Shannon wavelet entropy of each time-series), bivariate
(absolute value of Pearson correlation) and multivariate (network fea-
tures, e.g., local efficiency, global efficiency (Latora and Marchiori, 2001;
Sporns, 2003), clustering coefficient (Rubinov and Sporns, 2010), be-
tweenness centrality (Freeman et al., 1979), modularity (Newman, 2006),
graph and sub-graph entropy (Sen et al., 2019)) features for predicting
OCD. These measures describe segregation or integration within the
network. Next, network measures such as sub-graph entropy (Sen et al.,
2019) and specifically those of nodes and edges were used to rank
important brain regions and edges in each group of brain networks. In
addition, the nodes and edges were also ranked by the extent to which
they differentiated groups. This led to extracting a sub-network con-
taining 120 edges, which was used for classification of OCD vs. controls.

Some of the above network measures have been used previously for
comparing characteristics between two groups (e.g., schizophrenia vs.
healthy (Bassett et al., 2012; Huang et al., 2018), Alzheimer’s disorder
vs. healthy (Armañanzas et al., 2016; Dragomir et al., 2018), borderline
personality disorder vs. healthy (Xu et al., 2016), and obsessive-com-
pulsive disorder vs. healthy (Armstrong et al., 2016)). While these
traditional association studies can extract statistically significant neural
correlates for a disorder, in this paper we extract a sub-network from
resting-state fMRI data from two groups of adolescents that can predict
whether a subject has OCD.

2. Materials and methods

2.1. Dataset and preprocessing

We describe the dataset and the preprocessing steps following the
procedure outlined in Bernstein et al. (2016). Fifteen adolescents with
OCD and 13 matched healthy control subjects were enrolled for the
study. There were no significant differences between the OCD and
control groups in terms of age, gender, socioeconomic status, IQ, eth-
nicity and handedness (Bernstein et al., 2016). Children’s Yale-Brown
Obsessive-Compulsive Scale (CY-BOCS) checklist (Rosario-
Campos et al., 2006) was used to calculate scores on 4 factor-analyzed
symptom dimension (Bernstein et al., 2013). OCD patients had mean Y-
BOCS score of 19.7 (standard deviation SD = 3.5, max 27, min 12)
whereas the healthy controls had mean Y-BOCS score 0.1 (SD 0.3).
Mean age for onset of the disease is 9.5 ± 4.0 years. The mean
duration of the patients for the disease is 5.8 ± 4.2 years. Twelve out
of 15 OCD subjects were on psychotropic medication. Details about age
at assessment and clinical information for the adolescent are given in
Table 1. More specifically, the mean age at the assessment for OCD
subjects and controls were 15.3 (maximum 19, minimum 12.3) and 16
(max 18.8, min 12.3), respectively. Number of males in the groups were
8 and 7 for OCD and control groups, respectively. Resting-state fMRI
scans (2 sessions each of 12 minutes duration) were taken using a novel
multiband EPI sequence that accounts for acquiring multiple slices
simultaneously (Feinberg et al., 2010). The rs-fMRI scans were acquired
with the following parameters TR = 1.15 s, TE = 30 ms, voxel
size = 2 mm isotropic, 60 slices, multiband factor = 4, echo spa-
cing = 0.57 ms and number of 3D volumes = 600. During the scans,
the subjects were asked to remain awake, eyes closed and not to think
about anything in particular. More details about the data can be found
in Bernstein et al. (2016). The experimental procedures involving
human subjects described in this paper were approved by the University
of Minnesota Institutional Review Board.

FSL tool (Jenkinson et al., 2012) was used for the pre-processing of
the fMRI data. The steps included skull removal, distortion correction,
motion correction and registration to Montreal Neurological Institute
space (MNI). Using FSL program melodic, we analyzed the in-
dependent components and those corresponding to artifacts (heart rate,
respiration, movement, white matter or cerebrospinal fluid) were re-
moved. More details of the preprocessing can be found
in Bernstein et al. (2016). After the preprocessing step, Desikan
atlas (Desikan et al., 2006) was used to extract mean time-series for
each of the 85 cortical and sub-cortical regions available in the atlas.
The list of the regions used for the analysis is given in Supplementary
Information Table A1. Each time-series was then filtered by a band-pass
filter with pass-band between 0.01 Hz - 0.15 Hz, followed by a de-
composition into two frequency bands using a db-4 wavelet filter: lower
(B1: 0.01–0.08 Hz) and higher (B2: 0.08-0.15 Hz) (Xu et al., 2016).

Table 1
Demographic and clinical characteristics of the OCD and control groups. CY-BOCS: children’s yale-brown obsessive compulsive scale (Bernstein et al., 2013; Rosario-
Campos et al., 2006) .

Demographic information OCD Control t or χ2 p-value

# of samples (n) 15 13 _ _
Age at onset - mean (SD) 9.5 (4.0) _ _ _
Age at assessment - mean(SD, maximum, minimum) 15.3 (2.1, 19, 12.3) 16 (1.8, 18.8, 12.3) t = 0.98 0.34
Male n(%) 8 (53) 7 (54) =χ 0.0012 0.98

Clinical Information - CY-BOCS OCD Control t or χ2 p-value
Obsessions, mean (SD) 9.4 (2.2) 0.1(0.3) =t 15.9 < 0.001
Compulsions, mean (SD) 10.3 (1.7) 0.0 (0.0) =t 22.1 < 0.001
Total, mean (SD, maximum, minimum) 19.7 (3.5, 27, 12) 0.1 (0.3) =t 19.9 < 0.001
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2.2. Univariate features

The complexity of rs-fMRI time-series was first investigated by using
a univariate approach following Bassett et al. (2012). Here we estimated
the complexity of mean time-series extracted from each brain region
through Shannon wavelet entropy (Rosso et al., 2001). We only focused
our investigation of two frequency bands described above. Lower fre-
quency band oscillations of BOLD signal have been shown previously to
be adversely affected during a psychiatric disease state, (Lynall et al.,
2010). The Shannon wavelet entropy was estimated using techniques
developed in Coifman and Wickerhauser (1992)
and Donoho et al. (1994) and implemented in the MATLAB Wavelet
Toolbox (function wentropy.m). In short, the Shannon wavelet entropy
is defined as:

∑= −E s s s( ) log( )
i

i i
2 2

Here s is the mean time-series of a brain region for an individual,
and si’s are the coefficients of s in the orthonormal wavelet basis.

2.3. Bivariate features

Pearson correlation coefficient (Pi j
f
, ) was calculated for each fre-

quency band and the regions (ri and rj) where ∈i j, {1, .85} as described
in Sen et al. (2016). Let ri

f be the mean time-series from frequency band
f and region i from fMRI. Then, the Pearson correlation coefficient
between two regions i, j is calculated by
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where r̂i
f
is the estimated mean of the time-series from frequency band f

and region i. Thus two adjacency matrices were created for each pair of
regions corresponding to two frequency bands. These matrices can also
be seen as edges in a graph where each node corresponds to one region.
The total number of features for each frequency band was

=
× 357085 84
2 . Absolute values of Pearson correlations were used as

features.

2.4. Multivariate features

For each subject, two 85 × 85 adjacency matrices (Sen et al., 2016)
containing absolute Pearson correlation were extracted. Suppose that a
group of N brain networks from R regions and N subjects is specified by
the adjacency matrix ×CR R

k where k ∈ {1, N}. R × R is the size of the
adjacency matrix. Here Ck(i, j) is the connectivity between two regions
(i, j) for subject k. Ideally ×CR R

k is a binary matrix where existence of an
edge is given by 1 and non-existence is given by 0. However, con-
nectivity matrices extracted from fMRI are correlation values which are
non-binary. In order to calculate the network features, first the matrices
were binarized by keeping {5%, 20%, 35%, 50%} of the edges. The
sparsity of the networks for all subjects remained the same for a specific
density.

2.4.1. Network features
Adjacency matrices were used to calculate network characteristics

using Brain Connectivity Toolbox (BCT). 1 At a local (node) level in the
network, three features, namely local efficiency (LE), clustering coefficient
(CC) and betweenness centrality (BC), were computed (Sen et al., 2016;
Xu et al., 2016). At a global level, we calculated two features: mod-
ularity and global efficiency,sen2016classification. The local and global
features in the network represent complementary viewpoints of the
network for segregation and integration of nodes, respectively. Hence

from each subject, we extracted 85 × 3 × 2 (for 3 features at each
node) + 2 × 2 (for modularity and global efficiency)= 514 network
features corresponding to two frequency bands.

An overview of the network based features is discussed next as
described in Sen et al. (2019). Local efficiency is computed using the
summation of inverse of the shortest paths to the neighbors of a node.
This metric is used to understand how efficient a node is for transferring
information between two neighboring nodes. Clustering coefficient is
calculated by the number of triangles created around a node out of all
possible triangles. Betweenness centrality of a node is calculated as the
percentage of shortest paths that contain the node. Modularity metric
measures how a network is sub-divided into smaller dense sub-networks
with sparse inter-connections. Global efficiency describes the efficiency
of information transfer within the whole graph. In addition, Network
Based Statistics (NBS) (Zalesky et al., 2010) is used to extract important
edges between two groups. NBS is a popular method for testing hy-
potheses about the edges in a network using t-test. It is used to identify
connections and networks comprising the connectome associated with
an experiment for a between-group difference. These network measures
were also previously used for classifying OCD vs. healthy from fMRI
data as described in Sen et al. (2016). More details of the network
measures can be found in Rubinov and Sporns (2010).

2.4.2. Sub-graph entropy
We have recently shown that sub-graph entropy can effectively

classify brain states for two different tasks (Sen et al., 2019). Sub-graph
entropy captures the interaction of local neighborhood of a brain region
or functional connection in an entropy formulation. Although sub-graph
entropy of a network (G) can be computed in multiple ways (e.g., see
Körner, 1973; Li and Pan, 2016), the scope of this paper is restricted to
only the complexity associated with the entries in the adjacency matrix
for the network. Within this limit, the current model achieves re-
markable accuracy for diagnosing a common psychiatric disorder. In
particular the sub-graph entropy is defined as the number of bits re-
quired to encode the adjacency structure of the network (Freeman
et al., 1979; Mackenzie, 1966). A brief description of sub-graph entropy
(node and edge entropy) is presented next following Sen et al. (2019).

A normalized adjacency matrix from one subject is defined as

=
∑ ≠

Q C
C i j( , )

.k
k

i j j i
R R k
, ,
,

(2)

This definition normalizes the entries in the adjacency matrix so that
their summation is 1. For bi-directional networks, we just normalize the
upper triangular part of Ck. We also define =q Q i j( , )i j

k k
, .

In this case, the graph entropy is calculated by (Mackenzie, 1966)
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In our work we calculated the matrix consisting of the indices qi,j as
in Eq. (2). Graph entropy for a subset of a network was also computed
and referred as sub-graph entropy.

Node entropy Node entropy was calculated based on the sub-graph
containing a region and its neighbors. We defined neighbors based on
the 1-hop distances from the node, i.e., sub-graph containing nodes that
are one edge away. Experiments involving 2-hop neighbors were also
carried out and results from this analysis are presented in the
Supplementary Information. The entries only signifying the interaction
between one region and its neighbor were kept. All the other entries are
forced to be zeros. Let the node entropy of node vi is denoted by H G( )k

vi

for subject k, then

∑= −
=

H G q q( ) log ( ),k
v

m

M

m
k

m
k

1
2i
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where qm denotes the normalized edge weight for neighborhood, and M1 https://sites.google.com/site/bctnet/ .
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represents the number of edges in the sub-graph.
After calculating node entropy for individual subjects, the node

entropy from a group of N subjects can be estimated as follows.

∑=
=

H G
N

H G( ) 1 ( )v
k

N
k

v
1

i i
(5)

An algorithm for ranking important regions based on node entropy
is given in Supplementary Information (SI) (Algorithm S1).

Edge entropy Suppose region i is connected to j through edge eij
where i ≠ j. Similar to node entropy, the edge neighbors were also
defined based on the 1-hop distances from the edge eij. In this case, we
computed the edge entropy of subject k as H G( )eij (Sen et al., 2019),

∑= −
=

H G q q( ) log ( ),k
e

m

M

m
k

m
k

1
2ij

(6)

where qm denotes the normalized edge weight for neighborhood, and M
is number of edges in the sub-graph.

After calculating edge entropy for individual subjects, the group
edge entropy from an ensemble of graphs can be estimated as follows:

∑=
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k

N
k

e
1

ij ij
(7)

An algorithm for ranking important edges based on node entropy is
given in SI (Algorithm S2).

Differential sub-graph (node and edge) entropy
Between two groups of subjects, if the local segregation of brain re-

gions change, the change in pattern can be captured using differential
entropy,sen2019ranking. In this case, the regions or edges which have
the most change in entropies between two groups are most affected due
to the change in the brain state. Suppose, for region i, the node entropy
for subjects belonging to group G1 (where G1 ∈ {Healthy, OCD etc}) is
given by H G( )G vi1 and for group G2, H G( )G vi2 . The difference between
these two values would encompass differential entropy between two
groups of subjects for region i. The change in entropy is calculated as

−H G H G| ( ) ( )|G v G vi i1 2 where |x| is the absolute value of x. This metric is
called differential node entropy,sen2019ranking. In our experi-
ment, differential node entropy was calculated for each brain region and
they were ranked based on differential entropy in decreasing value. The
same argument and ranking procedure was applied to differential edge
entropy as well. The algorithm is given in Algorithm 1. This process
extracted nodes and edges that had changed the most due to the
functional altercation during the disease.

2.5. Extracting predictive sub-network based on edge entropy

In order to understand if sub-graph entropy measures contain pre-
dictive information, we used the edge entropy values for classification
between two groups of subjects. Brain network measures have been
used to discriminate between two groups in a number of previous pa-
pers to understand the significance, e.g., see Sen et al. (2016) and
Richiardi et al. (2013). In this framework, starting with the top-ranked
edge, additional edges were added to the network in an iterative
manner until the classification accuracy started dropping. At each
iteration, the edge entropies of the sub-network were used in a leave-
one-out fashion (Bao et al., 2019) for classifying OCD vs. healthy con-
trols. Leave-one-out is a common cross-validation method for alle-
viating overfitting in case of small sample size classification problems
which is often the case in psychiatry domain (Huang et al., 2018). The
classifier used in this case was support vector machine (SVM) with
radial basis kernel based on testing different models where SVM re-
sulted in a better performance. The procedure for finding the predictive
sub-network is shown in Fig. 1.

Additionally, two more sub-graphs containing union and intersection
of statistically different regions and edges were tested for predictive

performance (Sen et al., 2019). An anatomically defined sub-graph
containing regions from CSTC network (Bernstein et al., 2016) was also
used for baseline comparison of performance. In order to address the
challenge of overfitting and establish the stability of predictive sub-
network, the ranking procedure was run 28 times in a leave-one-out
fashion. At each iteration, ranking was performed for 27 subjects except
the left out. A histogram was then plotted for finding how many times
top edges are extracted in the predictive sub-network.

2.6. Statistical analysis

The univariate, bivariate and multivariate features along with node
entropy and edge entropy values were compared using a 2-sided t-test
across different groups. Their corresponding p-values were also calcu-
lated and shown. Furthermore, leave-one-out classification accuracy,
specificity and sensitivity were calculated to validate our approach.

3. Results

3.1. Univariate analysis

The classification performance of regional features using Shannon
wavelet entropy is shown in last row of Table 2. In healthy controls and
OCD patients, Shannon wavelet entropy was heterogeneously dis-
tributed throughout the brain with lowest Shannon wavelet entropy
found in regions of the postcentral, cuneus, superiorparietal, para-
central and the highest was found in entorhinal, hippocampus, pal-
lidum and thalamus. The regions that have significant difference in
Shannon wavelet entropy are found in caudate, putamen, paracentral,
postcentral, precuneus with p < 0.05 for band B1 (lower frequency
band). Frequency band B2 (higher frequency band) did not have any
statistical difference for Shannon wavelet entropy. The regions are
shown in a brain template in Supplementary Information Fig. S1.

3.2. Bivariate analysis

Using a minimum redundancy maximum relevance (mRMR) in-fold
feature selection (Peng et al., 2005), 5 features that are most important
according to the criterion, were selected. The selected features belong
to lower frequency sub-band (B1). The classification performance by
leave-one-out method was 0.71 with specificity 0.85 and sensitivity
0.60 (shown in Table 2) using the absolute Pearson correlation coeffi-
cients. The results showed that Pearson correlation between superior
temporal gyrus - temporal pole was selected 26 out of 28 times during
the mRMR feature selection and leave-one-out classification. Ad-
ditionally, the edge weight between precuneus - precentral gyrus was
selected 25 out of 28 times. The other important edge connections
(absolute pearson correlation) are inferior frontal gyrus - mid frontal
gyrus, pars operculum - insular cortex and inferior temporal gyrus- mid
temporal gyrus (Sen et al., 2016).

3.3. Multivariate analysis

3.3.1. Network features
Following the bivariate experiment as described in previous section,

an in-fold mRMR feature selection was employed (with 5 most sig-
nificant features) using network based features extracted from the
functional brain graphs containing 85 regions. The leave-one-out clas-
sification accuracy using these five features was 0.75 with 0.73 sensi-
tivity and 0.77 specificity (Table 2). Note that, clustering coefficient of
putamen (at sparsity 35%) and hub property of cingulate gyrus (at
sparsity 50%) were selected in each fold by the feature selection algo-
rithm. The features and corresponding values for different sparsity le-
vels for two groups are shown in SI Fig. S2. The selected features belong
to lower frequency sub-band (B1).
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3.3.2. Ranking of brain regions
The lower frequency band (B1) at network sparsity level 35% was

used for calculating sub-graph entropy based on the classification per-
formance. All results presented in the paper and the SI correspond to
frequency band B1 and network sparsity level 35%. Using the strategy
for group ranking as formulated in Eq. (5) and Algorithm S1 in Sup-
plementary Information, we identified important regions for OCD and
healthy group separately (Fig. 2). The regions identified among the top-
25 in each group are shown in Fig. 2(a) and 2(c), respectively. Most of
the regions identified in this process belong to the default mode areas
that are well known to be active during resting condition (Greicius
et al., 2003; Raichle et al., 2001). A more interesting ranking process is
the ranking of regions affected during OCD. This information is cap-
tured using the differential node entropy of nodes. The regions extracted
using this procedure (Algorithm 1) are illustrated in two ways - (1)
visualizing the nodes corresponding to highly ranked regions as shown
in Fig. 2(b), and (2) listing the top-25 regions in Table 3. Furthermore,
the corresponding differential entropy value and p-value for each re-
gion’s node entropy are also shown in the same Table. There are 13
regions with statistically significant difference (p < 0.05) in node en-
tropy among the 25 regions.

Note that the ranking can be validated for OCD by considering the
regions from CSTC circuitry (Bernstein et al., 2016). Our ranking
methodology is able to capture the regions from that circuit in top 15%
of these most important nodes. We illustrate the differential node en-
tropy values for the regions in sorted order in Fig. S3 (SI). In addition,
we also show the mean differential entropy value and standard deviation

(SD) in the same figure. There are 13 regions with differential entropy
more than 1-SD away from mean. Also, 38 regions have differential
entropy values more than mean. Another ranking scheme using 2-hop
neighbors (here neighborhood for a node is defined based on distance of
2 edges from a node) revealed the most important regions to be similar
to 1-hop neighbors (Table S1 in SI). The leave-one-out classification
performance using all node entropy values is shown in Table 2 and is
0.71.

3.3.3. Ranking of edges
The most important ranked edges are visualized by overlaying them

on an MNI brain using BrainNet toolbox (Xia et al., 2013) (Fig. 3). The
group ranking procedure based on edge entropy (Eq. (7) and Algorithm
S2 in SI) extracts top edges from healthy, and OCD separately as shown
in Fig. 3(a) and (c), respectively. Top 100 edges were identified using
the ranking process for each group. Additionally, the ranking based on
differential edge entropy is also visualized in Fig. 3(b). A close inspection
of the results reveals several observations. First, for each group ranking
procedure reveals edges that are distributed throughout the lateral and
medial cortical part of the brain and some of them belong to the default
mode network. Second, differential entropy elevates the edges that be-
long to fronto-parietal and frontal-subcortical areas. The regions that
are connected using the edges belong to frontal lobe, parietal lobe,
anterior and posterior cingulate gyrus, thalamus proper, default mode
(DMN), accumbens (striatal area) and amygdala. The corresponding
differential entropy values for the edges are shown in sorted order in
Fig. S4 (SI).

3.4. Extracting predictive sub-network

3.4.1. Accuracy of predictive sub-network
Following the method as outlined in Fig. 1, we ran our edge ranking

procedure Algorithm 1 for edges 28 times, each time selecting top edges
for leave-one-out classification. The change in classification accuracy
with the number of edges using SVM and radial basis function kernel
(using only selected edges) is shown in Fig. 4. The classification accu-
racy has a behavior similar to traditional feature selection algorithms
where it improves up to 120 edges and then starts to decrease. In order
to understand the significance of the current work with the information
about sub-network, the result is compared with a number of baseline
network based features in terms of classification accuracy. The com-
parisons of leave-one-out classification results are shown in Table 2. In
addition, results for repeated random sub-sampling validation (cross-
validation process run 100 times, each time randomly splitting the

Fig. 1. Procedure for extracting a predictive sub-network for OCD vs. healthy. Edges with highest differential entropy are selected to identify the sub-network based on
leave-one-out accuracy. The sub-network’s sub-graph entropy is compared between two groups using t-test for validation.

Table 2
Leave-one-out classification results .

Features Accuracy Specificity Sensitivity

Proposed (edge) sub-network 120 0.89 1 0.80
Union sub-graph 145 0.89 1 0.80
Intersection sub-graph 114 0.86 0.92 0.80
CSTC sub-network 120 0.71 0.85 0.60
Node entropy (Sen et al., 2019) 85 0.71 0.62 0.80
Correlation (Sen et al., 2016) 5 0.71 0.85 0.60
Network features (Sen et al.,

2016)
5 0.75 0.77 0.73

Correlation + Network
features (Sen et al., 2016)

10 0.78 0.85 0.73

NBS (Zalesky et al., 2010) 95 0.64 0.54 0.73
Shannon wavelet

entropy (Bassett et al., 2012)
85 0.54 0.38 0.66
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dataset into training 23 subjects and testing 5 subjects) are shown in
Supplementary Information Table S3. Edge entropies of the proposed
predictive sub-network achieved 0.89 accuracy and correctly classify all
healthy and 12 out of 15 OCD subjects. Using 2-hop neighbor scheme
for classification did not improve the accuracy (see Table S2 in SI). In
our study, SVM was chosen based on the performance of multiple
classifiers (e.g., support vector machine, linear discriminant analysis,
artificial neural network and random forest). Their comparison of
performance is shown in Supplementary Information Table S4.

3.4.2. Sub-network visualization
The identified sub-network comprising 33 region and 120 edges is

shown in Fig. 5. In Table S5 (SI), we list the regions from predictive sub-

network as well as well as the CSTC network. Top-50 edges from the
sub-network are also listed in Table S6 (SI). In both cases, whether the
regions or edges belong to CSTC network are also illustrated.

3.4.3. Statistical analysis
We selected the top-120 features in each iteration for leave-one-out

training, and plot their occurrence using a histogram as shown in Fig.
S5 in SI. The top ranked edges shown in Fig. 5 are also very important
for classification as they are selected most of the times as top edges. In
addition, the predictive sub-network achieves a p-value of 0.0071 for a
t-test of sub-graph entropies between OCD vs. healthy as demonstrated
in Table 4. Similarly, CSTC sub-graph entropy is significantly reduced
(p = 0.0077) for OCD. The box plot for the t-test is shown in Fig. 6. To
validate that the classifier performs significantly better than chance,
permutation tests were performed, the results of which are shown in
Fig. 7.

4. Discussion

This paper investigates the feasibility of automated classification of
adolescent OCD vs. matched healthy controls. It proposes the use of
information-theoretic sub-graph entropy for ranking regions and edges
from a group of brain scans and extracting a predictive sub-network for
differentiating adolescent OCD patients from healthy. The predictive
frequency band was found to be B1 (low frequency BOLD oscillation) at
network sparsity level 35%. Key observations from different classifi-
cation approaches are discussed in this section.

4.1. Regions and edges

The present findings advance the method of resting-state fMRI
analysis to examine neural networks in youth with OCD by network
analysis; all prior methods had used standard, traditional approaches to
examining functional connectivity (Bernstein et al., 2016; Fitzgerald
et al., 2011; 2011; Gruner et al., 2016; Weber et al., 2014).
Fitzgerald et al. (2011) have found lower functional network con-
nectivity in the cortico-striato-thalamo-cortical circuitry for youth OCD
subjects in the age range 8–12. Fitzgerald et al. (2011) also reported
decreased amount of functional connections in the anterior cingulate
cortex, striatal and thalamus areas. Gruner et al. (2016) and

Fig. 2. Visualization of important regions that have differences in entropy between OCD and healthy groups corresponding to frequency band B1 at network sparsity
35%. (a) OCD, red: regions that have higher entropy. (b) Differentiating regions between OCD vs. healthy, red: regions that have higher entropy for OCD, blue: regions
that have higher entropy for healthy. (c) Healthy blue: regions that have higher entropy for healthy. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 3
Top-25 regions extracted using differential node entropy for OCD vs. healthy
controls.

Rank Region/Hemisphere Diff. Entropy p-value

1 Parsopercularis - R 1.5099 0.0002
2 Thalamus Proper - R 0.9660 0.0129
3 Parsorbitalis - L 0.9252 0.0459
4 Cuneus - L 0.9098 0.0153
5 Accumbens Area - L 0.9095 0.0159
6 Postcentral - L 0.9021 0.0065
7 Parsorbitalis - R 0.8944 0.0427
8 Pallidum - L 0.8514 0.0944
9 Medial Orbitofrontal - L 0.8303 0.0476
10 Parstriangularis - R 0.8233 0.0500
11 Medial Orbitofrontal - R 0.8090 0.0392
12 Amygdala - R 0.7317 0.1534
13 Hippocampus - L 0.7103 0.1503
14 Lateral Orbitofrontal - L 0.6737 0.1846
15 Caudate - R 0.6620 0.0234
16 Rostral Anterior Cingulate - R 0.6574 0.1239
17 Rostral Anterior Cingulate - L 0.6378 0.1657
18 Lateral Orbitofrontal - R 0.6201 0.2251
19 Pericalcarine - R 0.6192 0.0188
20 Caudal Anterior Cingulate - R 0.6165 0.2049
21 Entorhinal - L 0.6147 0.1431
22 Frontal Pole - L 0.5782 0.2752
23 Insula - L 0.5692 0.1392
24 Putamen - R 0.5565 0.0318
25 Accumbens Area - R 0.5419 0.1184
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Weber et al. (2014) used independent component analysis (ICA), a
multivariate blind source separation technique, to analyze whole brain
functional network of adolescent OCD subjects. Functional connectivity
scores corresponding to each component were observed to be sig-
nificantly higher among OCD patients in comparison with matched
healthy controls in anterior/ posterior cingulate cortical areas and
significantly sparser in visual cortical areas. Weber et al. (2014) also
reported reduced functional connections in the cingulate cortex.
Bernstein et al. (2016) found decreased connectivity between putamen
and lateral prefrontal cortex. Also, Bernstein et al. (2016) found lower
connectivity between the putamen and the right insula and operculum.

Using the methods described here, we were able to capture pre-
viously known regions for resting-state fMRI scans from healthy
humans (Greicius et al., 2008). Notably, all of the top-ranked regions
that were identified to have high node entropy values for each group
are default mode network nodes associated with resting-state. In ad-
dition, the OCD group showed higher regional entropy for regions such
as thalamus, hippocampus, accumbens, putamen, anterior cingulate,
postcentral gyrus, amygdala, pars-orbitalis and pars-opercularis as
shown in Fig. 2. Interestingly, the high ranking of the thalamus and
hippocampus regions by the proposed differential entropy approach is

consistent with the traditional hypothesis that these regions are affected
for subjects suffering from OCD. The regions and edges that had most
difference between healthy vs. OCD consist of accumbens, amygdala,
thalamus, pallidum which are part of the CSTC circuit (Bernstein et al.,
2016) in brain. This circuit is shown in Fig. S6 in Supplementary In-
formation. The intersection between CSTC and predictive sub-network
is also illustrated in Fig. S7 (SI).

In Figs. 3 and 5, we show the top ranked predictive edges between
important brain nodes for two groups (OCD vs. controls). The predictive
network consists of many regions that act as hub (Bullmore and
Sporns, 2009), i.e., they consist of a number of edges that differentiated
OCD group from healthy controls. Some of the edges include connection
from operculum to putamen, accumbens, thalamus. Furthermore, edges
from frontal pole to striatal regions also form a substantial part of the
predictive network. The edge between amygdala and occipital lobe
(cuneus) also distinguished OCD patients and healthy, which is notable
as it represents a connection linking the default mode network and the
limbic network. Edges that are not common between CSTC and pre-
dictive network are shown in Fig. S8 and S9, respectively. These plots
illustrate how the proposed sub-network differs from the CSTC network.
While the use of the edge entropies of the CSTC sub-network achieved
an accuracy of 0.71, that of the proposed sub-network led to an accu-
racy of 0.89. This emphasizes the importance of including whole-brain
data in the analysis, rather than focusing on just the CSTC. Although
classifying OCD with high accuracy has been known to be difficult, the
proposed sub-network improves the achievable accuracy significantly
compared to all prior approaches.

At a group level, the top discriminating links between OCD vs.
controls are also statistically significant (p< 0.05). The individual edge
entropy measures are useful metrics for classification as the proposed
classifier significantly outperforms the classification with Pearson cor-
relation coefficient values. However, the sub-graph entropy has sig-
nificant reduction for OCD patients for both CSTC network and pre-
dictive sub-network as shown in Fig. 6.

Fig. 2 shows a number of nodes that differentiated OCD versus
controls, and they are mostly red, signifying that they had higher en-
tropy in OCD than controls. However Fig. 6 shows that for both the
CSTC network and the predictive network sub-graph entropy is lower.
Although the nodes in OCD subjects tend to have higher node entropy,
the sub-graphs used to calculate the node entropy consider only the
neighbors the node is connected with. The predictive sub-graph is a
different sub-graph that is extracted considering the most predictive

Fig. 3. Visualization of important edges that have differences in entropy between OCD and healthy groups corresponding to frequency band B1 at network sparsity
35%. (a) OCD, (b) Differentiating edges between OCD vs. healthy. (c) Healthy.

Fig. 4. Average Leave-one-out accuracy vs. number of edges in sub-network.
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edges based on edge entropy. The apparent difference in these two
indicate that, although the nodes (that might be part of predictive sub-
network) may have higher node entropy, the overlap of the edges
(containing the nodes) that belong to the predictive sub-network is
lower. In addition, this also indicates that the edge weights (in the
predictive sub-network) are relatively well distributed in healthy con-
trols (that lead to higher sub-graph entropy), and skewed in OCD pa-
tients (the lead to low sub-graph entropy).

4.2. Misclassified subjects

The OCD severity (CY-BOCS) of the patient group varied between
12–27. The mean, standard deviation and median were 19.7, 3.5, and
20, respectively. The OCD severity of misclassified subjects were 12, 15
and 19, respectively. Two of the misclassified subjects were under
medication and one was non-medicated. The misclassified subjects fall
in the lower end of CY-BOCS for the group of subjects. The inability of
the classifier to distinguish these patients may indicate that these sub-
jects had relatively mild level of OCD symptoms as indicated by their
CY-BOCS score. The classifier identified them to fall in healthy group. A
histogram illustrating the OCD severity of subjects and the CY-BOCS
score for misclassified subjects is shown in Supplementary Information
Fig. S10.

4.3. Validation

The binomial test on the classification using the proposed sub-net-
work also shows that they have statistically significant predictive per-
formance (p = × −7.9497 10 06 for OCD vs. healthy with respect to a
naive classifier and p = 0.0009 with respect to Sen et al. (2016)). In

order to further validate the information-theoretic model, a sub-network
containing only regions from CSTC circuits is extracted as shown in Fig.
S6 and the sub-graph entropy between patient vs. control group is
compared as shown in Fig. 6. CSTC sub-graph entropy is significantly
reduced (p = 0.0077, as illustrated in Table 4) for OCD. In order to
avoid potential problem with overfitting, leave-one-out classification
with in-fold feature selection was used in every experimental setting.
Note that this makes sure that the classifier is learning features from the
training set and using the learned feature for finding the test accuracy
in order to generalize the diagnosis to previously unseen subject.

Although the classification used in this paper is leave-one-out, the
result is robust even in the case of 5-fold cross validation and repeated
random sub-sampling validation. For 5-fold CV, the dataset was divided
into 5 sets each consisting of 5, 5, 6, 6, 6 subjects (5-folds), respectively.
In each fold, one set was used for testing and others for training. We
found out that edge entropy with 120 features achieve the same accu-
racy, specificity and sensitivity as leave-one-out. For repeated random
sub-sampling validation, the cross-validation process was run 100
times, each time randomly splitting the dataset into training (23 sub-
jects) and testing (5 subjects). The results for this procedure for each
types of features are shown in Supplementary Information Table S3.
Edge sub-network and Union sub-graph achieved accuracy of 0.87,
specificity of 0.96 and sensitivity of 0.79. All these values are within 4%
of leave-one-out accuracy and better than the performance of other
features.

In order to reinforce our conclusion that the classification perfor-
mance of the extracted predictive network from the model are better
than baseline models, permutation tests were performed. In this vein, a
‘naive’ baseline model was created effectively by permuting the labels
in the training and test set. Thus the baseline model removed all the

Fig. 5. Predictive sub-network extracted using differential edge entropy and leave-one-out analysis. This network corresponds to frequency band B1 and density
threshold of 35%.

Table 4
Statistical analysis of predictive sub-network and CSTC network using sub-graph entropy.

# of nodes # of edges Sub-graph entropy p-value

Mean SD

Proposed sub-network 33 120 Healthy: 6.9061 OCD: 6.9028 Healthy: 0.0004 OCD: 0.0039 0.0071
CSTC sub-network 16 120 Healthy: 6.9030 OCD: 6.8951 Healthy: 0.0032 OCD: 0.0090 0.0077
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signals associated with OCD from the labels - the leave-one-out classi-
fier then learned the relationships between the edge entropy and per-
muted labels. The actual learned model performed significantly better
than baseline which suggests that the classification scheme outlined
before is also statistically significant. Here, for OCD vs. healthy dataset,
1000 iterations were performed where each time, labels were permuted
and then trained using an SVM model on the training subset of this set
and tested on the rest. Fig. 7 shows the distributions of accuracy values
for the dataset. In this scenario, there is a significant distance between
the centre of the accuracy distribution and the accuracy produced by
the predictive sub-network.

4.4. Predictive sub-network as part of other known networks

Our results implicate regions and edges from a number of large-
scale brain networks. Here we discuss potential interpretations for the
involvement of these networks in adolescent OCD.

4.4.1. Default mode network (DMN)
The default mode network of human brain consists of regions that

are active when a person is awake but resting and not doing any par-
ticular task (Biswal et al., 1995; Greicius et al., 2003). The DMN regions
are typically associated with mind wandering, day dreaming, thoughts

about the self, and ruminations etc. In our analysis, the top regions,
edges and predictive network extracted using sub-graph entropy consist
of regions from the DMN. This may indicate that adolescents suffering
from OCD can get “stuck” in repetitive thought patterns. Previous
works also support the hypothesis that OCD involves abnormalities of
the DMN (Beucke et al., 2014; Hou et al., 2013; Stern et al., 2012).

4.4.2. Dorsal attention + salience
The dorsal attention network contains regions that show increased

activation when a subject is deciding where to focus the attention in a
proactive way. The salience network provides the mechanism to attend
the important cues that stand out compared to the background. In our
results, the predictive sub-network contains regions (entorhinal) from
dorsal attention (Bell and Shine, 2015; Yuan et al., 2016) network.
Moreover, it contains the hippocampus which is part of salience
network (Bressler and Menon, 2010; Heine et al., 2012; Riedl et al.,
2016; Yeo et al., 2011). The functional regions and edges containing
salience and dorsal attention indicate that OCD subjects may deploy
attention and attending visual cues differently from healthy
adolescents (Chen et al., 2018; Fasching et al., 2016; Nestadt et al.,
2016).

4.4.3. Executive network
The executive network, which consists of fronto-parietal brain re-

gions, is responsible for high level cognition functions, such as, problem
solving, and decision-making. The predictive sub-network implicated
for adolescent OCD includes many regions from frontal part of the brain
(Fig. 1), e.g., orbitofrontal, fontal pole, parsorbitalis, and also parietal
part of brain, e.g., postcentral gyrus. Their involvement in prediction
performance may indicate the change in executive functions in OCD
patients compared with healthy subjects (Bannon et al., 2006; Kashyap
et al., 2013; Stern et al., 2012).

4.4.4. Limbic network
Finally, the predictive sub-network contains the following regions

from limbic system - hippocampus and amygdala. Limbic regions play a
critical role in mediating emotional responses and forming new mem-
ories. This functional network has been shown to be affected for OCD
patients in a number of previous studies (Modell et al., 1989; Saxena
and Rauch, 2000; Sheth et al., 2013). Specifically, amygdala had higher
node entropy value compared with controls, which may indicate its
utility for relieving the elevated anxiety level for OCD patients.

Fig. 6. Box-plot of sub-graph entropy values for OCD vs. healthy, (a) CSTC sub-network, (b) predictive sub-network.

Fig. 7. Results of permutation test on OCD data. The labels for healthy and OCD
are permuted and a SVM classifier is fitted to each new dataset. Histogram of
accuracies and accuracy on actual data is shown.
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5. Conclusion and future work

Using an information-theoretic network approach, this paper has
identified a predictive sub-network of the brain that can be used to
discriminate brain networks of adolescents with OCD from healthy
controls. The regions and edges that are found to be most important
based on differential entropy are also found to be statistically significant.
The predictive sub-network contains brain regions from well known
large-scale brain functional networks. Their involvement implies pos-
sible impairment of brain function of adolescents suffering from OCD.
However, one limitation of the current work is the small number of
participants in each group. Therefore, future work needs to be directed
towards analysis of datasets with larger sample size. In addition, fea-
tures and classifier models need to be developed to predict the onset of
OCD and other psychiatric disorders like depression. Future work may
also be directed towards classification based on frequency-domain
features.
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