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Simple Summary: The lack of highly specific and sensitive biomarkers for the early detection
of prostate cancer (PCa) is a major barrier to its management. Volatilomics emerged as a non-
invasive, simple, inexpensive, and easy-to-use approach for cancer screening, characterization of
disease progression, and follow-up of the treatment’s success. We provide a brief overview of the
potential of volatile organic metabolites (VOMs) for the establishment of PCa biomarkers from
non-invasive matrices. Endogenous VOMs have been investigated as potential biomarkers since
changes in these VOMs can be characteristic of specific disease processes. Recent studies have
shown that the conjugation of the prostate-specific antigen (PSA) screening with other methodologies,
such as risk calculators, biomarkers, and imaging tests, can attenuate overdiagnosis and under-
detection issues. This means that the combination of volatilomics with other methodologies could be
extremely valuable for the differentiation of clinical phenotypes in a group of patients, providing
more personalized treatments.

Abstract: Despite the spectacular advances in molecular medicine, including genomics, proteomics,
transcriptomics, lipidomics, and personalized medicine, supported by the discovery of the human
genome, prostate cancer (PCa) remains the most frequent malignant tumor and a leading cause
of oncological death in men. New methods for prognostic, diagnostic, and therapy evaluation are
mainly based on the combination of imaging techniques with other methodologies, such as gene or
protein profiling, aimed at improving PCa management and surveillance. However, the lack of highly
specific and sensitive biomarkers for its early detection is a major hurdle to this goal. Apart from
classical biomarkers, the study of endogenous volatile organic metabolites (VOMs) biosynthesized by
different metabolic pathways and found in several biofluids is emerging as an innovative, efficient,
accessible, and non-invasive approach to establish the volatilomic biosignature of PCa patients,
unravelling potential biomarkers. This review provides a brief overview of the challenges of PCa
screening methods and emergent biomarkers. We also focus on the potential of volatilomics for the
establishment of PCa biomarkers from non-invasive matrices.

Keywords: prostate cancer; diagnosis; volatilomics; tumor biomarkers

1. Introduction

Prostate cancer (PCa) is the second most frequent malignant tumor, the fifth leading
cause of cancer death among men worldwide (the leading cause of cancer death among
men in 46 countries), and the most frequently diagnosed cancer in 105 of 185 of the world
countries [1]. In 2020, almost 1.4 million new cases and about 0.4 million deaths were
estimated (GLOBOCAN data) [2]. PCa is very heterogeneous in terms of grade and
genetics, displaying complex biological, hormonal, and molecular features [2]. This cancer
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has different phenotypes, ranging from indolent asymptomatic, a non-life-threatening form,
to metastatic, very aggressive, rapidly progressive, and lethal forms [3,4]. Unlike diseases
such as breast and colon cancer, no major predisposition genes for PCa have been detected.
Instead, multiple chromosomal loci of susceptibility genes have been identified, and most of
the genomic regions remain poorly studied, which explains this cancer’s heterogeneity [5].
Furthermore, epigenetic factors play an important role in its clinical phenotypes [6].

PCa and subsequent treatments have a high impact on the functional and psycho-
logical status of patients, significantly affecting their quality of life [7]. The current diag-
nostic methods are based on the measurement of prostate-specific antigen (PSA) blood
levels, transrectal ultrasound, digital rectal examinations (DRE), and prostate biopsies [8]
(Figure 1). However, these methods are invasive, expensive, and unpleasant to patients,
with consequent risks of unnecessary complications, and can lead to both false-positive
and false-negative results [9]. The PSA test has limited sensitivity (20.5%) [10], accuracy
(62–75%) [11], and specificity (51–91%) [12]. Its low selectivity to detect PCa often leads to
the overdiagnosis and overtreatment of relatively indolent tumors with low potential for
morbidity or death if left untreated [13].
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The advances in OMICs science have contributed to the discovery of new biomarkers
for PCa detection, management, and surveillance. Despite the great efforts and important
discoveries, no biomarker has been able to replace PSA in clinical practice for PCa screen-
ing [10]. Hence, need is urgent to find highly specific diagnostic tools for non-invasive
detection of PCa that are preferentially able to stratify patients by cancer aggressiveness
and consequent choice of therapy, which will lead to personalized and targeted therapies.
More recently, volatilomics emerged as a promising approach for the definition of can-
cer biomarkers, based on metabolites biosynthesized by different metabolic pathways,
and found in readily accessible biofluids, such as saliva, exhaled breath, and urine. In
this review, we provide a brief overview of the potential of endogenous volatile organic
metabolites (VOMs) as an innovative and efficient approach to establishing a volatilomic
biosignature and potentially define a panel of PCa biomarkers as a complementary tool to
be used in clinical practice for its diagnostic and management.

2. Prostate Cancer Biomarkers

In recent years, advances in molecular medicine have contributed to the discovery
of new potential biomarkers to aid in PCa screening and management. Common liquid
biopsies biomarkers include extracellular vesicles (EVs), circulating tumor cells (CTCs)
and DNA (ctDNA), and cell-free DNA (cfDNA) [14]. However, a few issues prevent the
effective use of CTCs and EVs as biomarkers in liquid biopsies for diagnosing PCa, such as
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the need for specific guidelines for the biomarker’s isolation and detection. Moreover, the
microfluidic devices used to develop liquid biopsies have not yet been fully validated and
standardized [15]. Long noncoding RNAs (lncRNAs) have also emerged as a promising
class of PCa biomarkers. Most lncRNAs associated with PCa are overexpressed in tumor
tissues and cancer cells, contributing to tumor proliferation, invasion, and metastasis. In
contrast, only a few lncRNAs are downregulated and may act as tumor suppressors, in
addition to their potential activity as transcriptional regulators and oncogenes. All of
these unique features make lncRNAs promising predictive biomarkers and therapeutic
targets for the diagnosis, screening, prognosis, and progression of PCa. Nevertheless, the
molecular mechanisms of action of lncRNAs are not very clear yet and it will be important
to fully understand and investigate the roles and mechanisms of lncRNAs in prostate
carcinogenesis [16]. Other molecular biomarkers for urine, serum, and tissue samples
have been developed (Table 1) based on the combination of imaging techniques with other
methodologies, such as gene or protein profiling, to enhance cancer detection, pre-biopsy
decision, determination of cancer risk, and therapeutic management of PCa [17].

Table 1. Potential clinical utility, characteristics, and availability of prostate cancer biomarkers.

Biomarker Test Molecular Markers Potential Clinical Utility Characteristics Availability

Serum biomarkers

PSA PSA Treatment monitoring
Sensitivity: 60% [18]
Specificity: 79% [18]

AUC: 0.55 [19]

4KScore Total PSA, free PSA, intact
PSA, hK2

Unnecessary biopsy reduction of
43% [20]

Risk prediction of PCa
metastases

Previous negative biopsy

Sensitivity: 75% [21]
Specificity: 63% [21]

AUC: 0.71 [22]
CLIA-certified

PHI Total PSA, free PSA, p2PSA
isoform

Unnecessary biopsy reduction of
40% [23]

Prediction of high-grade PCa
Active supervision monitoring

Sensitivity: 82% [24]
Specificity: 80% [24]

AUC: 0.71 [21]
FDA-approved

Urinary biomarkers

Progensa
(PCA3)

Long non-coding RNAs
(ratio of PCA3 mRNA:PSA

mRNA)

Unnecessary biopsy reduction of
23–38% [25]

PCa detection, staging, and
prognosis

Previous negative biopsy

Sensitivity: 69% [26]
Specificity: 65% [26]

AUC: 0.73 [26]
FDA-approved

SelectMDx HOXC6 and DLX1 mRNA
Unnecessary biopsy reduction of

53% [27]
Prediction of high-grade PCa

Sensitivity: 91% [27]
Specificity: 36% [27]
AUC: 0.71–0.81 [27]

CLIA-certified

MPS PCA3 and TMPRSS2-ERG
mRNA

Unnecessary biopsy reduction of
35–47% [28]

Predict the risk of PCa and
high-grade PCa

Sensitivity: 93% [29]
Specificity: 33% [29]

AUC: 0.69 [28]
CLIA-certified

EPI Exosomal RNA (SPDEF,
PCA3, ERG)

Unnecessary biopsy reduction of
27% [30]

Improved identification of
high-grade PCa

Sensitivity: 92% [30]
Specificity: 34% [30]

AUC: 0.70 [30]
CLIA-certified

Tissue biomarkers

ConfirmMDx DNA hypermethylation
GSTP1, APC, and RASSF1

Prediction of true negative
prostate biopsies

Sensitivity: 68% [24]
Specificity: 64% [24]

AUC: 0.74 [24]

Not
FDA-approved

yet
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Table 1. Cont.

Biomarker Test Molecular Markers Potential Clinical Utility Characteristics Availability

OncotypeDX mRNA expression (17 genes) Monitoring of tumor
aggressiveness AUC: 0.73 [26]

Not
FDA-approved

yet

Prolaris mRNA expression (31 genes) Monitoring of tumor
aggressiveness AUC: 0.78 [26] FDA-approved

Decipher mRNA expression (22 genes) Treatment monitoring
Sensitivity: 73% [31]
Specificity: 74% [31]

AUC: 0.79 [31]
CLIA-certified

ProMark Protein biomarker test
(8 proteins)

Monitoring of tumor
aggressiveness

Sensitivity: 90% [27]
Specificity: 85% [27]

AUC: 0.72 [27]
CLIA-certified

Legend: AUC—area under the receiver operating characteristic (ROC) curve; CLIA—Clinical Laboratory Im-
provement Amendments; FDA—Food and Drug Administration.

Abnormalities in these tests indicate the performance of a prostate biopsy. Moreover,
risk calculators are combined with these tests to help determine the risk of cancer, thus
reducing the number of unnecessary biopsies. The guidelines recommend using these tests
in combination with the current PCa screening methods (Figure 2) [10].
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Biomarkers such as the lncRNA PCA3 and TMPRSS2-ERG fusion gene have shown
increased sensitivity and specificity (Table 1), potentially reducing PCa overdiagnosis. The
prostate cancer gene 3 (PCA3) assay detects long non-coding RNA in urine samples. This
test was approved by the Food and Drug Administration (FDA) in 2012; it calculates the
ratio of PCA3 messenger RNAs (mRNAs) versus PSA mRNA in the first urine post-DRE and
is approved for patients with a previously negative biopsy [7,10,32,33]. The Prostate Health
Index (PHI) test is an algorithm approved by the FDA that includes total PSA, free PSA, and
p2PSA isoform ([-2] proPSA). PHI calculates PCa probability and is recommended for men
with PSA levels between 2 and 10 ng/mL and no abnormalities in their DRE. This blood
test is also able to assess the likelihood of PCa progression during active surveillance, being
used to monitor patients [34]. The Four-Kallikrein (4KScore) test is a diagnostic algorithm
that combines four kallikreins in blood plasma, namely human kallikrein 2 (hK2), total
PSA, free PSA, intact PSA, in addition to the patient’s clinical information (age, DRE results,
and prostate biopsy history). This test assesses the probability of high-grade PCa and is
recommended for patients undergoing initial and repeated biopsy. Moreover, the 4KScore
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also predicts the risk of occurrence and development of aggressive PCa [34]. The ExoDx
Prostate IntelliScore (EPI) is a pre-biopsy RNA-based assay that uses the expression of
PCA3, ERG, and SPDEF, isolated from urinary exosomes to predict the probability of high-
grade PCa (Gleason score ≥ 7) on diagnostic biopsy. This is the only test that is not based
on any other parameters related to PSA or a PSA derivative in the test algorithm to calculate
the result, but clinicians can use it in conjugation with other clinical variables [30,34]. The
SelectMDx and MyProstateScore (MPS) tests are based on the combination of multiple gene
analyses. SelectMDx is a non-invasive test that measures mRNA transcripts from the genes
HOXC6 and DLX1 in urine samples post-DRE and relates them to clinical risk factors such
as age, family history, and PSA levels. This test is used to evaluate the presence of any PCa
during biopsy and the risk of high-grade PCa. It also avoids unnecessary biopsies in the
case of low-risk PCa [27]. Serum and urine biomarkers are used for consideration of initial
biopsy, while tissue biomarkers are used to confirm test results. Tissue biomarkers tests
have been developed to aid the clinical practice to decide what kind of therapy should
be applied for different PCa diagnoses. ConfirmMDx is based on pronounced epigenetic
changes that are indicative of the presence of cancer in the benign prostate tissue that is
near the focus of PCa. This test determines the level of methylation of the promoter regions
of the genes GSTP1, APC, and RASSF1 in benign prostate tissue, identifying high-grade
PCa in patients with negative biopsies [27]. Prolaris is a prognostic test that measures
tumor biology to improve the accuracy of risk stratification in men with localized PCa.
This test combines the RNA expression levels of 31 genes involved in cell-cycle progression
and 15 housekeeping genes to generate a Prolaris Score. Prolaris can be used to guide
patient selection for active surveillance or definitive treatment [34–36]. The ProMark test is
a protein-based prognostic assay of eight protein markers (DERL1, CUL2, SMAD4, PDSS2,
HSPA9, FUS, phosphorylated S6, and YBOX1) that predicts the aggressiveness of cancer
in patients with Gleason scores of 3 + 3 and 3 + 4. Moreover, ProMark predicts adverse
pathology during radical prostatectomy and predicts if the tumor can be managed with or
without aggressive treatment [27]. The Decipher is a genomic classifier prediction model
for metastasis that measures the levels of RNA expression of 22 different genes on post-
prostatectomy tissue samples. This test calculates the likelihood of clinical metastases
within 5 years of prostatectomy in men with adverse pathological features. It could be a
useful tool for diagnosis and local therapy planning for new PCa patients [31,34].

Despite the recent progress in the discovery of new biomarkers, gene mutations, and
genomic signatures, some challenging obstacles must be overcome to develop effective
biomarkers. These limitations include tumor heterogeneity, tumor–host interplay, com-
plexity, multiplicity, and redundancy of tumor-cell signaling networks, involving genetic,
epigenetic, and microenvironmental effects [7]. Additionally, the technologies associated
with these approaches are often expensive, unavailable in many medical facilities, and
time-consuming [10].

3. Contribution of the OMICs Science

The OMICs science comprises the dataset of genomics (DNA), transcriptomics (RNA),
proteomics (proteins), and metabolomics (metabolites) and is intended to be used to dis-
cover cancer-specific biomarkers that are useful for its diagnosis and prognosis. In recent
years, metabolomics emerged as a promising tool to offer novel insights into disease
aetiology and etiological pathways [37]. Metabolomics is complementary to genomics, tran-
scriptomics, and proteomics, as it represents the integration of genetic regulation, enzyme
activity, and metabolic reactions [38]. This science studies the complex interaction of small
molecules in biological systems providing comprehensive and detailed information on
the phenotype and molecular physiology changes resultant from the interactions between
environmental factors, genetics, and both exogenous and endogenous factors, such as
age, diet, drugs, chronobiological variations, among others [7]. Metabolites represent the
end-products of physiological processes, and the altered levels of certain metabolites can be
measured by using metabolomics to establish a correlation with the disease status [39]. Neo-
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plastic cells have a unique metabolic phenotype that is related to cancer development and
progression, resulting in changes in the production, use, and levels of metabolites [37,39,40].
Therefore, metabolomics has become a powerful tool for the discovery of new cancer
biomarkers and therapeutic monitoring through the analysis of biomarkers indicative of
disease progression and therapeutic response [41,42].

Volatilomics is a subset of metabolomics based on the study of VOMs. VOMs are low-
molecular-weight metabolites (<500 Da) with high volatility and a carbon-based chemical
group. These metabolites are generated through the metabolism of cells, reflecting their bio-
logical activity, and can be released in the blood and excreted through exhaled breath, sweat,
urine, or saliva [43]. Cancer cells can be distinguished from normal cells by alterations in
normal metabolic rates, apoptotic pathways, and protein expression patterns [10,43,44].
Metabolic shifts and different responses of the immune system may consist of some of the
earliest and most detectable changes in cancer which may become more pronounced as the
disease develops. Since VOMs are produced and emitted through the metabolism of cells,
cancer development and progression can lead to changes in the volatilomic profile which
can be used to define a volatilomic biosignature for diagnostic purposes [10,39].

3.1. Volatilomics—An Emerging Yet Challenging Approach

Empirical data have confirmed the potential of VOMs analysis for cancer screening,
characterization of disease progression, and follow-up of the treatment’s success, as well
as for the discrimination between different types of cancer. The volatilomics approach is
based on highly sensitive analytical techniques and does not require invasive procedures,
since VOMs can be found in readily accessible biofluids.

Volatilomics studies can range from targeted analysis of one or a small number of
metabolites associated with a specific biological pathway to the fingerprinting of a large
subset of metabolites associated with a particular phenotype or stimulus [38,44,45]. Untar-
geted approaches are more appropriate to detect unexpected changes in the concentrations
of specific metabolites [7], meaning that the use of a multi-biomarker panel provides a
better evaluation of the cancer progression [10]. VOMs’ detection requires precise, reliable,
and effective instrumentation (Figure 3) [46]. Mass spectrometry (MS) is the most used
analytical platform for the identification of the volatilomic profile of biological matrices. MS
requires an initial separation of metabolites by gas or liquid chromatography (GC or LC, re-
spectively), followed by ionization and resolution according to the mass-to-charge ratio. MS
methods have a high sensitivity and can detect secondary metabolites at low concentrations,
making them more suitable for high-throughput methods [10,38]. The most used method
for VOMs analysis is the headspace (HS) solid-phase microextraction (SPME) coupled
with GC–MS, due to its reliable and reproducible results. SPME, developed by Arthur and
Pawliszyn in the early 1990s [47,48], involves the partitioning of analytes from the sample
solution into the sorbent coating of the SPME fiber due to the intermolecular interaction
with the sorbent material [49]. This technique combines sampling, extraction, concentration,
and sample preparation into a single step [47,50]. It is a highly efficient technique, with
increased sensitivity, automation, and portability, that does not require any concentration
step before analysis, thus preventing the production of interferents [51,52]. The availability
of extraction materials and basic equilibration mechanisms makes this methodology very
selective, fast, and cost-efficient, and it gives a high-level performance [47,48].

Different approaches have been proposed concerning volatilomic studies aiming
to find a relationship between VOMs’ signature of the body and cancer, based on the
comparison of the VOMs pattern in biological samples from cancer patients and healthy
individuals. Many studies have focused on the identification of a cancer-characteristic odor
fingerprint from biological fluids through the application of sensorial analyses via electronic
noses (e-noses). E-noses consist of non-specific sensors that interact differently with VOMs.
Each VOM generates a characteristic fingerprint due to the interaction with the sensor
array that is then analyzed by an appropriate pattern-recognition system to investigate its
nature and origin (reviewed by Reference [53]). Urine analysis via an e-nose, for instance,
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has been shown to distinguish between different types of cancer. This is a non-invasive
method based on the finding that dogs can be trained to smell urine and, thus, recognize
several types of cancers [54,55]. Other studies have suggested a chemical characterization
of biological fluids for the identification of cancer-specific biomarkers through analytical
techniques such as MS-based techniques or SPME [56]. These studies are often performed
in readily accessible biofluids, mainly exhaled breath, urine, and saliva, since the sampling
procedure of these matrices is non-invasive, painless, easy, does not cause any discomfort
to the patients, and does not require any specific expertise or specialized staff [42,44]. Blood
has also been used in VOMs studies, but obtaining blood samples is an invasive, costly,
and time-consuming procedure. Moreover, changes in the temperature or pH of blood
samples can change the VOMs profile [43]. Table 2 shows a few studies on the volatile
composition of oncological patients for the identification of discriminative biomarkers for
different cancer types in urine, exhaled breath, and saliva samples.
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Table 2. Studies on volatile organic compounds for the identification of cancer biomarkers in non-
invasive matrices.

Cancer Type Analytical Approach Biomarker’s Candidates Prediction Model Validation
Characteristics Reference

Urine

Head and neck HS-SPME/GC–MS m-cresol, benzene, nonanal, acetone PLS-DA NA [57]

Head and neck HS-SPME/GC–MS 2,6-dimethyl-7-octen-2-ol, 1-butanol,
p-xylene, 4-methyl-2-heptanone PLS-DA, ROC NA [58]

Leukaemia,
colorectal,
lymphoma

dHS-SPME/GC–qMS 16 VOMs were found statistically
significant PCA NA [59]

Breast dHS-SPME/GC–qMS Heptanal, dimethyl disulfide and
2-methyl-3-phenyl-2-propenal PCA NA [51]

Renal cell
carcinoma HS-SPME/GC–MS 11 VOMs PCA, PLSDA NA [60]
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Table 2. Cont.

Cancer Type Analytical Approach Biomarker’s Candidates Prediction Model Validation
Characteristics Reference

Pancreatic TD-GC–TOF-MS GC–IMS
2,6-dimethyl-octane, nonanal,
4-ethyl-1,2-dimethyl-benzene,

2-pentanone

Repeated
10-Fold

CV
NA [61]

Exhaled breath

Lung HS-SPME/GC–MS
Acetone, methyl acetate, isoprene,
methyl vinyl ketone, cyclohexane,
2-methylheptane, cyclohexanone

DFA, ANN
Sensitivity: 80%

Specificity: 91.23%
AUC: NA

[62]

Lung HS-SPME/GC–MS Caprolactam and propanoic acid PCA, OPLS-DA,
PLSDA NA [63]

Pancreatic TD-GC–MS

Formaldehyde, acetone, acetoin,
undecane, isopropyl alcohol,
pentane, n-hexane, 1-butanol,

1-(methylthio)-propane,
benzaldehyde, tetradecane,

amylene hydrate

ROC
Sensitivity: 81%
Specificity: 58%

AUC: 0.736
[64]

Colorectal TD-GC–MS 15 specific VOMs PNN
Sensitivity: 86%
Specificity: 83%

AUC: 0.852
[65]

Gastric PTR-TOF-MS Propanal, aceticamide, isoprene,
1,3-propanediol ROC

Sensitivity: 61%
Specificity: 94%

AUC: 0.842
[66]

Saliva

Head and neck HS-SPME/GC–MS
1,4-dichlorobenzene, 1,2-decanediol,

2,5-bis1,1-dimethylethylphenol,
E-3-decen-2-ol

ROC, OPLS-DA NA [67]

Colorectal/stomach GC–FID Acetaldehyde, acetone, 2-propanol,
ethanol, methanol ROC

Sensitivity: 95.7%
Specificity: 90.9%
AUC: 0.857/0.839

[68]

Breast HS-SPME/GC–MS

3-methyl-pentanoic acid,
4-methyl-pentanoic acid, phenol,
p-tert-butyl-phenol (Portuguese
samples) and acetic, propanoic,
benzoic acids, 1,2-decanediol,
2-decanone, decanal (Indian

samples)

PLS-DA, OPLS-DA NA [69]

Breast dHS-SPME/GC–qMS Phenol, 2-ethyl-1-hexanol PCA NA [70]

Oral HS-SPME/GC–MS

1-octen-3-ol, hexanoic acid,
E-2-octenal, heptanoic acid, octanoic

acid, E-2-nonenal, nonanoic acid,
2,4-decadienal, 9-undecenoic acid

PCA
Sensitivity: 100%
Specificity: 100%

AUC: 1
[71]

Legend: ANN, artificial neural network; AUC, area under the receiver operating characteristic (ROC) curve; CV,
cross-validation; DFA, discriminant function analysis; dHS-SPME, dynamic headspace solid-phase microextrac-
tion; GC–IMS, gas chromatography–ion migration spectroscopy; GC–MS, gas chromatography-mass spectrometry;
GC–qMS, gas chromatography–quadrupole mass spectrometry; HS-SPME, headspace solid-phase microextraction;
NA, not analyzed; PCA, principal component analysis; OPLS-DA, orthogonal partial least-squares discriminant
analysis; PLS-DA, partial least-squares discriminant analysis; PNN, probabilistic neural network; PTR-TOF-MS,
proton-transfer-reaction time-of-flight mass spectrometry; ROC, receiver operating characteristic; TD-GC–MS, ther-
mal desorption gas chromatography-mass spectrometry; TD-GC–TOF-MS, two-dimensional gas chromatography
and time of flight mass spectrometer.

VOMs can originate from endogenous metabolomic pathways and/or from external
sources, such as diet, drugs, and environmental exposure (exogenous). VOMs constitute a
rich source of information on health or disease status, reflecting biochemical and metabolic
activities, along with environmental effects, caused by biological activities, including cell
death, oxidative stress, or inflammation [43].

VOMs in urine are considered intermediate or end products of metabolic pathways
and may include ketones, alcohols, furans, and sulfides [44,72]. The human urinary profile
changes over time due to bacterial activity, metabolism, pH variations, decomposition
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of urine constituents, health status, or physical stress. All of these factors are important
sources of VOMs produced endogenously. In contrast, dietary habits and environmental
exposure to contaminants are two important exogenous sources of many VOMs found in
the human organism [51]. Urine is the preferred biological fluid for a volatilomic approach,
due to the enrichment of volatile components, ranging in polarity and complexity [46],
caused by their concentration in the kidney before excretion [51]. Moreover, its sampling
can be performed as often as needed [59], it is easier to obtain in large quantities and to
handle, it needs less sample preparation, and it contains high amounts of metabolites and
low protein content [41].

Most studies on cancer-related VOMs have been performed by using exhaled breath,
especially for the detection of lung cancer [62,63] (Table 2). Exhaled breath reflects the
volatile composition of the bloodstream and airways and, thus, the status and condition
of the whole metabolism. Hence, it has the potential to assess the diagnosis, severity, and
progression of diseases [73]. Exhaled breath contains VOMs from endogenous sources, as
well as a large number from exogenous origins. The endogenous metabolites are blood-
borne compounds released to the environment through the lungs or compounds made
from all classes of symbiotic bacteria. The exogenous VOMs include compounds inhaled
from the external environment, including compounds produced after the oral ingestion
of food and compounds derived from smoking cigarettes and exposure to pollutants and
chemicals [44]. VOMs in exhaled breath can be easily detected through biological sensors,
such as e-noses [44,74]; however, such an approach often targets a limited number of
VOMs previously defined as having a discriminative potential for a given condition. A
comprehensive analysis of the volatile composition of breath often requires laboratory
layouts similar to those used for other volatilomics analyses. Proton transfer reaction with
time-of-flight mass spectrometry (PTR-TOF–MS) allows for the real-time identification of
the breath volatile composition, representing the most potent and sophisticated approach
currently available [75]. Nevertheless, it involves high acquisition and maintenance costs,
as well as specific adaptations to be used in the clinical environment and highly trained
personnel to operate it (reviewed in Reference [73]). Given its informative potential to
guide clinical decisions, continuous technological improvements will certainly drive the
real-time monitoring of exhaled breath in the clinical environment, making it an important
tool to add to conventional medical diagnostics [73].

Saliva is the easiest way of sampling biofluids to obtain relevant metabolic informa-
tion. It is readily available in large amounts all day and contains fewer proteins than
blood, thus decreasing any potential risk of non-specific interference and hydrostatic
interactions [69,70]. Saliva is considered a mirror of the metabolic interaction with the envi-
ronment, as it integrates both endogenous and exogenous contributions [76]. The volatile
composition of saliva reflects the oral composition and the biochemical and metabolic
blood information, constituting a valuable source of VOMs for cancer biomarkers [77–79].
This approach is still relatively new, and it is not as popular in medical diagnosis as urine
and serum, but a few studies have demonstrated its potential for head and neck [67] and
breast cancer [69,70] diagnosis.

Challenges of Volatilomics

Volatilomic studies comprise different approaches, such as the identification of a
cancer-characteristic odor fingerprint from biological fluids through e-noses or the chemical
characterization of biological fluids for the identification of cancer-specific biomarkers
through MS-based techniques combined with multivariate statistical analysis [56]. These
approaches are still in progress, and there are a few limitations that prevent them from
being used in clinical practice.

E-noses typically use non-specific sensors and can only detect specific molecular
patterns based on the differentiation of the odors’ fingerprints, which can vary substantially
in different biological fluids. Consequently, it is possible to have different sets of VOMs in
different biological fluids that are related to the same disease [54,55]. The discrimination
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between different odors is not operated based on the identification of their chemical
composition, since e-noses cannot identify and quantify every VOM found in a sample;
thus, other analytical techniques are also used, such as GC–MS. Hence, e-noses do not
for allow the identification of specific biomarkers associated with a certain disease [53].
Further research is needed to develop and improve specific e-noses for different diseases,
along with the need to discover and analyze the connections between specific diseases and
body fluids’ odors.

MS-based techniques, such as GC–MS, also show some limitations that prevent them
from being used in real-time diagnostic applications, such as low sample throughput, high
costs, and the requirement for trained personnel and sophisticated software [80]. Moreover,
these techniques are not portable, and differences in sample preparation and the lack of
standardized analytical procedures and statistical treatment of data can compromise the
comparison of results among different studies, which is a common problem and debated
subject in the field of VOMs assessment [41,56,81]. In the future, the standardization of
procedures from collection to data treatment might revolutionize the volatilomics field. For
instance, given these concerns, Aggarwal et al. [46] proposed an optimized method for
urine sample preparation followed by HS-SPME/GC–MS analysis.

The exhaustive comprehension of metabolic pathways and VOMs’ origin, in addition
to a better evaluation of confounding factors’ influence, is another important point in the
volatilomics approach. VOMs profile may vary according to the patient’s stage of cancer,
and potential biomarker candidates must consist of endogenous VOMs, linked to disease-
related changes in metabolism. Thus, it is crucial to select and separate endogenous VOMs
from exogenous ones before the VOMs analyses. This selection avoids contamination from
exogenous and uncontrolled sources, such as diet, medications, environmental factors,
smoking, or alcohol consumption, which can lead to abnormal metabolism with subsequent
excretion of differing concentrations of VOMs in the biofluids. Additionally, epigenetic
factors play a very important role in the clinical phenotypes of cancer, meaning that the
volatilomic biosignature and the possible biomarkers will differ between different regions
of the world, due to genetic, environmental, and toxicological factors, in addition to the
different eating habits practiced around the world, that can be related to the development of
cancer. Gaining knowledge of the biochemical pathways involved in the VOMs formation
is highly desirable to understand the formation of these metabolites and thus, determine
their source since some of these metabolites can be originated from both endogenous
and exogenous sources [44]. Therefore, all of these confounding factors make VOMs
determination analytically challenging [56,81]. The progress in volatilomics studies will
allow an exhaustive comprehension of metabolic pathways and an elucidation of the
mechanisms of cancers and how they affect VOMs’ production. Moreover, this information
will allow researchers to determine the VOMs’ origin in more detail, in addition to leading
to a better evaluation of the confounding factors’ influence.

Despite these limitations, the tremendous informative potential of volatilomics will
allow researchers to gain more in-depth knowledge of cancer development and progression.
The volatilomics findings from GC–MS analyses will allow for the discovery of cancer-
specific biomarkers and, consequently, the development of highly specific, fast, inexpensive,
easy-to-use, and portable sensors [43]. Sensors do not require invasive procedures and
can be easily implemented in clinical practice without the need for specialized staff [80].
Moreover, different types of sensors have been developed to detect cancer-related VOMs,
including metal oxide and nanomaterial-based chemiresistive sensors, piezoelectric sensors,
colorimetric sensors, and metal-organic frameworks, with very promising diagnostic accu-
racy in terms of specificity and sensitivity [43]. Given these advantages, this approach can
be easily disseminated to countries where economic resources and advanced infrastructures
are not available [10,41,42,44]. Therefore, despite the previously mentioned concerns, the
standardization of methods, along with the development of highly specific sensors, will
allow for the detection and quantification of specific metabolites for the definition of cancer
biomarkers, thus proving the importance of the volatilomics approach [53,56].
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3.2. Volatilome of Prostate Cancer—A Promising Approach for Biomarkers’ Detection

Prostate cells have a distinct metabolic profile, reflecting the production of citrate,
PSA, and polyamines (spermine and myo-inositol), the major components of prostate
fluid [33]. Studies on the metabolic alterations associated with PCa have demonstrated
characteristic decreases in citrate and polyamines and increases in choline glycerophos-
pholipids, lactate, and components of several pathways of amino acid metabolism [38],
as well as in the synthesis and oxidation of fatty acids [10,82]. In the advanced stages
of PCa, metastases formation is associated with an increase in the glycolytic pathway,
also known as the Warburg effect. This phenomenon is characterized by a shift in energy
production due to increased aerobic glycolysis and lactate secretion [10,83]. Dysregulations
in 14 metabolic pathways mainly related to valine, leucine, and isoleucine biosynthesis;
the pentose phosphate pathway; and glycine, serine, and threonine metabolism denoted
that PCa development and progression are deeply connected to alterations in amino acids
metabolism, energy metabolism, and membrane metabolism [10,84].

Cancer growth is promoted by the progressive accumulation of genetic, epigenetic, and
post-translational changes and by a high metabolic demand, leading to cellular oxidative
stress. In turn, these changes increase the liver’s production of Cytochrome P (CYP)
450 oxidase enzymes to deal with stress. CYP 450 enzymes catalyze the metabolism of
many compounds of both exogenous and endogenous origin, including steroids, vitamins,
fatty acids, prostaglandins, and leukotrienes. These enzymes may activate exogenous
compounds to toxins or carcinogens, and mutations in the CYP genes can cause serious
health problems. Given their ability to activate or deactivate most carcinogens, CYP 450
enzymes play an important role in cancer formation and are involved in tumor initiation
or promotion [43]. For instance, mutations in CYP17A1 lead to mineral corticoid excess
syndromes, glucocorticoid, and sex-hormone deficiencies, increasing the risk of PCa and
benign prostatic hypertrophy [85,86]. CYP 450 enzymes can also mediate the generation of
oxygen reactive species, which are known to be overexpressed in cancer cells [43]. Oxidative
stress also leads to lipid peroxidation, caused by disease processes or immune responses
such as inflammation, and all of these changes can be detected through VOMs. VOMs are
end products of carbohydrate and lipid metabolism, as well as oxidative stress and CYP
450 enzymes, and these processes can lead to different volatile profiles in cancer patients
compared to cancer-free individuals (Figure 4).
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The volatilomics is still relatively new in PCa when compared to other cancers (Table 2).
Table 3 describes volatilomic studies for the definition of PCa biomarkers in urine, exhaled
breath, and saliva. Most studies found were performed in urine, as this biofluid con-
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tains compounds coming directly from the prostate gland and does not require cross-over
blood–tissue barriers, having fewer confounding elements [7]. The identification of specific
biomarkers for cancer diagnosis consists of the chemical characterization of liquid urine
or its headspace, through MS-based techniques or SPME, aiming at the detection of PCa
biomarkers and quantification of their amounts [56]. Most research is based on the com-
parative analysis of samples from PCa patients and controls, such as the studies of Lima
et al. [39], Khalid et al. [87], Stuck-Lewicka et al. [88], Gao et al. [89], and Jiménez-Pacheco
et al. [90] (Table 3). These studies developed their methods by combining different analyti-
cal techniques, mostly HS-SPME/GC–MS, for the detection and quantification of changes
in VOMs levels in PCa samples compared to healthy ones. Interestingly, the studies of
Lima et al. [80] and Peng et al. [91] reported biomarkers for the differential diagnosis of
PCa when compared with other cancers. Lima et al. [80] developed a urinary 10-biomarker
panel for the diagnosis of PCa, with a higher accuracy level than the PSA test. This panel
of biomarkers was able to discriminate PCa patients from controls and other urological
cancers, including bladder and renal cancers. Peng et al. [91] focused on the volatile com-
position of PCa patients’ exhaled breath. In this study, the authors used a nanosensor array
to discriminate the exhaled breath profile of lung, breast, prostate, and colorectal cancers.
The sensor developed was able to differentiate between healthy controls and cancerous
patients and between different cancer types. Nevertheless, no exhaustive results have been
published until now, since many different VOMs have been proposed as PCa biomarkers,
and divergent opinions upon the same metabolites have emerged in different studies.

Table 3. Studies on volatile organic compounds for the identification of prostate cancer biomarkers.

Sample Groups Analytical Approach Biomarker’s Candidates Prediction Model Validation
Characteristics Reference

Urine

PCa: 59
HC: 43 HS-SPME/GC–MS 2,6-dimethyl-7-octen-2-ol,

pentanal, 3-octanone, 2-octanone

Repeated
10-Fold

CV, Repeated
Double

CV

NA [87]

PCa: 58
HC: 60 HS-SPME/GC–MS

hexanal,
2,5-dimethylbenzaldehyde,

4-methylhexan-3-one,
dihydroedulan IA, methylglyoxal,

3-phenylpropionaldehyde

PLS-DA, ROC
Sensitivity: 89%
Specificity: 83%

AUC: 0.904
[39]

PCa: 20
BC: 20
RC: 20
HC: 20

HS-SPME/GC–MS

methylglyoxal, hexanal,
3-phenylpropionaldehyde,

4-methylhexan-3-one,
2,5-dimethylbenzaldehyde,

dihydroedulan IA, ethylbenzene,
heptan-2-one, heptan-3-one,

4-(2-methylpropoxy)butan-2-one,
methyl benzoate,

3-methyl-benzaldehyde

PLS-DA
Sensitivity: 76%
Specificity: 97%

AUC: 0.90
[80]

PCa: 32
HC: 32 GC–MS

VOMs involved in amino acids,
purine, glucose, urea, Krebs cycle

biochemical pathways
PCA, PLS-DA NA [88]

PCa: 108
HC: 75 SBSE/TD-GC–MS 11 VOMs ROC

Sensitivity: 87%
Specificity: 77%

AUC: 0.86
[89]

PCa: 29
BPH: 21 HS-SPME/GC–MS furan, p-xylene - NA [90]
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Table 3. Cont.

Sample Groups Analytical Approach Biomarker’s Candidates Prediction Model Validation
Characteristics Reference

BC: 15
PCa: 55 HC: 36

GC–TOF-MS and
GC–IMS 35 VOMs ROC, Repeated

10-Fold CV

GC–IMS method
Sensitivity: 87%
Specificity: 92%

AUC: 0.95
GC–TOF-MS method

Sensitivity: 78%
Specificity: 88%

AUC: 0.94

[55]

PCa: 88
HC: 86

Urine headspace
conditioning, followed

by e-nose analysis

The study tested the ability of
urinary volatilome profiling to
distinguish patients with PCa

from HC

ROC
Sensitivity: 85.2%
Specificity: 79.1%

AUC: 0.82
[92]

PCa: 133
HC: 139

Urine headspace
conditioning, followed

by e-nose analysis
(Cyranose C320)

The study tested the ability of
urinary volatilome profiling to
distinguish patients with PCa

from HC

PCA, ROC
Sensitivity: 82.7%
Specificity: 88.5%

AUC: 0.90
[54]

PCa: 132
HC: 60

Urine headspace
conditioning, followed

by e-nose analysis
(Cyranose C320)

The study tested the ability of
urinary volatilome profiling to
distinguish patients with PCa

from HC

PCA
Sensitivity: 82%
Specificity: 87%

AUC: NA
[93]

HCC: 31
PCa: 62
BC: 29
HC: 18

SPME, followed by
analysis with

polymer tabs sensor

The study tested the ability of
urinary volatilome profiling to
distinguish patients with PCa

from HC

PCA, ROC

PCa detection
Sensitivity: 70%
Specificity: NA

AUC: 0.70

[94]

Exhaled breath

LC: 30
CC: 26

BTC: 22
PCa: 18
HC: 22

HS-SPME/GC–MS 6 VOMs for LC, 6 VOMs for CC, 5
VOMs for BTC, 4 VOMs for PCa PCA NA [91]

PCa: 32
HC: 53

E-nose analysis
(Cyranose C320)

The study tested the ability of
exhaled breath volatilome

profiling to distinguish patients
with PCa from HC

ANN
Sensitivity: 84%
Specificity: 70

AUC: 0.79
[95]

Legend: ANN, artificial neural network; AUC, area under the ROC curve; BC, bladder cancer; BPH, benign
prostate hyperplasia; BTC, breast cancer; CC, colon cancer; CV, cross-validation; GC–IMS, gas chromatography–ion
mobility spectrometry; GC–MS, gas chromatography–mass spectrometry; GC–TOF-MS, gas chromatography cou-
pled to time-of-flight mass spectrometry; HC, healthy control; HCC, hepatocellular cancer; HS-SPME, headspace
solid-phase microextraction; kNN, k-nearest neighbor; LC, lung cancer; NA, not analyzed; PCA, principal compo-
nent analysis; PLS-DA, partial least-squares discriminant analysis; RC, renal cancer; ROC, receiver operating characteristic;
SBSE, stir bar sorptive extraction; TD-GC–MS, thermal desorption gas chromatography–mass spectrometry.

Urine analysis via an e-nose has been shown to distinguish between PCa patients
and healthy controls, according to their volatilome profiling. Filianoti et al. [54], Taverna
et al. [92], Capelli et al. [93], and Bannaga et al. [94] used different methodologies based
on urine analysis through e-noses (Table 3) and proved that urine headspace and its
modification are connected to cancer. In turn, Waltman et al. [95] used an e-nose to
distinguish between PCa patients and healthy controls, according to the volatilome profiling
of exhaled breath. However, to our best knowledge, so far, no study has analyzed the
VOMs found in the saliva of PCa patients.

Despite the many advantages of using a volatilomics approach to screen PCa, it
is challenging to find robust biomarkers given the disparities in results between studies.
Potential biomarker candidates must consist of endogenous VOMs linked to disease-related
changes in metabolism. Additionally, epigenetic factors play a very important role in the
clinical phenotypes of PCa, meaning that the volatilomic biosignature and the possible
biomarkers will differ between different regions of the world, as previously explained [44].
Hopefully, the progressive increase in studies involving the VOMs composition of PCa
patients will help to unveil biomarkers suitable for its diagnosis, as a complementary tool to
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the current methods [15]. Recent studies have shown that the conjugation of PSA screening
with other methodologies, such as risk calculators, biomarkers, and imaging tests, e.g.,
magnetic resonance imaging (MRI) or fusion biopsies, can attenuate overdiagnosis and
under-detection issues [96]. This means that the combination of volatilomics with other
methodologies could be extremely valuable for the classification and screening of cancer,
being beneficial in the active surveillance of patients [7]. In the future, the identification
of the PCa volatilomic biosignature through the differentiation of clinical phenotypes in a
group of patients, along with the use of specific sensors in the clinical practice, will allow
for the stratification of individuals into subgroups on which outcomes and treatments are
based, thus providing more personalized treatments [7].

4. Conclusions

The current PCa screening techniques have low accuracy in predicting the clinical
behavior of tumors. This often leads to the overtreatment of indolent tumors, with impor-
tant physical and psychological burdens, thus negatively affecting the patients’ quality
of life and their adherence to further treatments. Studies show that the combination of
PSA screening with other methodologies, such as risk calculators, imaging techniques, and
biomarkers, can attenuate overdiagnosis and under-detection issues, possibly reducing the
number of unnecessary biopsies. Recently, volatilomics has emerged as a promising tool for
the definition of cancer biomarkers. This approach is based on the study of VOMs, which
reflect the metabolic and biochemical changes related to disease progression. VOMs are a
valuable source of information on overall health and are present in readily accessible bioflu-
ids such as saliva, urine, and exhaled breath. Empirical data have confirmed the potential of
VOMs analysis for cancer screening, characterization of disease progression, and follow-up
of the treatment’s success, as well as for the discrimination between different types of
cancer. Many studies have focused on the identification of a cancer-characteristic odor
fingerprint from biological fluids through the application of sensorial analyses (e-noses),
while others suggest a chemical characterization of biological fluids for the identification of
cancer-specific biomarkers. However, no exhaustive results have been published until now,
since different VOMs have been proposed as PCa biomarkers, and divergent opinions upon
the same metabolites emerged in different studies. Methods must be standardized from
collection to data processing, and they should be performed with larger cohorts, preferably
with patients from different countries and ethnicities, to better evaluate the influence of
external factors, such as epigenetics, diet, medication, genetics, and environmental expo-
sure. Moreover, the tremendous informative potential of volatilomics will allow for more
in-depth knowledge of the biochemical pathways involved in cancer development and
progression, in addition to an in-depth understanding of VOMs’ origin and their metabolic
pathways [55]. In turn, these findings will allow for the establishment of cancer-specific
biomarkers and will result in the development of highly specific, fast, inexpensive, easy-to-
use, and portable sensors to be implemented in clinical practice. Hence, the volatilomic
approach will be a valuable complementary tool to the current PCa screening methods.
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