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Abstract

Background: In mammials, specification of primordial germ cells (PGCs) is established in the early postimplantation
embryo. The bone morphogenetic protein (BMP)-SMAD and WNT3-3-catenin signaling initiate the gene regulatory
network for PGC specification. The activation of SOX17-BLIMP1 axis is critical for human PGC program. Moreover,
EpCAM and INTEGRINa6 were identified as surface markers of human PGC-like cells (PGCLCs) recently. However, the
signaling mechanism for PGC specification in nonrodent mammals remains to be clarified.

Methods: We differentiated human induced pluripotent stem cells (hiPSCs) into PGCLCs in vitro in response to
Activin A and BMP4. The percentage of EpCAM/INTEGRINa6 double-positive cells (PGCLCs) was analyzed by flow
cytometry. The expression of PGC genes was evaluated by gRT-PCR and immunofluorescence. The expression
dynamic of multi-lineage genes during the differentiation process was evaluated by gRT-PCR.

Results: Under the stimulation for PGCLC induction, the embryoids derived from hiPSCs initiated significant
upregulation of the early PGC genes (BLIMP1, TFAP2C, and NANOS3), but maintained low or no levels of DPPA3
and late PGC genes (DAZL and DDX4). The percentage of EpCAM/INTEGRINa6 double-positive PGCLCs reached the
highest at day 6 of induction. After pre-induction, the incipient mesoderm-like cells (iMeLCs) upregulated most of
the mesoderm genes (EOMES, T, MSXI, RUNX2, and MIXL1). The differentiating embryoids showed high levels of key
pluripotency genes, OCT4 and NANOG, but became negative for SOX2. In contrast to iMelLCs, the differentiating
embryoids downregulated mesoderm genes RUNX2 and EOMES, and ectoderm gene PAX6, but increased the
expression of endoderm gene SOX17.

Conclusions: During PGCLC induction process in vitro, the differentiating embryoids not only activated the PGC-
related genes, but also displayed complex regulation of pluripotency genes and multi-lineage genes. These results
would be meaningful for future research investigating the regulation of human early germ line development.

Keywords: Primordial germ cells, Induced pluripotent stem cells, BMP, EpCAM, INTEGRINa6, Lineage genes

* Correspondence: nikekk@whu.edu.cn

4School of Basic Medical Sciences, Wuhan University, 115 Donghu Road,
Wuhan 430071, China

Full list of author information is available at the end of the article

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13287-020-01620-y&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:nikekk@whu.edu.cn

Fang et al. Stem Cell Research & Therapy (2020) 11:100

Introduction

The germ cell lineage is the source of totipotency and
transmits genetic and epigenetic information across gen-
erations. In mammals, primordial germ cells (PGCs) are
the founder cells of the germ cell lineage and emerge at
early stage of post-implantation development. The PGCs
undergo a number of complex developmental events, in-
cluding repression of somatic programs, (re)acquisition
of potential pluripotency, and epigenetic reprogram-
ming, and finally initiate oogenesis or spermatogenesis
to form gametes [1]. Currently, the mechanism of PGC
specification has been extensively investigated in mice,
which provides insight into mammalian development. In
mice, the bone morphogenetic protein (BMP) and WNT
signals from extra-embryonic tissues induce the expres-
sion of several PGC fate regulators in a few germ line
competent cells [2—4]. Particularly, a tripartite transcrip-
tion factor network of PR domain zinc finger protein 1
(PRDM1, also known as BLIMP1), PRDM14, and tran-
scription factor AP-2 gamma (TFAP2C) represses the
somatic fate and promotes the mouse PGC specification
[5].

By contrast, the knowledge about human PGC specifi-
cation is relatively limited because of the technical and
ethical obstacles to obtain germ line cells from early hu-
man embryos. Notably, in the last decade, generation of
germ cells from pluripotent stem cells (embryonic stem
cells, ESCs, and induced pluripotent stem cells, iPSCs)
has provided a surrogate model for germ line develop-
ment in vitro. In mice, ESCs and iPSCs with naive pluri-
potency could be induced into primordial germ cell-like
cells (PGCLCs) through epiblast-like cells (EpiLCs) [6].
However, human ESCs (hESCs) and iPSCs (hiPSCs) are
considered to show a primed pluripotency with limited
potential for germ cell fate and respond poorly to the
method used for mouse PGCLC induction [7-9]. Ac-
cordingly, Gafni et al. established defined conditions to
generate human naive pluripotent stem cells from
primed hESCs and hiPSCs [10]. Moreover, Irie et al. de-
veloped an approach for human PGCLC (hPGCLCs)
specification from the ground state hESCs and hiPSCs
[7]. Strikingly, hPGCLCs are robustly induced in vitro
from hiPSCs in a primed pluripotent state through in-
cipient mesoderm-like cells (iMeLCs) [11]. Based on
these differentiation models, several key regulators of
human PGC (hPGC) fate as well as the regulation net-
work they formed were clarified, including EOMES and
SOX17 [7, 12].

The mammalian germline is set aside from somatic
lineages in early post-implantation embryos [1]. During
the in vitro hPGCLC specification process, only some of
the pluripotent stem cells respond to the induction sig-
nals, and the other cells still spontaneously differentiated
into somatic lineages. Here, we set out to differentiate
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hiPSCs into hPGCLCs in vitro with the iMeLC method
and determine the expression dynamics of multi-lineage
genes, in order to uncover new clues for cell fate
decision.

Materials and methods

Culture of hiPSCs

Human fibroblasts were isolated from foreskin of three
volunteers at Wuhan Tongji Reproductive Medicine
Hospital with written informed consent. The fibroblasts
were reprogrammed with the Yamanaka KOSM (KLF4,
OCT4, SOX2, and ¢-MYC) transcriptional factors using
the lentivirus vectors. The derived hiPSCs were main-
tained in mTeSR1 medium (Stem Cell Technologies) on
Matrigel (Corning)-coated dishes. The medium was
changed every day. Cells were passaged every 3 to 5 days
using Accutase (Life Technologies). For single-cell dis-
sociation, the cells were treated with 1 to 1 mixture of
TrypLE Select (Life Technologies) and 0.5 mM EDTA/
PBS. Ten micrometers of a ROCK inhibitor (Y-27632,
TOCRIS bioscience) was added for 24 h after passaging.

Induction of hPGCLCs

For pre-induction, hiPSCs were dissociated with 0.5 mM
EDTA/PBS, and 3x10° cells per well were plated on
Matrigel-coated 12-well plates in GK15 medium (G-MEM
[Thermo Fisher] supplemented with 15% KSR [Thermo
Fisher], 0.1 mM NEAA [Thermo Fisher], 2 mM L-glutam-
ine [Thermo Fisher], 1 mM sodium pyruvate [Thermo
Fisher], 0.1 mM 2-mercaptoethanol [Sigma]) containing
3uM CHIR (Selleck Chemicals), 50 ng/ml Activin A
(PEPRO TECH), and 10 pM ROCK inhibitor (Y-27632,
TOCRIS bioscience). After 2days of pre-induction, the
cells were dissociated with Accutase (Thermo Fisher) and
plated into ultra-low cell attachment U-bottom 96-well
plates (Corning) at a density of 2000—4000 cells per well
to form embryoid bodies in 200 pl of GK15 medium con-
taining 200 ng/ml BMP4 (R&D Systems), 20 ng/ml human
LIF (R&D Systems), 100 ng/ml SCF (R&D Systems), 50
ng/ml EGF (R&D Systems), and 10 pM ROCK inhibitor
(Y-27632, TOCRIS bioscience). H1 hESC was used as a
control for PGC induction.

Flow cytometry

The floating embryoid bodies were dissociated with
0.05%Trypsin-EDTA/PBS for 15min at 37°C. After
washing with PBS, the cell suspension was filtered by
cell strainer to remove cell clumps and then subjected to
centrifugation. Then, the dissociated cells were stained
with PE-conjugated anti-human EpCAM (eBioscience)
and  FITC-conjugated anti-human INTEGRINa6
(eBioscience). The stained cells were resuspended in PBS
and analyzed with a flow cytometer (Beckman,
DxFLEX).
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RNA extraction and quantitative RT-PCR

Total RNA was extracted using DirectZol RNA mini-
prep (Zymo research) according to manufacturer’s in-
structions. Reverse transcription was performed using
the RevertAid First Strand cDNA synthesis kit (Thermo
Fisher Scientific). The quantitative RT-PCR was per-
formed using SYBR Premix Ex Taq II (Takara). All gene
expression analyses were performed with samples from
three independent differentiation experiments. Values
normalized to GAPDH are shown. Primers are listed in
Table 1.

Immunofluorescence

Cells were fixed in 4% paraformaldehyde/PBS for 15 min
at room temperature and permeabilized with 1% Triton
X-100/PBS (Sigma) for 10 min. After blocking with 10%
donkey serum in PBS (Jackson ImmunoResearch) for 1 h

Table 1 Primers used in this study
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at room temperature, cells were incubated with primary
antibodies overnight at 4 °C, followed by incubation with
appropriate fluorescent-conjugated secondary antibodies
for 1 h at room temperature the next day. Primary anti-
bodies were as follows: OCT4 (Abcam), SOX2 (Abcam),
SSEA4 (Abcam), TFAP2C (Santa Cruz), PRDMI14
(Abcam), and NANOS3 (Abcam). Secondary antibodies
were as follows: AlexaFluor 488 conjugated donkey anti-
rabbit IgG and AlexaFluor 594 conjugated donkey anti-
mouse IgG (all Life Technologies). The nuclei were coun-
terstained with DAPI (Thermo Fisher Scientific). The cells
were observed with a Zeiss inverted confocal microscope.

Statistical analyses

All of the data were presented as mean + standard devi-
ation (SD). Statistical analyses were performed using the
Student’s t test or one-way analysis of variance

Gene Gene ID Species Primer sequence (5-3")
OoCT4 5460 Homo sapiens Forward: GTGTTCAGCCAAAAGACCATCT

Reverse: GGCCTGCATGAGGGTTTCT
SOX2 6657 Homo sapiens Forward: GCCGAGTGGAAAC GTCG

Reverse: GGCAGCGTGTACTTATCCTTCT
KLF4 9314 Homo sapiens Forward: CGGACATCAACGACGTGAG

Reverse: GACGCCTTCAGCACGAACT
NANOG 79923 Homo sapiens Forward: ACAACTGGCCGAAGAATAGCA

Reverse: GGTTCCCAGTCGGGTTCAC
MSX1 4487 Homo sapiens Forward: TCCTCAAGCTGCCAGAAGAT

Reverse: TACTGCTTCTGGCGGAACTT
RUNX2 860 Homo sapiens Forward: CGGCAAAATGAGCGACGTG

Reverse: CACCGAGCACAGGAAGTTG
GATA6 2627 Homo sapiens Forward: CCATGACTCCAACTTCCACC

Reverse: ACGGAGGACGTGACTTCGGC
BLIMP1 639 Homo sapiens Forward: AAACCAAAGCATCACGTTGACA Reverse: GGATGGATGGTGAGAGAAGCAA
TFAP2C 7022 Homo sapiens Forward: ATTAAGAGGATGCTGGGCTCTG Reverse: CACTGTACTGCACACTCACCTT
NANOS3 342977 Homo sapiens Forward: TGGCAAGGGAAGAGCTGAAATC Reverse: TTATTGAGGGCTGACTGGATGC
PRDM14 63978 Homo sapiens Forward: TATCATACTGTGCACTTGGCAGAA Reverse: AGCAACTGGGACTACAGGTTTGT
SOX17 64321 Homo sapiens Forward: TTCGTGTGCAAGCCTGAGAT

Reverse: TAATATACCGCGGAGCTGGC
DAZL 1618 Homo sapiens Forward: TGGCCCTTCTTTCAGTGACTTC Reverse: GACCCTAGGGGGCACTAGTAA
DPPA3 359787 Homo sapiens Forward: AAGCCCAAAGTCAGTGAGATGA Reverse: GCTATAGCCCAACTACCTAATGC
DDXx4 54514 Homo sapiens Forward: TTCTTCACAAGCTCCCAATCCA Reverse: TTCTTCTCTGCATCAAAACCACA
ZFP42 132625 Homo sapiens Forward: CCAGACTGGATAACAGCAAGAGC Reverse: TGCAAA CATTCTCTAGGGC
TFCP2L1 29842 Homo sapiens Forward: AGCTCAAAGTTGTCCTACTGCC

Reverse: TTCTAACCCAAGCACAGATCCC
MIXL1 83881 Homo sapiens Forward: TGCTTTCAAAACACTCGAGGAC Reverse: GAGTGATCGAAGTAACAGGTGC
T 6862 Homo sapiens Forward: AGCCAAAGACAATCAGCAGAAA Reverse: CACAAAAGGAGGGGCTTCACTA
EOMES 8320 Homo sapiens Forward: AAGGGGAGAGTTTCATCATCCC Reverse: GGCGCAAGAAGAGGATGAAATAG
PAX6 5080 Homo sapiens Forward: GCCAGCAACACACCTAGTCA

Reverse: TGTGAGGGCTGTGTCTGTTC
GAPDH 2597 Homo sapiens Forward: TGAAGGGTGGAGCCAAAAG

Reverse: AGTCTTCTGGGTGGCAGTGAT
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(ANOVA) with SPSS 17.0 software. A p value less than
0.05 was considered to be statistically significant.

Results

Differentiation of hiPSCs into PGCLCs in vitro

We established hiPSC lines from dermal fibroblasts of three
male volunteers using a method published before [13]. The
hiPSCs displayed typical hESC morphology and were posi-
tive for pluripotency markers, including OCT4, SOX2, and
SSEA (Fig. 1a, b). After pre-induction, the hiPSCs were dif-
ferentiated into flat iMeLCs with distinct cell borders,
which were also positive for pluripotency markers (Fig. 1a,
¢). For PGCLC induction, the differentiating cells were
maintained under a floating culture condition and aggre-
gated to form embryoids (Fig. 1a). We analyzed the expres-
sion of PGC genes, including BLIMP1, TEAP2C, NANOSS3,
DPPA3, DDX4, and DAZL, during the differentiation
process. The hiPSCs and hESCs showed no or low expres-
sion of the PGC genes, which remained at low levels after
pre-induction, except for BLIMPland TFAP2C, exhibiting
slightly increased levels at iMeLC stage (Fig. 2a and Supple-
mental fig. 1 A). Under the stimulation for PGCLC induc-
tion, the embryoids differentiated from hiPSCs initiated
significant upregulation of the early PGC genes (BLIMP]I,
TFAP2C, and NANOS3, p < 0.05), but maintained low or
no levels of DPPA3 and late PGC genes (DAZL and
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DDX4) (Fig. 2a). However, we observed that the embryoids
from hESCs increased the expression of NANOS3 and
DPPA3 from day 4 of PGC induction (Supplemental fig. 1
A). Immunofluorescence analysis demonstrated that the ex-
pression of TFAP2C coincided with PRDM14, OCT4, and
NANOS3 in day 4 embryoids (Fig. 2b). These findings indi-
cate that the hiPSCs are capable of early PGC fate following
PGCLC induction in vitro.

Efficiency of PGCLC induction in vitro

Recently, EpCAM and INTEGRINa6 were identified as sur-
face markers of hPGCLCs in embryoids [11]. We per-
formed fluorescent-activated cell sorting (FACS) analysis
for the differentiated cells by these two markers. The results
showed that the percentage of EpCAM/INTEGRINa6
double-positive cells in iMeLCs (day 0) was up to 46~49%
without obvious segregation, but the germ cell fate was not
activated at this point and these cells were not PGCLCs. As
early as day 2 of PGCLC induction, the differentiating cells
in embryoids began to segregate into two different popula-
tions. The EpCAM/INTEGRINa6 double-positive propor-
tion was increased progressively until day 6, resulting in
around 39~44% of double-positive putative hPGCLCs, and
the two subpopulations became more distinct and persisted
until day 8 of induction, albeit with reduced ratios at day 8
(Fig. 3 and Supplemental fig. 1 B).

A iPSCs

iMeLCs
R

Fig. 1 Characterization of hiPSC, iMeLCs, and embryoids. a Typical morphology of hiPSCs, iMeLCs, and embryoids. Scale bar, 200 um. b-d
Immunofluorescence analysis for pluripotency markers of hiPSCs (b) and iMeLCs (c). The uterine tumor cells, AN3CA, were used as negative
control (d). Scale bar, 100 um

Embryoids
" LR, B

AN3CA
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Fig. 2 Expression analysis of germ cell specific genes during hPGCLC specification process. a Expression dynamics of germ cell specific genes
during hPGCLC specification process, including iPSCs, iMel.Cs, and the whole floating embryoids at day 2, 4, 6, and 8 of induction, as measured
by gRT-PCR. Relative expression levels are shown with normalization to housekeeping gene GAPDH. Error bars indicate mean + SD of three
independent experiments. Red squares indicate values for embryoids exposed to cytokine stimulation; black triangles indicate values for
embryoids formed spontaneously without cytokine stimulation. *p < 0.05 vs. the iPSC groups. n.d., not detected. b Immunofluorescence analysis
for the expression of TFAP2C, PRDM14, OCT4, and NANOS3 in day 4 embryoids derived from hiPSCs. Scale bars, 100 um

J
Multi-lineage gene expression dynamics during hPGCLC similar levels of key pluripotency genes, OCT4 and
induction process NANOG, but became negative for SOX2. Compared to

We also detected the expression dynamics of pluripo- undifferentiated cells, the differentiating cells exhibited
tency and embryonic lineage genes during the PGCLC  high levels of genes associated with naive pluripotency
induction process by qPCR (Fig. 4). Overall, the embry-  such as ZFP42, KLF4, and TFCP2L1, whereas the ex-
oids derived from all lines upregulated or remained pression of PRDM14, which plays an important role in
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Fig. 3 Efficiency of PGCLC induction from iPSCs in vitro. a FACS analysis by EpCAM and INTEGRINa6 expression of cells during hPGCLC induction
(until day 8) from hiPSCs by BMP4, LIF, SCF, and EGF (left) or by no cytokines (right). Boxed areas indicate EpCAM/INTEGRINa6 double-positive
cells with their percentages. b Percentage of cells double positive for EpCAM/INTEGRINa6, only positive for EpCAM and only positive for
INTEGRINa6 in day 2, 4, 6 and 8 floating embryoids determined by FACS, respectively. Error bars indicate mean + SD of three independent
experiments. *p < 0.001 vs. the day 2 groups

the mouse PGC specification [3], did not change evi-
dently after induction. For the embryonic lineage genes,
we observed that hiPSCs showed low or no expression
of genes involved in endoderm (GATA6, SOX17, and
FOXA2), mesoderm (EOMES, T, MSXI, RUNX2, and
MIXL1), and ectoderm (PAX6) development. After pre-
induction, the differentiating cells upregulated most of
the mesoderm genes (EOMES, T, MSXI, RUNX2, and
MIXL1) and one ectoderm gene (PAX6) to some extent,
but still showed a lack of endoderm gene expression.
These results were consistent with the designated iden-
tity of iMeLCs by Sasaki et al. [11]. In contrast to
iMeLCs, the differentiating embryoids downregulated
mesoderm genes RUNX2 and EOMES and ectoderm
gene PAX6. In mice, WNT/BMP signaling stimulates
the upregulation of T expression, a key mesodermal fac-
tor for the onset of mPGC specification [14]. Here, the
expression of T exhibited modest upregulation in
PGCLCs, although it may not play a major role in
hPGCLC specification [12]. Recently, it has been re-
ported that WNT signaling activates EOMES at iMeLC
stage to induce the expression of SOX17, a critical driver

of hPGC fate, at PGCLC stage [7, 12]. Particularly, we
noted that the hPGCLCs decreased the expression of
EOMES and increased the expression of SOX17, com-
pared with iMeLCs. Additionally, immunofluorescence
analyses of the day 4 embryoids validated the expression
of SOX17 and the repression of SOX2 in PGCLCs (Fig. 5
and Supplemental fig. 1 C), which were identical to the
observation in human embryonic PGCs [15, 16].

Discussion

Here, we differentiated hiPSCs into hPGCLCs in vitro
and analyzed the expression dynamics of multi-lineage
genes during the differentiation process. While the PGC
fate regulator genes were activated, the embryonic
lineage genes in the embryoids present complex expres-
sion patterns after induction, providing insights for fu-
ture studies on human early embryo development.

From fertilization to blastocyst formation, mouse and
human pre-implantation embryo development are mor-
phologically similar; however, timing and molecular de-
tails of important developmental events occurring at this
stage may differ, like zygotic genome activation (ZGA),
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Fig. 4 Multi-lineage gene expression analysis during hPGCLC specification process. Relative expression levels of genes in hiPSCs, iMeLCs, and the
whole floating embryoids were measured by gRT-PCR and shown with normalization to housekeeping gene GAPDH. Error bars indicate mean +
SD of three independent experiments. *p < 0.05 vs. the iPSC-1 group, *p < 0.05 vs. the iPSC-2 group, °p < 0.05 vs. the iPSC-3 group, *p < 0.05 vs.
the H1 ESC group. n.d., not detected

X-inactivation, signaling requirement for pluripotency,
and blastocyst lineage specification [17-20]. From im-
plantation to gastrulation, human and mouse embryos
become structurally distinct, and the germ layer forma-
tion takes place at this stage [18]. In mice, PGC specifi-
cation occurs at the posterior epiblast before
gastrulation [2], which is supported by the complicated
signaling interactions between embryonic and extra-
embryonic tissues in the egg cylinder [21]. However, less
is known about the origin and specification mechanism
of hPGCs in the early post-implantation human em-
bryos. It is demonstrated that BMP signaling is very
likely to be conserved for PGC specification in mam-
mals, including human [7, 11, 22].

Until recently, several studies reconstituted hPGC
specification from hESCs in vitro and defined the sig-
naling and transcriptional programs for human germ
cell specification in vitro. In brief, WNT signaling
(ACTIVIN A) activates EOMES to induce the expres-
sion of SOX17, which is a critical regulator of hPGC
fate and is upstream of BLIMP1 [7, 11, 12]. SOX17
upregulates BLIMP1 and, potentially, endoderm genes.
TFAP2C is initially activated independently from

SOX17 through the BMP signaling. SOX17 and
TEAP2C work together to establish the hPGCLC
transcriptional program in competent cells upon in-
duction by BMP signaling. The expression of down-
stream BLIMP1 represses SOX17-induced endoderm
genes, BMP- and WNT-induced mesoderm genes, as
well as other somatic genes [7]. Hypothetically, this
signaling and transcription model for hPGC specifica-
tion would occur in the nascent amnion in early
post-implantation embryos.

Additionally, PRDM14 is expressed in the differentiat-
ing cells at a relatively low level and the expression of T
is increased after BMP induction, whereas the role of
PRDM14 and T in hPGC specification remains to be
clarified. Notably, SOX2 is suppressed as soon as the in-
duction starts. BMP signaling and BLIMP1 expression
may contribute to the rapid downregulation of SOX2
during hPGC specification [23, 24]. Moreover, the em-
bryoids derived from hiPSCs show different regulation
for the three germ layer genes, suggesting that only parts
of the hiPSCs respond to the BMP signaling to initiate
the germ line specification; the other cells may still get
into somatic cell fate.
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Fig. 5 Expression analysis of SOX17 and SOX2 in PGC specification. a Immunofluorescence for the co-expression of SOX17 with SOX2 in day 4
embryoids derived from hiPSCs. Scale bars, 100 um. b Quantification of the SOX17 positive cells in day 4 embryoids. Error bars indicate mean +
SD of five independent experiments

Conclusions Supplementary information

In conclusion, we demonstrated that during PGCLC in- Supplementary information accompanies this paper at https://doi.org/10.
. L . - . 1186/513287-020-01620-y.

duction process in vitro, the differentiating embryoids

not only activated the PGC-related genes, but also dis-

Additional file 1: Figure S1. Differentiation of hESCs into PGCLCs

played complex regulation of pluripotency genes and in vitro. (A) Expression dynamics of germ cell specific genes during hPGCLC
multi-lineage genes. Nevertheless, further studies on hu- specification process, including hESCs, iMeLCs, and the whole floating
. embryoids at day 2, 4, 6 and 8 of induction, as measured by qRT-PCR. Rela-
man and non-human primate embryo development, es- . i . o .
. . K tive expression levels are shown with normalization to housekeeping gene
pecially for high-throughput studies, are needed to GAPDH. Error bars indicate mean = SD of three independent experiments.
explore the Complicated regulation networks of hPGC Red squares indicate values for embryoids exposed to cytokine stimulation;

specification.
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black triangles indicate values for embryoids formed spontaneously without
cytokine stimulation. *p < 0.05 vs. the hESC groups. nd, not detected. (B)
FACS analysis by EpCAM and INTEGRINa6 expression of cells during hPGCLC
induction (until day 8) from hESCs by BMP4, LIF, SCF, and EGF (left) or by no
cytokines (right). Boxed areas indicate EpCAM /INTEGRINa6 double positive
cells with their percentages. (C) Immunofluorescence for the co-expression
of SOX17 with SOX2 in day 4 embryoids derived from hiPSCs. Scale bars,
100 pm.
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