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ABSTRACT An important goal for many nutrition-based microbiome studies is to
identify the metabolic function of microbes in complex microbial communities and
their impact on host physiology. This research can be confounded by poorly under-
stood effects of community composition and host diet on the metabolic traits of
individual taxa. Here, we investigated these multiway interactions by constructing
and analyzing metabolic models comprising every combination of five bacterial
members of the Drosophila gut microbiome (from single taxa to the five-member
community of Acetobacter and Lactobacillus species) under three nutrient regimes.
We show that the metabolic function of Drosophila gut bacteria is dynamic, influenced
by community composition, and responsive to dietary modulation. Furthermore, we
show that ecological interactions such as competition and mutualism identified from
the growth patterns of gut bacteria are underlain by a diversity of metabolic interac-
tions, and show that the bacteria tend to compete for amino acids and B vitamins
more frequently than for carbon sources. Our results reveal that, in addition to fermen-
tation products such as acetate, intermediates of the tricarboxylic acid (TCA) cycle,
including 2-oxoglutarate and succinate, are produced at high flux and cross-fed
between bacterial taxa, suggesting important roles for TCA cycle intermediates in mod-
ulating Drosophila gut microbe interactions and the potential to influence host traits.
These metabolic models provide specific predictions of the patterns of ecological and
metabolic interactions among gut bacteria under different nutrient regimes, with
potentially important consequences for overall community metabolic function and
nutritional interactions with the host.

IMPORTANCE Drosophila is an important model for microbiome research partly
because of the low complexity of its mostly culturable gut microbiota. Our current
understanding of how Drosophila interacts with its gut microbes and how these
interactions influence host traits derives almost entirely from empirical studies that
focus on individual microbial taxa or classes of metabolites. These studies have failed
to capture fully the complexity of metabolic interactions that occur between host
and microbe. To overcome this limitation, we reconstructed and analyzed 31 meta-
bolic models for every combination of the five principal bacterial taxa in the gut
microbiome of Drosophila. This revealed that metabolic interactions between
Drosophila gut bacterial taxa are highly dynamic and influenced by cooccurring bac-
teria and nutrient availability. Our results generate testable hypotheses about
among-microbe ecological interactions in the Drosophila gut and the diversity of
metabolites available to influence host traits.
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Microbiomes associated with animals are variable in taxonomic composition and
impact on host traits (1–6). This has generated two linked challenges: to under-

stand the causes of the variability and to predict how the microbiome may interact
with other variables, such as host genotype, age, and activity, as well as diet, to deter-
mine host traits (7–11). Strategies to reduce and manage these highly complex interac-
tions include the use of simplified microbial communities of defined taxonomic com-
position (12–14), along with modeling to investigate patterns across larger scales of
parameter space than is technically feasible by empirical study (15–19).

The gut microbiota of Drosophila provides an attractive system to study taxonomi-
cally simple microbiomes because its microbiome is naturally of low diversity, generally
with fewer than 20 bacterial species in laboratory culture, and microbiomes of defined
composition can readily be generated and maintained (20, 21). In most laboratory cul-
tures, the microbiome is dominated by acetic acid bacteria (AABs), generally of the ge-
nus Acetobacter (Alphaproteobacteria), and lactic acid bacteria (LABs) of the genus
Lactobacillus (Firmicutes) (20), although some studies have reported strong representa-
tion of other taxa, including Gammaproteobacteria (e.g., Stenotrophomonas spp.) and
lactobacilli (e.g., Enterococcus spp.) (22, 23). Studies on associations with a single bacte-
rial isolate and with communities of 2 to 5 microbial taxa have demonstrated that both
individual taxa and communities can, variously, contribute to B vitamin nutrition,
reduce lipid content, influence development rates, life span, and fecundity, and modu-
late olfactory and egg-laying behavior (14, 24–30). In several studies, these microbiome
effects on host traits have been shown to vary with diet composition, and they have
been linked to among-microbe interactions that influence both the abundance and
metabolic activity of individual microbial taxa (14, 25, 29–31). However, the relation-
ship between diet, community composition, and metabolic function of the microbiome
remains poorly understood.

The goal of this study was two-fold: first, to determine the combined effects of com-
munity composition and nutrient availability on the metabolic interactions among
members of the Drosophila gut microbiota; and second, to establish how these interac-
tions shape the abundance of the microorganisms in the community and the produc-
tion of metabolites that may influence host traits. We adopted a modeling approach,
specifically to construct and analyze the metabolic model for every combination of 5
bacterial taxa isolated from the Drosophila gut microbiome, including Acetobacter faba-
rum, Acetobacter pomorum, Acetobacter tropicalis, Lactobacillus brevis, and Lactobacillus
plantarum. This choice of taxa enabled us to examine interactions among species of
different taxonomic relatedness and metabolic function. Within the Acetobacteraceae,
the closely related A. fabarum and A. pomorum are assigned to a different subgroup of
Acetobacter from A. tropicalis (32), and the homofermentative L. plantarum and hetero-
fermentative L. brevis are members of different phylogenetic groups of Lactobacillus
(33). Members of the genus Acetobacter and Lactobacillus are well represented across
both field and lab Drosophila populations (34–37), and have been widely used to inves-
tigate the impact of gut microbes on host physiology (14, 30, 38, 39). The metabolic
network for each species was reconstructed from annotated metabolism genes in the
sequenced genome, and the networks for the different species in each community
integrated into community models. We then applied the SteadyCom framework (40) to
quantify the steady-state composition of each community and to predict the metabolic
flux within and between the bacteria contributing to each community. Although a
number of community modeling approaches are currently available (16, 41–45), we
used SteadyCom because other community modeling approaches generally assume
fixed community composition and lack constraints that prevent fast-growing organ-
isms from displacing other microbes in the community regardless of nutrient availabil-
ity in the environment. SteadyCom applies more ecologically relevant constraints by
imposing a single, time-averaged constant growth rate across all members of a com-
munity to ensure coexistence and stability as predicted to occur in animal guts.
SteadyCom is also applicable to established constraint-based modeling approaches,
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such as flux variability analysis, an important tool for determining the robustness of
metabolic models in various simulation conditions. This approach enabled us to assess
how community composition is influenced by antagonistic and mutualistic metabolic
interactions, and to evaluate how among-microbe interactions can dictate overall met-
abolic outputs from the community.

RESULTS
Growth of Drosophila gut bacterial communities under different nutrient

regimes. Our first analysis tested for growth in silico of the 31 possible communities of
the five test bacteria under three nutrient regimes (Fig. 1). As predicted, all five single-
species communities displayed growth in both the base medium, comprising the com-
plete set of nutrients required for growth by all the bacteria, and the nutrient-rich me-
dium, in which the complete set of nutrients was provided in excess. However, only
two bacteria, the acetic acid bacteria (AAB) A. pomorum and A. tropicalis, grew on the
minimal medium containing glucose, glycerol, ammonia, sulfate, and phosphate as pri-
mary sources of carbon, nitrogen, sulfur, and phosphorus, respectively. Growth of the
third AAB, A. fabarum, was rescued by coculture with any other AAB or with L. planta-
rum, one of the two lactic acid bacteria (LAB), but not with L. brevis. Similarly, growth
of L. plantarum was rescued by coculture with any AAB but not with L. brevis. The co-
culture requirements of L. brevis were greater, requiring both L. plantarum and at least
one AAB. The failure of A. fabarum, L. plantarum, and L. brevis to grow in silico on the
minimal medium was a consequence of their auxotrophy for amino acids such as argi-
nine and the peptidoglycan precursor diaminoheptanedioate. These metabolites are
released from bacterial species, e.g., A. pomorum and A. tropicalis, so as to rescue
growth.

Further inspection of the data in Fig. 1 revealed the diverse effects of coculture on
growth dynamics of individual bacteria. For example, coculture with A. tropicalis
tended to reduce the growth of the other bacteria on the nutrient-rich medium, while
the growth of AABs on the minimal medium was largely unaffected by coculture with
L. plantarum in two-member communities, but strongly repressed in communities of
two or three AABs with L. plantarum (Table S1 in the supplemental material). To

FIG 1 Bacterial growth dynamics on media of different nutrient content. Growth dynamics displayed as biomass formation rate predicted for
growth nutrient-rich medium (A), base medium (B), and minimal medium (C).
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investigate these effects systematically, we classified coculture interactions as sets of
binary interactions: (i) competitive if both organisms displayed reduced growth in co-
culture; (ii) parasitic if the growth of one member was enhanced at the expense of
another; (iii) mutualistic if both organisms displayed increased growth in coculture; (iv)
commensal if one organism displayed increased growth with no change in the other;
(v) amensal if one organism displayed reduced growth with no change in the other;
and (vi) neutral if the growth of both organisms was unaltered. Increases and
decreases in growth were determined by comparing the growth of a microbe in isola-
tion to its growth in coculture. In the nutrient-rich and basal media, the interactions
were exclusively antagonistic: 50 to 70% of the interactions were competitive, and the
remainder were parasitic (Fig. 2A, Table S1). In the minimal medium, parasitic interac-
tions predominated, but competitive, mutualistic, amensal, and neutral interactions
also occurred (Fig. 2A). Notably, mutualistic interactions accounted for 12% of the inter-
actions in two-member communities and increased progressively to 30% of the interac-
tions in the five-member community. A large proportion (;80%) of neutral interactions
occur between A. fabarum and L. brevis and these interactions switch to mutualistic inter-
actions when L. plantarum is added to the community (Table S1C). Similarly, ;66% of
amensal interactions occur between L. brevis and at least one AAB (Table S1C). L. brevis-
AAB amensal interactions switch to parasitic (L. brevis growth increases, AAB growth
decreases) in more complex communities with the addition of L. plantarum. The switch in
interaction type is facilitated by L. plantarum production of meso-2,6-diaminoheptane-
dioate, an essential metabolite for L. brevis growth.

FIG 2 Ecological interactions in simulated communities of different diversity. (A) Impact of coculture and medium on the sign of interactions
(1, beneficial; 2, antagonistic; 0, neutral) between bacteria in the three test media. No commensal interactions were observed in any media
type. (B) Overlapping metabolites consumed by bacteria in the 31 simulated communities. Significantly different (P, 0.05) groups by Tukey’s
HSD post hoc test are indicated by different letters.
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Patterns of metabolite consumption and release.We hypothesized that the com-
petitive interactions in the simulated bacterial communities (Fig. 2A) were underlain by
the coconsumption of individual nutrients by two or more bacteria in the community;
these nutrients may be constituents of the medium or, in communities with three or
more members, derived from other bacteria. Additionally, we hypothesized that para-
sitic interactions involved the unidirectional cross-feeding of metabolites from the bac-
terium displaying depressed growth to the bacterium displaying increased growth in
coculture, while mutualistic interactions involved the reciprocal transfer of metabolites
that were synthesized and released by one bacterium and required for growth by the
other bacterium.

For our first analysis of the incidence of competition, we quantified the number of
individual metabolites consumed by more than one bacterium in the simulated com-
munities (Fig. 2B, Table S2A to C, Dataset 1). As shown in Fig. 2B, the number of
nutrients shared between two bacteria increased with both community complexity
and nutrient content of the growth medium. The number of shared metabolites
increased significantly between two-member and three-member communities, how-
ever, increases between three- to four-member and four- to five-member communities
were mostly not significant for all media types (Table S2D). Our observation of strong
pairwise interactions within communities of low complexity (,4 members) is similar to
data from vertebrate systems showing how pairwise interactions between gut micro-
bial communities weaken as communities increase in complexity (46). Consistent with
the relatively low incidence of competitive interactions in the minimal medium, the
greatest number of overlapping input metabolites recorded for any interaction in this
medium was 12, which was half or less of the equivalent values, 21 and 29 for the basal
medium and nutrient-rich medium, respectively (Fig. 2B).

To investigate the specific metabolic drivers of the antagonistic growth interactions,
i.e., both competition and parasitism, we determined the input and output metabolites
of each bacterium in every community. A total of 100 unique metabolites was pre-
dicted to be produced or consumed. We classified each metabolite by the frequency of
its consumption by members of the gut community (Fig. 3, Table S3A to C). Our data
show distinct metabolite use patterns associated with competitive, parasitic, and
mutualistic growth outcomes. Competitive growth interactions were significantly
dominated by single-use or coconsumption in the rich and base media, but not in the
minimal medium (Fig. 3A to C, Table S3D). Similarly, parasitic interactions were signifi-
cantly dominated by single-use or coconsumption in rich and base media, and single-
produced, and cross-fed metabolite use patterns dominated minimal medium parasitic
interactions (Fig. 3D to F, Table S3D). Mutualistic growth interactions, observed only in
the minimal medium, were characterized by the dominance of cross-feeding interac-
tions, which made up a significantly larger proportion of all interaction types (Fig. 3G,
Table S3D).

Our data also show shifts in metabolite use profiles with depletion of nutrients in
the growth medium. In the nutrient-rich medium, single-use consumption of metabo-
lites predominated, while metabolites in the base and minimal media had more
diverse metabolite use profiles, with an increasing representation of cross-fed, single-
produced, and coproduced metabolites (Fig. 3).

We then investigated the identity of metabolites in the different metabolite use
patterns. Metabolite groups with the highest number of co-consumed metabolites
were amino acids and B vitamins (Fig. 4, Table S4A to C). Tyrosine, tryptophan, proline,
phenylalanine, glutamine, asparagine, and arginine were the most frequently co-con-
sumed amino acids, and biotin (B7) was the most co-consumed B vitamin. However,
some B vitamins and cofactors were cross-fed, notably thiamine (B1), pyridoxine 5-
phosphate (B6), nicotinamide D-ribonucleotide, riboflavin (B2), tetrahydrofolate (B9),
and coenzyme A (Fig. 4). Among the carbon compounds, only glucose and glycerol
were consistently co-consumed in all three media. Other carbon compounds displayed
more diverse use profiles that differed for each growth medium. For instance, malate
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and formate were exclusively produced in the nutrient-rich and base media and con-
sumed or cross-fed in the minimal medium (Fig. 4), while lactate and 2,3 butanediol
were exclusively produced in the nutrient-rich medium. Intermediates of the TCA cycle,
including 2-oxoglutarate, succinate, succinyl-CoA, and fermentation products acetate,
acetaldehyde, and acetoin were cross-fed carbon at high frequency, while serine, gluta-
mate, and glycine were the most cross-fed amino acids (Fig. 4). Among the nucleotides,
the pyrimidine deoxyuridine 59-phosphate (dUMP) simultaneously ranked as the most
co-consumed and cross-fed nucleotide (Fig. 4).

Metabolic roles of individual bacteria. Our next analyses focused on metabolite
production and consumption profiles of individual gut bacteria. Our simulations show
that the metabolic role of individual gut bacteria as source or sink varies with the iden-
tity of coculture microbe and across the three media for many metabolites, but is gen-
erally conserved across communities within the same medium type (Fig. 5, Table S4D).
For instance, all five gut bacteria produced ammonia in the nutrient-rich and base
media but consumed ammonia in the minimal medium (Fig. 5A). In base and rich
media, most microbes, except A. tropicalis, displayed committed roles for the produc-
tion or consumption of all metabolites (Table S5A to C). A. tropicalis alternated roles as

FIG 3 Metabolite use patterns associated with competitive, parasitic, and mutualistic growth outcomes. Each point represents the frequency of a
metabolite use pattern associated between all pairwise interactions across all communities from 2 to 5 members. The relative frequency of metabolite use
is calculated by dividing the number of times a metabolite is used in a particular pattern (single-use, co-consumed, cross-fed, single-produced, or
coproduced) by the total number of times the metabolite is produced or consumed in the 31 simulated communities. Black bars indicate the median
frequency of occurrence for each metabolite use pattern. Significantly different (P, 0.05) groups by Tukey’s HSD post hoc test are indicated by different
letters. The panel at the left summarizes the five different types of metabolite use (triangle, metabolite; open and closed circles, co-occurring Microbe A
and Microbe B, respectively).
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a producer and consumer for up to 6% of all metabolites (Table S5A to C). In the mini-
mal medium, all three acetic acid bacteria displayed variable roles as producers and
consumers for up to ;30% of all metabolites (Table S5A to C). As an example, repre-
sentatives of Acetobacter alternated as sources and sinks for acetate, arginine, orni-
thine, and succinyl-CoA in the minimal medium, depending on the number and iden-
tity of cooccurring bacteria (Fig. 5B).

Furthermore, the bacterial taxa had distinctive metabolic characteristics. All three
Acetobacter species were sinks for glycine, serine, proline, acetaldehyde, and methyl-
glyoxal and producers of D-alanine, cysteine, histidine, isoleucine, leucine, valine, form-
aldehyde, malate, and succinate (Fig. 5A), and A. tropicalis was, additionally, an impor-
tant source of B vitamins, including tetrahydrofolate (B9), riboflavin (B2), pyridoxine
5-phosphate (B6), and biotin (B7) (Fig. 5B). Both Lactobacillus species produced acetoin
and were sinks for tryptophan and the branched-chain amino acids isoleucine, leucine,
and valine. L. brevis was consistently a source of succinate and deoxyuridine 59-phos-
phate (dUMP) and a sink for most amino acids and meso-2,6-diaminoheptanedioate
(required for peptidoglycan synthesis). L. plantarum was a sink for arginine and succi-
nate and a source of pyruvate and meso-2,6-diaminoheptanedioate.

Effect of community size and taxa on metabolite richness. We next considered
how the number of metabolites consumed or released by individual bacteria (i.e.,
metabolite richness) was influenced by the number and identity of other bacteria in

FIG 4 Metabolite use patterns for metabolite classes of amino acids, carbon, nucleotides, vitamins, and cofactors. Tick marks on the x axis indicate the
relative frequency of the consumption or production of a metabolite and range from 0 to 1 at 0.25 increments. The relative frequency of metabolite use is
calculated by dividing the number of times a metabolite is used in a particular pattern (single-use, co-consumed, cross-fed, single-produced, or
coproduced) by the total number of times the metabolite is produced or consumed in the 31 simulated communities. Black circles demarcate metabolites
that are initially present in each medium.

Drosophila Gut Microbiome Metabolic Function

May/June 2021 Volume 6 Issue 3 e01369-20 msystems.asm.org 7

https://msystems.asm.org


FIG 5 Metabolic roles of individual bacteria. Predicted metabolite production and consumption profiles for metabolite classes
nucleotides, vitamins, and cofactors (A) and amino acid and carbon (B). The two-letter abbreviations at the top of each plot

(Continued on next page)
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the community. For the nutrient-rich and basal media, the number of taxa in a commu-
nity did not significantly influence the number of metabolites consumed or released
by individual taxa (Fig. 6A, Table S4D). However, on the minimal medium, as the num-
ber of taxa in a community increased, the number of metabolites consumed and
released also increased (Fig. 6A).

The metabolic function of individual microbial taxa significantly varied across all
media types (Table S4D). In particular, both Lactobacillus species consumed more
metabolites than the three Acetobacter species. A. tropicalis released more metabolites
on average than the other two Acetobacter species, and both Lactobacillus species
released slightly more metabolites on average than the grand mean (Fig. 6B).

The types of metabolites consumed or released varied with the identity and num-
ber of species in the community (Fig. 6C, Table S5D). A. tropicalis and L. brevis had the
strongest effect on consumption rates, especially in the nutrient-rich medium; A. tropi-
calis positively correlated with consumption of sulfur-containing metabolites, while L.
brevis increased with vitamin consumption (Fig. 6C). For metabolite release,
Lactobacillus species had the greatest impact in the nutrient-rich medium, correlated
with vitamin and nucleotide release, while the Acetobacter species were more impor-
tant in the minimal depleted medium and A. tropicalis, in particular, was strongly corre-
lated with the release of sulfur-containing metabolites (Fig. 6C). A. pomorum consis-
tently had no effect on consumption or production rates (Table S5D).

Net outputs from the bacterial communities. Our final analysis addressed the
metabolic products of the 31 bacterial communities in each of the three media. These
products are candidate bacterial-derived metabolites that are available to the host ani-
mal. A total of 21 metabolites was predicted to be made available to the host
(Table S6, Dataset 2), 19 of which were produced in the nutrient-rich medium, 12 in
the base medium, and 5 in the minimal medium. Some of the 21 metabolites have
been previously demonstrated to play important roles in Drosophila physiology. For
instance, acetate (26, 47, 48) and succinate (49) reduce host TAG levels, and microbe-
derived amino acids rescue Drosophila growth on amino acid-deficient diets (30, 50)
and double Drosophila life span on low-protein diets (51).

Three metabolites (acetate, D-alanine, and homocysteine) were predicted to be
made available to the host under all three diet conditions. In addition, the central car-
bon metabolites predicted to be released from bacteria in at least one medium include
2-oxoglutarate, formaldehyde, formate, glycolate, lactate, malate, and succinate.

DISCUSSION

Our in silico study of metabolic interactions among Drosophila gut bacteria yielded
two key findings. First, the pattern of metabolite consumption and release by individ-
ual bacteria and communities is dynamic, varying with nutrient conditions and com-
munity composition. Second, ecological interactions identified from the growth pat-
terns of the bacteria (competition, mutualism, etc.) are underpinned by a diversity of
metabolic interactions, with evidence that the bacteria tend to compete for certain
classes of nutrients (e.g., amino acids and B vitamins) more frequently than for others,
particularly carbon sources.

Our modeling is based on several simplifying assumptions. In particular, we assume
that the different bacterial species are in close proximity, such that among-species flux
of metabolites is unimpeded. Although there is very limited information on the spatial
organization of gut microorganisms in Drosophila, bacteria in other hosts can be plank-
tonic in the gut lumen or adhere to the gut wall, often as single-species or structured
multispecies colonies (52–55), and these different spatial patterns both affect and are
influenced by abiotic conditions, nutrient availability, metabolite exchange, and types

FIG 5 Legend (Continued)
represent individual bacteria: AF, Acetobacter fabarum; AP, Acetobacter pomorum; AT, Acetobacter tropicalis; LB, Lactobacillus brevis;
LP, Lactobacillus plantarum. Tick marks on the x axis indicate the relative frequency of the consumption or production of a
metabolite and range from 0 to 1 at 0.25 increments.
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FIG 6 Metabolic function of simulated microbial taxa under different conditions. (A) Effect of community size on metabolite
richness. Metabolite richness is calculated as the number of metabolites either consumed or released by a given taxon in each
microbial treatment and medium combination. Effect of community size for each medium is indicated with the estimated
marginal mean (open circles or diamonds) and standard error (SE) from ANOVA models. Letters indicate results from post hoc
Tukey’s test, which was conducted separately for each medium. Closed, colored circles indicate individual metabolite richness
values for each taxon under each condition. Effect test results are displayed in Table S4D in the supplemental material. (B) Global
effect of species identity on metabolite richness for the number of compounds consumed and released. The conditional mean and
standard deviation are displayed for the best linear unbiased prediction. Dotted lines indicate the grand mean for metabolite
richness across all species. (C) Principal-component analysis (PCA) correlating metabolite consumption or release rates with
community size, medium type, and microbial presence. Black arrows indicate metabolite type scores, and colored arrows display
the correlation vectors for microbial presence (only significant vectors are plotted). The percent variance explained by each axis is
shown in parentheses.
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of growth interactions between species (56–58). For example, commensal and neutral
interactions, which are likely to occur among spatially isolated microbes, are not cap-
tured in most of our simulations. Furthermore, our models address primary metabolism
exclusively and are not designed to investigate the effects of secondary metabolite-
mediated interactions, e.g., interference competition among bacteria mediated by tox-
ins (59, 60) or differential susceptibility of bacteria to host immune factors (61–64).
Despite these limitations, many of our model outputs are consistent with published
empirical data on the metabolic function of Drosophila gut bacteria, particularly the
production by individual bacterial species of specific fermentation products (24, 65),
amino acids (51, 66), and B vitamins (29, 39, 67). Furthermore, the predicted incidence
of different ecological interactions, as deduced from biomass production in the various
communities, agrees largely with published data reporting a predominance of antago-
nistic interactions among Drosophila-associated gut microbes (14) and other microbial
communities (60, 68–70). Our observation that nutrient-poor conditions favor mutual-
istic interactions, especially in more complex communities, is also consistent with both
predictions and empirical data for other microbial systems, e.g., references 71–73.
Taken together, these considerations indicate that our modeling approach is robust. It
can be used with confidence to investigate patterns in the metabolic consequences of
various nutrient availability and community composition over a larger range of condi-
tions than is technically realistic for empirical study.

Genome-scale metabolic modeling, as used here, brings into sharp focus the com-
plexity of metabolic interactions among microorganisms. This provides a different per-
spective from empirical studies that, generally, focus on a single class of nutrients, e.g.,
short-chain fatty acids or B vitamins. In particular, the metabolic traits of an individual
bacterium are not fixed but strongly influenced by the nutrient environment and the
presence and identity of cooccurring microorganisms. For example, our models predict
that the Lactobacillus species are net producers of uracil only under nutrient-rich con-
ditions (Fig. 5). Bacterial-derived uracil has been shown to induce a proinflammatory
state in the Drosophila gut via DUOX-mediated production of reactive oxygen species
(74), and our data raise the possibility that the effect of Lactobacillus on the immuno-
logical status of the gut may be influenced by dietary factors. Similarly, the finding that
the net production of several B vitamins by Acetobacter varies with the presence and
identity of cooccurring bacteria (Fig. 5A) suggests that studies exclusively using associ-
ations with single bacterial taxa may not capture the full complexity of B vitamin provi-
sioning by the Drosophila gut microbiome.

The complexity of the metabolic interactions among the bacterial species also influ-
ences the sign of ecological interactions. Various empirical analyses have demon-
strated how an ecological interaction can be driven by a single metabolic interaction,
e.g., competition for a single resource (75–77) or mutualism by reciprocal cross-feeding
of a pair of metabolites, each produced by one microorganism and required by the
other (78, 79). However, as summarized in Fig. 3, the totality of the metabolic relation-
ship between interacting microorganisms includes multiple classes of metabolic inter-
action. A relatively minor change in the uptake/release of metabolite(s), in response to
a change in nutrient availability or community composition, could result in the transi-
tion to a different ecological relationship. For example, the switch from a competitive
interaction to parasitism may contribute to the bloom of a microorganism previously
held in check by competition (80).

Further elaboration of metabolic models, as used here and, for example, by refer-
ence 70, offers the opportunity to investigate how subtle changes in metabolite flux in
communities of different complexity and different nutrient regimes can lead to a
switch between different ecological states of the microbiome and its interaction with
the host.

The complexity and variation in metabolic interactions among the gut bacteria are,
however, overlain by several broad patterns with respect to both metabolite class and
bacterial species. Considering metabolites first, a key output of this study is that the
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pattern of metabolite use differed between substitutable and nonsubstitutable nutri-
ent sources, i.e., where other resources can be utilized as an equivalent resource versus
where no equivalent resource is available (81). Consistent with the generality that
organisms tend to compete less for substitutable than for nonsubstitutable resources
(82), the Drosophila gut bacteria competed more for nonsubstitutable nutrients, such
as amino acids and B vitamins, than substitutable nutrients, such as intermediates in
central carbon metabolism. These patterns have implications for the health and well-
being of the host. In particular, microbial consumption of dietary nutrients can deplete
nutrient availability to the host (83), and among-microbe competition is predicted to
alter host access to both critical nutrients and metabolites that influence the signaling
pathways in Drosophila (26, 27) and other animals (84, 85).

The five bacteria selected for this analysis varied in their genetic capacity for meta-
bolic function, particularly between the Acetobacter and Lactobacillus species (Fig. 6,
see also reference 38). Nevertheless, our modeling revealed substantial functional re-
dundancy in metabolite production among the different bacteria; except for meso-2,6-
diaminoheptanedioate, produced by L. plantarum, we identified no metabolites pro-
duced exclusively by a single species. This metabolic redundancy is consistent with the
evidence that taxonomically different microbial communities can be functionally
equivalent in Drosophila (86) and other animals (4, 87). The unique metabolic function
of L. plantarum highlights the role of this bacterium in microbial community interac-
tions, including its potential as a probiotic. The beneficial effects of L. plantarum in the
Drosophila system have been attributed to its capacity to promote protein assimilation
from the diet (27). Our observation that L. plantarum provisions cell wall constituents,
B vitamins, and amino acids for auxotrophic bacteria in the gut provides additional
metabolic routes by which L. plantarum may promote the overall diversity of the gut
microbiota.

In conclusion, this study demonstrates how in silico approaches can yield mechanis-
tic insight into the metabolic traits of individual microbes and communities, and how
these traits can influence metabolite levels that impact host physiology. Our models
identify patterns by which microbial communities interact and respond to changes in
nutrient input from the host and allow the generation of testable hypotheses for more
targeted empirical studies. Substantial insight into how variations in microbiomes
impact host health and metabolism have been gained from combining metabolic
modeling with empirical studies (88, 89) and the simplicity of the Drosophila system
presents an ideal model system to combine in silico and in vivo approaches to under-
stand how gut-associated microbes impact host health.

MATERIALS ANDMETHODS
Generation of the individual bacterial metabolic models. Genomes of Acetobacter fabarum

(JOPD01000000), Acetobacter pomorum (JOKL01000000), Acetobacter tropicalis (JOKM01000000),
Lactobacillus brevis (JOKA01000000), and Lactobacillus plantarum (JOJT01000000) were downloaded
from NCBI and reannotated using the RAST annotation server (90). Two draft model reconstructions
were generated for each genome and combined to generate a final model. The first models were
obtained by performing reciprocal BLASTs of Acetobacter genomes against Escherichia coli strain K-12
substrain MG1655 and lactobacilli genomes against Lactobacillus plantarum strain WCFS1. Gene ortho-
logs identified from the reciprocal blast searches were compared to the E. coli strain K-12 substrain
MG1655 metabolic model iML1515 (91) and the Lactobacillus plantarum WCFS1 metabolic model (92).
Then, reactions encoded by these genes were manually extracted to create a draft model. The second
draft reconstructions were generated from the automated reconstruction pipeline ModelSEED (93) using
the RAST reannotated genomes as input. For each bacterium, the two models were integrated and man-
ually curated to remove redundant reactions and ensure correct reaction gene association, stoichiome-
try, and directionality. Organism-specific features and genes encoding metabolic reactions absent in
Escherichia coli iML1515 and Lactobacillus plantarum WCFS1 metabolic models were identified by litera-
ture review and searches of BioCyc, KEGG, EcoCyc, BiGG, and BRENDA databases (94–98), and then
added to the draft model. The models were further curated using nutrient utilization Biolog data (38) to
verify and identify nutrient sources utilized by Acetobacter and Lactobacillus. All models were evaluated
using MEMOTE (99).

Model media composition. All simulations were performed in one of three media types; a minimal
medium, a base medium, and a rich medium. The minimal medium is a nutrient-poor medium contain-
ing glucose, glycerol, ammonia, sulfate, and phosphate as primary sources of carbon, nitrogen, sulfur,
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and phosphorus, respectively. Components of the minimal medium were selected to investigate the
complete scope of interaction possible between Drosophila gut microbiota in the absence of host gut-
and diet-derived nutrients. Components of the base medium were selected to match nutrient auxotro-
phies for all 5 bacteria and allow the growth of all 5 bacteria in isolation. Components of the rich me-
dium comprised the complete set of nutrients required for growth by all five bacteria, all major sources
of carbon, nitrogen, sulfur, and phosphorus for which these bacteria have annotated transporters, nutri-
ent components of Drosophila holidic diet, and metabolites predicted to be available in the fly gut from
a metabolomic analysis (100). All media nutrient constituents and the flux bounds used for all bacteria
and all simulations are provided in Table S7 in the supplemental material.

Model constraints applied. Reaction fluxes for community members were obtained using the
SteadyCom (40) flux variability analysis (FVA) implementation in the OpenCOBRA Toolbox (101) with the
following constraints. Medoid growth rate vectors of individual species were computed by performing
FVA while maintaining 99.99% of the maximum community growth rate (mmax) and simultaneously maxi-
mizing and minimizing flux through individual reactions to obtain individual species growth rate values
for each simulation. For each species, we obtained between 1,000 and 5,000 growth rate values, repre-
senting species growth rates when each reaction was performing at its minimum and maximum while
maintaining the maximum community growth rate. We used the medoid predicted growth rate value
for each species as a lower bound for all subsequent model simulations by constraining SteadyCom pa-
rameters BMcon, BMrhs, and BMCsense to require each species to have a biomass value of at least the
computed medoid in all simulations. A SteadyCom algorithm that minimizes the L1 (taxicab) norm of
the predicted flux vectors was also applied to remove futile cycles and extraneous flux predictions.

Model validation and comparison to empirical data. Our models correctly reproduce usage pat-
terns for 44 to 55% of the metabolites and compounds predicted to be utilized by Drosophila gut bacte-
ria as characterized experimentally using Biolog plates (38). Comparisons between our model predic-
tions of growth and Biolog data from Newell et al. (38) are provided at https://github.com/
federatedcloud/DouglasMetabolicModels/tree/master/models/5.models_080719/Excel. Our predictions
of metabolite release also match data from experimental studies for amino acids (30, 50) and B vitamins
(39) from Drosophila gut microbiota. Last, published empirical data on Drosophila mono-associated with
Acetobacter and Lactobacillus, e.g., Gould et al. (14) (Fig. 3B) and Newell et al. (38) (Fig. 1C) generally
show three rankings in monococulture growth rates that are reproduced in our models for base and rich
media: (i) monococulture Lactobacillus biomass and growth are higher than Acetobacter in the fly gut; (ii)
comparable Acetobacter biomass and growth for different Acetobacter species; and (iii) relatively higher
Lactobacillus brevis growth compared to Lactobacillus plantarum growth.

Model simulation. To find the maximum community growth rate we used the bisection algo-
rithm in SteadyCom because it presented minimal convergence and feasibility issues with the con-
straints applied to our community model. Additionally, the default SteadyCom feasTol algorithm,
which sets the allowed error for determining if an input solution is feasible, was set to 1e28 for the
solver. All parameters used to constrain SteadyCom simulations are available in the runSteadyCom
and runSteadyComFVAMedoid functions.

Analysis of simulated results. Simulations were run for each subset of the 5 species, i.e., 2521=31
communities, 5 of which are single-species communities. We constructed the single-member communities
as multispecies models to facilitate the analysis and simulation pipelines, particularly SteadyCom, which
requires a multispecies model. We verified that growth rates for single-species models and the single-
member community models with flux balance analysis (102) were identical (see https://github.com/
federatedcloud/DouglasMetabolicModels/blob/v1.0.2/Tests/testMultiModelSingleton.m).

Statistical analyses. All statistical analyses were performed using R v.3.6.1 (103) with an alpha of
0.05 to assess significance. Bonferroni correction for multiple tests was applied where required.
Statistical differences between the number of overlapping metabolites in different community sizes and
metabolite use patterns associated with different ecological interactions were investigated by one-way
analysis of variance (ANOVA) followed by Tukey’s honestly significant difference (HSD) post hoc test.
Metabolite richness was calculated as the number of metabolites either consumed or released by a
given taxon in each microbial treatment and medium combination. A mixed-effect two-way ANOVA was
used to assess how the medium type (rich, basal, or minimal) and community size (number of taxa) influ-
enced metabolite richness using the “lmer” function in lme4 package (104). The data for metabolite con-
sumption and release were analyzed separately. Medium type and community size were included as cat-
egorical fixed effects and microbial treatment (combination of microbes in a community, e.g., AF 1 LB)
and taxon (AF, AP, AT, LB, or LP) were designated categorical random effects. The “Anova” function in
the car package (105) was used to perform a type III Wald’s F test to determine the effect of predictors
with a Kenward-Rodger approximation to estimate residual degrees of freedom. A post hoc Tukey’s test
was performed for each medium type to determine pairwise differences across community size. An anal-
ysis of deviance was performed to assess the significance of each random effect and the best linear
unbiased prediction was estimated for each taxon using the “ranef” function to predict the global effect
of each taxon across the different community size and medium combinations. Marginal and conditional
R2 values were calculated using the MuMIn package (106).

A principal-component analysis (PCA) was performed to correlate metabolite consumption or release
rates with community size, medium type, and microbial presence using the vegan package (107). A cor-
relation matrix was implemented using the total sum rate of metabolites either consumed or released
for each of the metabolite type bins (carbon, amino acids, nitrogen, etc.). The function “envfit” was used
to correlate PC1 and PC2 with microbial presence with 999 permutations and significant vectors were
plotted. In addition, a permutational multivariate analysis of variance (PERMANOVA) was used to assess
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the effect of community size by medium type as well as taxon on metabolite rates with the function
“adonis.” Data were autoscaled and a Euclidean distance matrix was implemented for the model with
999 permutations. Consumption and release rates were analyzed separately for all analyses.

Code and data availability. All code used in this study can be found at https://github.com/
federatedcloud/DouglasMetabolicModels/releases/tag/v1.0.2. The simulations were performed using
v3.0.4 of the OpenCOBRA Toolbox and v7.5.1 of the Gurobi Optimizer (108). An optional, containerized
environment for running the code is available at https://github.com/federatedcloud/COBRAContainers.
All results derived from simulations can be found in DouglasMetabolicModels/analysis/CMP_and_
CooperativeFluxes. A tutorial is provided for performing simulations in the repository’s top-level README
file. The code is available under the MPL2 license.

SBML files of the models have been submitted to the BioModels database (109) with the following
identifiers: MODEL2002040002, MODEL2002040003, MODEL2002040004, MODEL2002040005, and
MODEL2002040006.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
DATA SET S1, XLSX file, 0.03 MB.
DATA SET S2, XLSX file, 0.03 MB.
TABLE S1, PDF file, 0.2 MB.
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