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Balanced translocation linked to psychiatric disorder,
glutamate, and cortical structure/function
Pippa A Thomson1,10, Barbara Duff2,10, Douglas HR Blackwood2, Liana Romaniuk2, Andrew Watson2, Heather C Whalley2, Xiang Li3,
Maria R Dauvermann4, T William J Moorhead2, Catherine Bois2, Niamh M Ryan1, Holly Redpath2, Lynsey Hall2, Stewart W Morris1,
Edwin JR van Beek3, Neil Roberts3, David J Porteous1, David St. Clair5, Brandon Whitcher6, John Dunlop7,8, Nicholas J Brandon7,8,
Zoë A Hughes7, Jeremy Hall9, Andrew McIntosh2 and Stephen M Lawrie2

Rare genetic variants of large effect can help elucidate the pathophysiology of brain disorders. Here we expand the clinical and
genetic analyses of a family with a (1;11)(q42;q14.3) translocation multiply affected by major psychiatric illness and test the effect of
the translocation on the structure and function of prefrontal, and temporal brain regions. The translocation showed significant
linkage (LOD score 6.1) with a clinical phenotype that included schizophrenia, schizoaffective disorder, bipolar disorder, and
recurrent major depressive disorder. Translocation carriers showed reduced cortical thickness in the left temporal lobe, which
correlated with general psychopathology and positive psychotic symptom severity. They showed reduced gyrification in prefrontal
cortex, which correlated with general psychopathology severity. Translocation carriers also showed significantly increased
activation in the caudate nucleus on increasing verbal working memory load, as well as statistically significant reductions in the
right dorsolateral prefrontal cortex glutamate concentrations. These findings confirm that the t(1;11) translocation is associated
with a significantly increased risk of major psychiatric disorder and suggest a general vulnerability to psychopathology through
altered cortical structure and function, and decreased glutamate levels.
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INTRODUCTION
A balanced t(1;11) translocation was first described as a single
locus major risk factor for major psychiatric disorder, including
schizophrenia, bipolar disorder, and recurrent major depression, in
a multiply affected Scottish pedigree with a maximum parametric
LOD score of 7.1.1,2 The translocation breakpoint lies within
the Disrupted in schizophrenia 1 (DISC1) and DISC1FP1/Boymaw
genes.3 DISC1 encodes a multi-functional scaffold protein that
mediates several processes that have been implicated in the
etiology of major psychiatric disorders. Studies utilizing a variety
of rodent models have also shown DISC1 to influence neuro-
development, brain function, and behaviors thought to model
schizophrenia and depression.4,5 DISC1 has been shown to
mediate: neuronal proliferation, differentiation, migration, and
integration, neuronal signaling and synaptic plasticity,4–6 regula-
tion of neurogenesis and dendritic arborization, and the integra-
tion of cortical neurons.7–10 In addition, the expression of DISC1,
DISC1FP/Boymaw, and the fusion protein caused by the transloca-
tion results in severe mitochondrial dysfunction.11–14 So far, there
is no consistent evidence for a role for genetic variants in DISC1 in
schizophrenia risk, including common variants in DISC1,15 and
the potential role of DISC1 and 25 further candidate genes has
been recently challenged.16,17 However, findings from the original

Scottish t(1;11) family have been presented that support the
‘common disease; rare variant’ hypothesis and suggest that DISC1
may have a role in major psychiatric disorders.18 The present study
updates the linkage evidence for the t(1;11) translocation and risk
of psychiatric disease and reports new neuroimaging measures
from the family that provide evidence for biological consequences
of the translocation.
We have previously reported that the P300 event-related

potential measure of attention is consistently altered among
t(1;11) carriers in a manner comparable to that seen in
schizophrenia.2 Until now, we have not had the opportunity to
test for the possible impact of the t(1;11) translocation on
measures of brain structure, function, and metabolite concentra-
tions. Several cognitive and clinical neuroimaging measures are
highly heritable including measures of cortical thickness (CT),
fractional anisotropy, and brain activation measures.19–21 The
structure and function of the prefrontal cortex are implicated in a
range of psychiatric disorders (such as schizophrenia, attention-
deficit/hyperactivity disorder, and autism); they have high levels
of heritability and are commonly reported to be abnormal in
unaffected relatives of patients.22 Studies examining the effects of
common variants in DISC1 alleles in humans, although inconsis-
tent, have suggested that variation at the DISC1 locus contributes
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to structural and functional changes across the brain, but
particularly in prefrontal and temporal regions.5,23–25 DISC1 has
also been shown to regulate the healthy functioning of N-methyl-
D-aspartate receptors (NMDARs).26–28 A transgenic mouse model
expressing a truncated form of Disc1, reflecting the effect of the
translocation on the Disc1 protein, shows reduced cortical–
hippocampal connectivity, reduced CT, and dysfunction of the
glutamate system including reduced expression of NMDAR
subunits in the hippocampus.10,29

Recent studies have suggested that the genetic risk associated
with alterations in glutamatergic function may be implicated in the
pathophysiological pathways of major psychiatric disorders. The
glutamate hypothesis of schizophrenia is based on the NMDAR
hypofunction model.30 Importantly, the glutamate hypothesis
encompasses, rather than negates, the dopamine hypothesis of
schizophrenia31–33 and is a possible final common interaction
pathway for genetic risk factors for schizophrenia.34 The N-methyl-D-
aspartate subtype of the glutamate receptor is implicated across
anatomical, cellular, neurochemical, and neuronal levels in the
development of schizophrenia,35 and the glutamate hypothesis
provides arguably the best available account of the positive,
negative, and cognitive symptoms seen in schizophrenia. Glutama-
tergic disruption has also been implicated in bipolar disorder and
major depression.36,37 Furthermore, it is increasingly clear that major
psychiatric disorders such as schizophrenia, bipolar disorder, and
major depression share at least some genetic risk factors.38

Convergent findings supporting glutamatergic models have
been reported from preclinical and clinical studies of the role of
NMDARs during working memory (WM) coping and WM impair-
ment after NMDAR antagonist treatment.39–43 Functional mag-
netic resonance imaging (fMRI) studies in humans have presented
evidence for ketamine-induced effects on both WM and prefrontal
region activation.39,40 The role of dorsolateral prefrontal cortex
(DLPFC) dysfunction in WM deficits has been related to
dopaminergic alterations in schizophrenia, bipolar disorder, and
depression, but also to glutamatergic alterations and more

specifically to dopamine–glutamate interactions.31,42,44 Magnetic
resonance spectroscopy (MRS) provides a means to measure
glutamate concentrations in circumscribed regions in vivo in
humans. MRS studies have demonstrated alterations of glutama-
tergic concentrations in prefrontal regions in bipolar disorder and
depression as well as schizophrenia.37

The primary aims of this study were to re-visit the multiply
affected family segregating the t(1;11) translocation, generate
non-parametric LOD scores across diagnoses on the updated
pedigree and to investigate the effect of the t(1;11) translocation on
brain structure, brain metabolite concentrations and brain function
by imaging of family members with and without the translocation.

RESULTS
Extension of the family increases the evidence of linkage between
the translocation and major mental illness
We previously published significant linkage of the t(1;11)
translocation to major mental illness in a single Scottish family.2

This translocation is a unique variant private to this family. We
therefore sought to confirm this linkage through the recruitment
of additional members of the family to the study and full clinical
re-evaluation of all participants by two psychiatrists. Clinical
re-evaluation using all available current and historic information
was undertaken on the full family as reported in Blackwood et al.2

Forty-two participants who took part in the previous studies
volunteered for the present study. An additional 25 participants
took part for the first time including four who carry the
translocation. Historical information was reviewed for the remain-
ing individuals. The extended family comprised 107 individuals in
six generations and translocation status was determined in all but
one individual (for whom no DNA was available and translocation
status could not be imputed). In total, 37 participants carried the
t(1;11) translocation and 69 were non-carriers. Details of diagnoses
are given in Table 1. Two-point variance component analyses were
performed using the program SOLAR (Table 2). To facilitate the

Table 1. Study participants

Participants N t(1;11) DSM-IV diagnoses (N) Medication

Study Y N Carriers Non-carriers Carriers Non-carriers

Linkage analysis 107a 37 69 SCZ (2), SCZAFF (4), BP1 (2),
rMDD (8), MDD (4),
cyclothymia (3), conduct
disorder (3), generalized
anxiety (3), no psychiatric
disorder (2), inadequate
information (6)

rMDD (3), MDD (3), generalized
anxiety (1), alcohol dependency
(1), no psychiatric
disorder (54), inadequate
information (7)

NA NA

Clinical
assessment

39 14 25 SCZ (1), SCZAFF (1), BP1 (1),
rMDD (3), MDD (3), cyclothymia
(3), conduct disorder (1),
no psychiatric disorder (1)

rMDD (2), MDD (1), generalized
anxiety disorder (1)

Sodium valproate (3),
+clozapine (1),
+risperidone (1),
+sertaline (1)

Amitriptyline (1)

Structural MRI 30 12 18 SCZ (1), schizoaffective (1),
BP1 (1) rMDD (3), MDD (2),
cyclothymia (3), conduct
disorder (1)

rMDD (2), MDD (1) Sodium valproate (3),
+clozapine (1),
+risperidone (1),
+sertaline (1)

Amitriptyline (1)

MRS 28 12 16 SCZ (1), SCZAFF (1), BP1 (1)
rMDD (3), MDD (2),
cyclothymia (3), conduct
disorder (1)

rMDD (2), MDD (1) Sodium valproate (3),
+clozapine (1),
+risperidone (1),
+sertaline (1)

Amitriptyline (1)

Functional MRI 23 8 15 rMDD (2), MDD (2), cyclothymia
(3), conduct disorder (1)

MDD (1) None Amitriptyline (1)

Abbreviations: BP1, bipolar 1; MDD, single episode depression; MRS, magnetic resonance spectroscopy; MRI, magnetic resonance imaging; NA, not available;
rMDD, recurrent major depressive disorder; SCZ, schizophrenia, SCZAFF, schizoaffective disorder.
aTranslocation status was unavailable for one individual.
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comparison of these results with those of the t(1;11) family as
reported in Blackwood et al.,2 variance component LOD scores
were also generated on the previously published pedigree. In the
extended family, the t(1;11) translocation was significantly linked
to a phenotype that includes: only schizophrenia and schizoaffec-
tive disorder (LOD=3.3); only affective disorders (bipolar disorder

and recurrent major depression) (LOD=3.5); or all cases of major
mental illness (schizophrenia, schizoaffective disorder, bipolar
disorder, and recurrent major depressive disorder; LOD= 6.1). A
maximum LOD score was obtained if the phenotype is further
extended to include three cases with cyclothymia (LOD=7.9).

t(1;11) translocation carriers show localized differences in CT and
gyrification index
Brain structural abnormalities, that have been identified between
individuals with schizophrenia and unaffected individuals, are
associated with both large genomic rearrangements and single-
nucleotide polymorphisms including those in DISC1.45–50 We
sought to identify the effects of the translocation on CT
and cortical folding. Useable structural MRI, data were acquired
for 12 t(1;11) translocation carriers and 18 non-carriers (Table 1).
The average CT ± s.d. was 2.40 ± 0.16 mm for non-carriers and
2.23 ± 0.12 mm for translocation carriers. The difference in CT bet-
ween the two groups was statistically significant (F(1,26) = 4.248,
P= 0.049), with greater CT in non-carriers compared with carriers.
The average local gyrification index (LGI) ± s.d.: 2.94 ± 0.19 for non-
carriers and 2.78 ± 0.13 for carriers. The one-way analysis of
covariance, covarying for age and sex, found statistically
significant differences of LGI between groups (F(1,28) = 6.558,
P= 0.016). These results were, however, not robust after control-
ling for reduced intra-familial relatedness (global CT P= 0.055 and
LGI P= 0.23). No significant differences were found in the global
cortex surface area or estimated intracranial volume (P40.05).
Localized differences, many bilateral, in CT and LGI were

found between t(1;11) translocation carriers and non-carriers on
controlling for age and sex, and multiple comparisons (Figure 1),
but only reduced left superior temporal sulcus (STS) CT in the
temporal lobe and reduced right superior frontal sulcus LGI in the
DLPFC were robust to controlling for intra-familial relatedness
(P = 0.022 and P = 0.025, respectively).
All subgroups of t(1;11) translocation carriers had similarly low

left STS CT and right superior frontal LGI values (Supplementary
Results). LGI results for these regions split by translocation carrier
diagnosis (psychosis, recurrent depression, and other) are shown
in Supplementary Figure 1.

Table 2. Diagnostic models used for variance component linkage
analyses of the original and extended family

Model Diagnoses N LOD

t(1;11)
carriers

t(1;11)
non-carriers

ALL

Original family
Model 1 SCZ, SCZAFF 7 0 7 1.7
Model 2 BP1, rMDD 12 0 12 2.2
Model 3 SCZ, SCZAFF,

BP1, rMDD
19 0 19 3.8

Unaffected 7 21 28
Unknown 2 1 3
Total 30 28 58

Extended family
Model 1 SCZ, SCZAFF 6 0 6 3.3
Model 2 BP1, rMDD 10 3 13 3.5
Model 3 SCZ, SCZAFF,

BP1, rMDD
16 3 19 6.1

Model 3
+cyclothymia

SCZ, SCZAFF,
BP1, rMDD,
cyclothymia

19 3 22 7.9

Unaffected 2 53 55
Unknown 8 8 16
Total 37 70 107

Abbreviations: BP1, bipolar 1; MDD, single episode depression; rMDD,
recurrent major depressive disorder; SCZ, schizophrenia; SCZAFF, schizoaf-
fective disorder.
For comparison, the original family (Blackwood et al.2) and the extended
family two-point LOD scores are shown. Bold= LOD scores43.

Figure 1. Effect of the translocation on cortical thickness and local gyrification index. (a) Cortical thickness and (b) local gyrification difference
between translocation carriers and non-carriers rendered on the inflated and non-inflated cortical surface of the left and right brain templates.
Columns 1, 3, 5, and 7 show the significance map of the difference; columns 2, 4, 6, and 8 show the regions that survive the cluster-wise
multiple comparisons correction (Po0.05). The blue color indicates that the cortex is thinner and less gyrified for the translocation carriers
compared with non-carriers, whereas the red color indicates the opposite effect. All these analyses are controlled for age and sex. Note
however that only left superior temporal sulcus cortical thickness and right superior frontal sulcus gyrification index are robust to controlling
for intra-familial relatedness (see text). LGI, local gyrification index.
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We examined the association between these structural mea-
sures and the contemporaneous mental state assessments with
the Positive and Negative symptom scale (PANSS) in 30 subjects
(both carriers and non-carriers). PANSS general psychopathology
scores were negatively correlated with the left STS CT (r=− 0.43,
P= 0.016) and also with right superior frontal LGI (r=− 0.41
(P= 0.025). PANSS-positive scores were negatively correlated with
left STS CT (r=− 0.36, P = 0.048), but not with the right superior
frontal LGI (r=− 0.22, P= 0.23). This suggests that the structural
deficits in these regions effect symptomology, possibly through an
impact on social cognition.

t(1;11) translocation carriers show increased activation in the
caudate nucleus on increasing verbal WM load
Analyses of fMRI blood oxygen level-dependent activation profiles
enable the in vivo study of brain activity during specific cognitive
tasks. Patients with schizophrenia have been shown to have
overactivation of brain regions during WM tasks,51 although
reduced activation in contrast to healthy controls has also been
reported.52 We sought evidence of an effect of the translocation
on brain activation with increasing WM load. Useable fMRI data
were acquired for eight family members with the t(1;11) carriers
and 15 non-carriers (Table 1). These data were collected after the
structural MRI and MRS acquisitions. Useable fMRI data were
acquired for eight family members with the t(1;11) carriers and 15
non-carriers (Table 1).
Reaction time in the verbal WM ‘N-back’ task showed a trend for

a main effect of WM load (F(2,36) = 2.571, P = 0.09), but no
significant effect of the group (F(1,18) = 0.018, P = 0.89), or the
group×WM load interaction (F(2,36) = 1.537, P= 0.23). The sensi-
tivity index (d’) was computed to assess the behavioral
performance between the groups. We found neither a significant
main effect of WM load (F(2,36) = 1.24, P= 0.30) nor group
(F(1,18) = 0.930, P= 0.35) Furthermore, the group×WM load
interaction was not significant (F(2,36) = 0.22, P = 0.80).
When evaluating the effect of increasing WM load on blood

oxygen level-dependent activation across translocation carriers
and non-carriers, significant activation was found in bilateral
inferior, middle and superior frontal cortices, bilateral inferior
parietal lobules, right cerebellum, left inferior temporal gyrus, and
the left middle orbital gyrus (Po0.05, Figure 2). No regions
demonstrated statistically significant group differences (P40.05).
There was a significant group ×WM load interaction in left
caudate nucleus, with greater activation in translocation carriers
with increasing load from 0-, 1-, to 2-back (Figure 3;
F(1,17.5) = 24.95, Po0.001), which was robust to controlling for
familial relatedness (P= 0.001). Within the translocation carriers,
caudate WM load response did not correlate with PANSS symptom
measures (P40.05). The overactivation of the left caudate nucleus
in t(1:11) translocation carriers may indicate inefficient cortico-
striatal information processing which is important in movement
control, mood, and higher cognitive function.

t(1;11) translocation carriers show reduced levels of glutamate in
the right dorsolateral prefrontal cortex
Metabolites reflecting glutamate neurotransmission have been
shown, in some studies, to differ between patients and
controls.31,42 We investigated the effect of the translocation on
glutamate and N-acetylaspartate (NAA) concentrations in pre-
frontal regions using MRS. Levels of glutamate and NAA were
measured in the bilateral DLPFC and anterior cingulate cortex
(ACC) of translocation carriers and non-carriers. The results are
reported separately for each region.
In the right DLPFC, translocation carriers had significantly lower

levels of glutamate than non-carriers (N= 12 carriers vs. N= 16
non-carriers, mean glutamate levels ± s.d.: 7.72 ± 1.6 vs. 9.86 ±
2.4 mmol/l respectively, P= 0.021). The diagnosis subgroups within

translocation carriers had similarly low levels of glutamate
(psychosis (N= 3) 6.9 mmol/l, recurrent MDD (N= 3) 7.4 mmol/l,
and others (N= 6) 7.7 mmol/l). Correlations between glutamate
levels and PANSS general psychopathology and positive symptom
scales were non-significant (P40.4). In the left DLPFC, there was
no significant effect of carrying the translocation on glutamate
levels (7.7 ± 1.1 vs. 8.3 ± 1.7 mmol/l, respectively, P= 0.42). Left
DLPFC NAA levels were significantly lower in the translocation
carriers (N= 11 carriers vs. N= 16 non-carriers, mean NAA levels ± s.
d. was 11.9 ± 2.1 and 13.7 ± 1.8 mmol/l, respectively, P= 0.025),
although these were not robust to controlling for reduced intra-
familial relatedness. NAA levels were not significantly lower in
the right DLPFC (N= 12 carriers vs. N= 16 non-carriers, mean NAA
levels ± s.d. was 13.1 ± 2.5 and 14.3 ± 1.6 mmol/l, respectively,
P= 0.17).
There were no significant differences between translocation

carriers and non-carriers in the concentrations of glutamate or
NAA in the ACC (P40.05).
These data suggest a specific glutamate deficit in the DLPFC of

t(1;11) translocation carriers, consistent with a direct genetic effect.

DISCUSSION
The current study provides a contemporary and extensive follow-
up to earlier work on the t(1;11) translocation and confirms that it
is a rare variant of large effect, linked with genome-wide
significance to a broad psychiatric phenotype that includes
schizophrenia, bipolar disorder, and recurrent major depression
and, shown here for the first time, is associated with structural and
functional changes to the brain detected by neuroimaging.
Specifically, carriers of the t(1;11) translocation demonstrate

reductions in glutamate concentrations in the right DLPFC
consistent with the glutamate hypothesis, as well as reduced CT
and gyral folding, and increased left caudate nucleus blood
oxygen level-dependent activation when compared with non-
carriers. Of these, only the localized CT and gyrification reductions
were associated with general psychopathology and only the
left STS CT reductions were associated with positive symptom
severity in t(1;11) translocation carriers. Elsewhere, we have shown
widespread reductions in white matter tract integrity in t(1;11)
translocation carriers.53 These striking effects were observed in
what are relatively small comparative studies that benefit from
being part of a long-term within-family study of the incidence and
evolution of psychiatric illness, controlled for by the presence or
absence of the t(1;11) translocation. The within-family design
optimizes the genetic matching over the genome. However, the
correspondingly low numbers may have limited our ability to
detect some effects of the translocation, and correlations between
these effects and symptom correlations, but did not obscure the
impact of the t(1;11) translocation on aspects of human brain
structure, function, and neurochemistry.
The t(1;11) translocation was strongly associated with a range of

psychiatric outcomes in the family, but with more homogeneous
effects on imaging measures. This pattern of results, of a greater
genetic impact on neurobiological measures than clinical pheno-
types, is consistent with the previous P300 event-related potential
study of the t(1;11) family, which found abnormalities in those
with the translocation regardless of clinical diagnosis.2 Compar-
able effects of major psychiatric illness on human brain imaging
measures,54–56 as well as a reduction in DLPFC glutamate
concentration,37 have been noted in multiple case–control studies,
transcending conventional diagnostic boundaries. The pattern of
neuroimaging abnormalities detected in this study is striking and
reflective of the pattern identified in a mouse model of the
translocation in which a truncated Disc1 fragment is expressed in a
single copy (Disc1tr hemizygous, Hemi, mice).10 Similarly to the
family, this mouse model shows both cortical thinning and deficits
in the glutamate system,10,29 suggesting that these deficits, at
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least in part, may be the direct result of disruption of the
DISC1 locus.
We found relatively few correlations between the neuroimaging

measures and symptom severity in participants, nor any apparent
instances where the effects of the t(1;11) translocation could be
accounted for by extreme results in one or more diagnostic
subgroups (Supplementary Data). This supports the interpretation
that the brain imaging abnormalities evident in the t(1;11) carriers
are primarily genetic in origin and confer risk across a range of
phenotypes. The abnormalities in CT are in keeping with the

generalized reductions in CT reported in many psychiatric
disorders, e.g., Hulshoff Pol et al.57 Additional structural genetic
variants, polygenic risk factor loads, and environmental risk factors
may then mediate the development of schizophrenia, bipolar
disorder, and recurrent depression. In this respect, longitudinal,
within-family studies can be a powerful complement to large
case–control studies for which clinical heterogeneity may obscure
underlying commonalities.
In conclusion, our results substantiate prior evidence for a

genome-wide significant effect of the t(1;11) translocation on

Figure 2. Effect of increasing working memory load on blood oxygen level-dependent activity measures in translocation carriers and non-
carriers. Coronal sections through the brain to show the effects of increasing working memory load (from 0- to 1- to 2-back) in the N-back task
on functional MRI in t(1;11) translocation carriers and non-carriers. The image is thresholded at Po0.001, uncorrected, to show regional
activations. These were statistically significant in/across both groups in bilateral inferior, middle, and superior frontal cortices, bilateral inferior
parietal lobules, right cerebellum, left inferior temporal gyrus, and the left middle orbital gyrus at Po0.05, family-wise error corrected for
multiple comparisons. There were no statistically significant group differences at a family-wise error-corrected threshold of Po0.05.
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cross-disorder risk of major mental illness. The idea that study of
rare genetic variants can highlight biological mechanisms of
relevance is not new, indeed is widely accepted and acknowl-
edged as providing valuable insights, as, e.g., the single-gene risk
factors for dementia (APP, PSEN1, and 2), and the role of copy-
number variants and de novo mutations of high penetrance in
schizophrenia and autism spectrum disorder.58–60 The t(1;11)
translocation, similarly, provides a clear-cut and useful biological
model for major psychiatric disorder. The most parsimonious
explanation is that the molecular mechanism is explained by
disruption of genes on chromosomes 1 and 11, including the
DISC1 gene; a mechanism supported by the wealth of evidence
linking DISC1 biology to independently constructed core concepts
in psychopathology. As such, our findings suggest translational
opportunities for experimental studies on carefully phenotyped
and genetically analyzed subjects that may generalize to the wider
population to speed the discovery and evaluation of much
needed evidence based interventions.

MATERIALS AND METHODS
Participants
Individuals with and without the t(1;11) translocation were recruited from a
previously reported extended Scottish family.1,2,61 Some of the family had
been in contact with members of the research team for many years and
through them other members of the family were invited to participate.
None of the family members who participated suffered from substance
dependence or neurological injury or illness or had MRI safety preclusions.
A summary of the number of individual participants in each study, their
translocation status, and medication at the time of each study is given in
Table 1.

Clinical and cognitive assessment
Psychiatric diagnosis according to DSM-IV (TR) criteria was established by
consensus between two trained psychiatrists (D.B. and A.W., one of whom
(A.W.) was blind to the individuals karyotype status). Diagnostic informa-
tion was obtained by a face-to-face semi-structured interview using the
Structured Clinical Interview for DSM-IV (SCID)62 supplemented by reviews
of hospital records and collateral information from hospital psychiatrists
and general practitioners. At the time of interview, the following ratings
were completed: PANSS;63 Scale for the Assessment of Negative
Symptoms;64 Global Assessment of Function;65 Young Mania Rating
scale;66 and the Hamilton Depression Rating Scale.67 Current and
premorbid IQ were assessed using the National Adult Reading Test68

and the Wechsler Abbreviated Scale of Intelligence (WASI).69 Historic
information reported by StClair et al.1 and Blackwood et al.2 was retained
and reviewed for subjects who were deceased or not available for follow-
up. The operational criteria symptom check-list70 was completed based on
psychiatric case notes and interview data. Sample demographics are
provided in Table 3.

Genotyping of the translocation
The t(1;11) translocation status of family members was originally
ascertained by karyotyping as reported by Jacobs et al.,61 and
subsequently by StClair et al.1 and Blackwood et al.2 For the current study,
a PCR assay specific for the t(1;11) breakpoint was devised, validated on 22
samples from participants for whom karyotype status was known
(including 14 carriers) and used to determine the presence or absence
of the t(1;11) in 25 new participants (Supplementary Methods). DNA
samples were available for PCR-based verification of translocation status
from 48 individuals (18 carriers and 30 non-carriers). Translocation status
was imputed in additional family members were possible.

Multimodal neuroimaging
Neuroimaging measures were: (i) global and local CT, estimated
intracranial volume, surface area, and gyrification from index structural

Figure 3. Differential brain activation during increasing working memory load between translocation carriers and non-carriers. The effects of
increasing working memory load (from 0- to 1- to 2-back) in the N-back task on functional MRI comparing t(1;11) translocation carriers and
non-carriers, controlling for age and sex. (a) Transverse slice (z= 22) displaying the statistically significant group× load interaction in left
caudate, a family-wise error-corrected Po0.05. (b) Contrast estimates in the left caudate for 2-back40-back for t(1;11) carriers and non-
carriers to indicate the size of the effect.
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MRI, (ii) brain activation during the verbal WM ‘N-back’ task using
functional MRI, and (iii) glutamate and NAA levels in the DLPFC and ACC
using MRS. Detail of the pre-processing and analysis of the neuroimaging
measures are given in Supplementary Methods. Specific details for each
imaging modality are included in the results section. Hypothesis testing
was undertaken with significance set at Po0.05 after correction for
multiple comparisons. We further investigated whether any differences
between the groups were associated with psychopathology by examining
the results for diagnostic subgroups (psychosis, recurrent depression, and
others) of those with the translocation, as well as relating imaging
measures to the PANSS general and positive psychotic symptom severity
ratings in those with and without the t(1;11) translocation.

Statistics
Two-point variance component linkage analyses of the translocation status
with SCID diagnosis were performed using SOLAR software package71

under the assumption of the liability threshold model for discrete
traits.72,73 LOD scores were adjusted for deviation of the phenotype from
normality, by correcting the inflation of the observed LOD scores, by the
comparison with LOD scores generated using a simulated normally
distributed trait with 10,000 permutations, using the lodadj command in
SOLAR.74 These adjusted LOD scores are presented in the results.
All neuroimaging data group contrasts were conducted controlling for

age and sex, and for intra-familial relatedness. Intra-familial relatedness,
how related individuals are within the family, was modeled by creating an
inverse relationship matrix using pedigree kinship information. Where
univariate models of the imaging measures, controlling for age and sex,
were nominally significant (Po0.05), the analyses were repeated using
mixed linear models implemented in ASReml-R (www.vsni.co.uk/software/
asreml), fitting the inverse relationship matrix as a random effect, allowing
us to control for familial structure. The significance of fixed effects within
the model was then assessed using a conditional Wald F-test.

Study approval
The study was approved by the Multicentre Research Ethics Committee for
Scotland (09/MRE00/81). A detailed description of the study was given and

written informed consent was obtained from all individuals before
participation.
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