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Purpose: Currently, there is insufficient guidance for standard fractionation lung planning using the Varian Ethos adaptive treatment
planning system and its unique intelligent optimization engine. Here, we address this gap in knowledge by developing a methodology
to automatically generate high-quality Ethos treatment plans for locally advanced lung cancer.
Methods and Materials: Fifty patients previously treated with manually generated Eclipse plans for inoperable stage IIIA-IIIC non-
small cell lung cancer were included in this institutional review board−approved retrospective study. Fifteen patient plans were used to
iteratively optimize a planning template for the Daily Adaptive vs Non-Adaptive External Beam Radiation Therapy With Concurrent
Chemotherapy for Locally Advanced Non-Small Cell Lung Cancer: A Prospective Randomized Trial of an Individualized Approach for
Toxicity Reduction (ARTIA-Lung); the remaining 35 patients were automatically replanned without intervention. Ethos plan quality
was benchmarked against clinical plans and reoptimized knowledge-based RapidPlan (RP) plans, then judged using standard dose-
volume histogram metrics, adherence to clinical trial objectives, and qualitative review.
Results: Given equal prescription target coverage, Ethos-generated plans showed improved primary and nodal planning target volume
V95% coverage (P < .001) and reduced lung gross tumor volume V5 Gy and esophagus D0.03 cc metrics (P ≤ .003) but increased
mean esophagus and brachial plexus D0.03 cc metrics (P < .001) compared with RP plans. Eighty percent, 49%, and 51% of Ethos,
clinical, and RP plans, respectively, were “per protocol” or met “variation acceptable” ARTIA-Lung planning metrics. Three radiation
oncologists qualitatively scored Ethos plans, and 78% of plans were clinically acceptable to all reviewing physicians, with no plans
receiving scores requiring major changes.
Conclusions: A standard Ethos template produced lung radiation therapy plans with similar quality to RP plans, elucidating a viable
approach for automated plan generation in the Ethos adaptive workspace.
© 2023 The Author(s). Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Sources of support: This work had no specific funding.
The data that support the findings of this study are available from the

corresponding author upon reasonable request.

Corresponding author: Joel A. Pogue, PhD; E-mail: japogue@uabmc
edu

https://doi.org/10.1016/j.adro.2023.101292
2452-1094/© 2023 The Author(s). Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access article unde
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
.

r

http://crossmark.crossref.org/dialog/?doi=10.1016/j.adro.2023.101292&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:japogue@uabmc.edu
mailto:japogue@uabmc.edu
https://doi.org/10.1016/j.adro.2023.101292
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.adro.2023.101292


2 J.A. Pogue et al Advances in Radiation Oncology: November−December 2023
Introduction
Radiation therapy (RT) treatment planning remains
a largely manual process in which dosimetrists, physi-
cists, and physicians iteratively develop plans on a
patient-by-patient basis. This planning approach uses
significant departmental resources, such as time
required to train personnel and develop quality treat-
ment plans.1 Additionally, manually generated plan
quality is highly heterogeneous because of individual
planner skill and experience.2-4 Factors affecting plan
quality include planner and radiation oncologist’s
choice of optimization dose and priority values, plan-
ning time limitations, and inconsistent use of optimiza-
tion structures. Therefore, automated planning aims to
decrease interplan variation and planning time while
maintaining or improving plan quality.5 This is
achieved through standardization of structures of inter-
est, optimization techniques, and priority values. Spe-
cific approaches include, but are not limited to,
knowledge-based planning,6-8 multicriteria optimiza-
tion,9-11 and template based planning.12,13 To this end,
the Ethos Adaptive RT platform (Varian Medical Sys-
tems, Palo Alto, CA) was designed with an automated
treatment planning system (TPS) that generates plans
from user-provided templates.14

Although the Ethos platform is relatively new, sev-
eral aspects of plan generation have already been
investigated. Mao et al15 have shown that simulated
adaptive lung therapy on the Ethos platform signifi-
cantly improves target coverage and reduces normal
tissue dose. Other studies have demonstrated that
Ethos daily adaptive prostate and abdominal stereotac-
tic body RT plans generally result in higher target cov-
erage and a reduced risk of exceeding clinical organ-
at-risk (OAR) thresholds compared with nonadapted
plans.16-18 The Ethos optimizer has been shown to
generate similar or better quality pelvis and accelerated
partial breast irradiation plans compared with manu-
ally generated Eclipse plans.19,20 However, there has
been no investigation of Ethos thoracic RT plan qual-
ity nor any analysis comparing automated planning in
Ethos versus Eclipse. As the Ethos TPS introduces a
unique intelligent optimization engine (IOE), and the
optimizer drives RT plan generation, a quantitative
and qualitative understanding of plan quality remains
necessary. The primary endpoint of this retrospective
treatment planning study was to develop an automated
approach for creating high quality treatment plans in
the Ethos adaptive workspace. As a secondary end-
point, Ethos-generated plans were quantitatively com-
pared with the original clinical plans and RapidPlan
(RP) plans from the same patients. Finally, Ethos-gen-
erated plans were qualitatively evaluated by experi-
enced radiation oncologists.
Methods and Materials
Patient and volume description

Fifty patients previously treated at our institution for
inoperable stage IIIA-IIIC non-small cell lung cancer
between 2019 and 2022 were randomly selected for this
prospective institutional review board (IRB-120703005)
approved study. Patients were required to meet inclusion
criteria for the prospective ARTIA-Lung clinical trial
(Daily Adaptive vs Non-Adaptive External Beam Radia-
tion Therapy With Concurrent Chemotherapy for Locally
Advanced Non-Small Cell Lung Cancer: A Prospective
Randomized Trial of an Individualized Approach for
Toxicity Reduction (ARTIA-Lung); clinicaltrials.gov iden-
tifier NCT05488626). Accordingly, patients were excluded
if they had contralateral hilar or supraclavicular lymph
node involvement or distant metastases. Patients were
immobilized according to institutional protocol and simu-
lated head-first supine using a Phillips Brilliance big bore
computed tomography (CT) scanner, if patient mobility
allowed. Per institutional thoracic CT protocol, simula-
tion CT scans extended from the inferior aspect of the cri-
coid through the entire liver using a slice thickness of 2 to
3 mm, and each patient received a respiratory-correlated
4-dimensional (4D) CT.

Targets and normal structures were generally delineated
by the treating physician consistent with the Radiation
Therapy Oncology Group 1106 study.21 Positron emission
tomography CT images were registered with the averaged
4D-CT to aid in delineation of primary and nodal gross
tumor volumes (GTVp and GTVn, respectively), when
available. Patients were treated free-breathing or with
phase-based gating based on 4D motion assessment. Inter-
nal gross tumor volumes were defined as the union of
GTVs drawn individually on each phase. Primary and
nodal clinical target volumes (CTVp and CTVn, respec-
tively) were typically generated by adding isotropic 5- or
7-mm margins to the internal gross tumor volumes, with
manual cropping of the CTV at natural barriers to tumor
invasion. Primary and nodal planning target volumes
(PTVp and PTVn, respectively) were generated by adding
margins between 5 and 10 mm to the CTVs, typically 5-
mm isotropically (n = 38). Total PTV ranged from 95.1 to
1245.6 cm3, with a mean value of 504.5 cm3. All patients
were prescribed 60 Gy in 30 fractions.
Treatment planning

Manually generated clinical Eclipse plans were initially
calculated with the anisotropic analytical algorithm
(AAA; version 13.6.23; Varian Medical Systems). Patients
received intensity- modulated RT (IMRT) using 6 to 10
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fields (n = 6) or volumetric-modulated arc therapy
(VMAT) using 2 to 3 arcs (n = 44). To the contrary, the
Ethos TPS calculates dose using AcurosXB (AXB) with
heterogeneity correction on and dose to medium report-
ing mode selected (version 16.1.0; Varian Medical Sys-
tems). To account for systematic differences between
AXB and AAA when calculating dose in the lungs,22-24 all
previously treated manual Eclipse plans were recalculated
(preserving beam geometries and field weightings) using
AXB with heterogeneity correction on and dose to
medium reporting mode selected (version 15.5.11).
Patients were treated using 6 MV flattened beams on a
Varian Clinac 21IX and TrueBeam STX, each having a
maximum dose rate of 600 MU/min and equipped with
millennium 120 multileaf collimators (MLCs).25 Addi-
tionally, each patient plan was reoptimized with AXB
using our institution’s primary thoracic Eclipse knowl-
edge-based RP model, which uses the machine and MLCs
originally used for patient treatment.

The Ethos TPS (version 1.1; Varian Medical Systems)
is designed for cone beam CT-guided adaptive RT deliv-
ered on a Halcyon rotational linear accelerator, using a 6
MV flattening filter free beam with a maximum dose rate
of 800 MU/min and employing double stacked MLC
banks as its primary form of collimation.26 For Ethos plan
generation, all Eclipse clinical structure sets contoured
before manual planning were anonymized and imported
into the Ethos Treatment Management system (version
02.01.00; Varian Medical Systems). When replanning in
Ethos, patients were randomly assigned to either the tun-
ing (n = 15) or validation (n = 35) cohort until the tuning
cohort had evenly distributed tumor laterality (left/right),
Table 1 ARTIA-Lung clinical trial planning objectives used to t

Suggested priority Structure Dosimetr

1 PTVp V100% (%

V95% (%

D0.03 cc

PTVn V100% (%

V95% (%

D0.03 cc

Spinal cord D0.03 cc

2 Lungs-GTV V20 Gy (

V5 Gy (%

Heart V30 Gy (

V45 Gy (

Esophagus D0.03 cc

Mean (G

Ipsilateral brachial plexus D0.03 cc

Abbreviations: GTV = gross tumor volume; PTVn = nodal planning target vol
ensuring the resulting template was robust to tumor loca-
tion. Tuning cohort optimization priorities and dosimet-
ric objectives were iteratively fine-tuned for maximum
compliance with ARTIA-Lung clinical trial planning
objectives, shown in Table 1. To investigate the quality of
Ethos plans generated without planning bias (ie, trial-
and-error planning), the remaining 35-patient validation
cohort was automatically recalculated using the template
resulting from the tuning cohort. The 35-patient valida-
tion cohort was deemed sufficiently large for TPS compar-
ison, as paired, nonparametric analysis resulted in the
ranking of 70 unique plans. Plans created using the tem-
plate were evaluated as-is after the initial optimization (ie,
no further planning).

Once each case was set up in the Ethos TPS and its
planning template was approved, the IOE automatically
optimized a plan for every user-selected, predefined beam
geometry.27 Ethos template planning objectives increase
in priority with ascending order in the dose preview
workspace, rather than by a cost function that varies with
assigned priority number as in the Eclipse TPS. Six prede-
fined geometries were selected for this work: equidistant
9- and 12-field IMRT plans, an ipsilateral 7-field IMRT
plan, 2 and 3 full-arc VMAT plans, and a 2 half-arc
VMAT plan. The reviewing physicist selected the optimal
plan geometry for each patient according to the ARTIA-
Lung metrics and hierarchy before comparison to clinical
and RP plans. For final dose reporting, Ethos plans were
exported and analyzed in the Eclipse TPS. All Ethos plans,
clinical plans recalculated in AXB, and RP plans were nor-
malized such that 95% of the total PTV received 60 Gy.
Objective metrics and dose-volume histograms (DVH)
une the Ethos template

ic parameter Per protocol Variation acceptable

) ≥95% ≥90%

) ≥98% ≥95%

(%) ≤110% ≤115%

) ≥95% ≥90%

) ≥98% ≥95%

(%) ≤110% ≤115%

(Gy) ≤48 Gy ≤50 Gy

%) ≤33% ≤37%

) ≤60% ≤65%

%) ≤50% ≤55%

%) ≤35% ≤40%

(Gy) ≤63 Gy ≤66 Gy

y) ≤34 Gy ≤40 Gy

(Gy) ≤66 Gy >66 Gy

ume; PTVp = primary planning target volume.
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were extracted using the Eclipse Scripting Application
Programming Interface for these plans.

The Wilcoxon paired, nonparametric test was used to
test the difference between Ethos-generated plan metrics
and clinical and RP plan metrics for all ARTIA-Lung
planning objectives.28 P values were calculated, without
removal of outliers, using the SciPy library in Python (ver-
sion 3). A Bonferroni correction was applied to adjust for
multiple testing (n = 12); thus, P ≤ .004 (.05/12) is consid-
ered significant when comparing dose metrics.
Qualitative evaluation

Three board certified radiation oncologists specializing in
lung cancer treatment participated in Ethos plan reviews. All
physicians initially reviewed 5 plans together to standardize
the review process and normalize Likert scale plan scoring.
Then, the physician reviewers were asked to objectively score
each plan following our institution’s clinical planning guide-
lines. Each physician then independently reviewed 30 of the
remaining 45 plans, ensuring each of the 50 Ethos plans
was reviewed by at least 2 physicians. The physicians were
not provided additional clinical information regarding the
cases and purely reviewed plan quality with anonymous
patient identifiers. The physicians were not informed by
physicists of the ARTIA-Lung clinical trial constraints, were
not shown the template used for plan generation, and were
not informed that plans had been calculated with AXB as
opposed to AAA, which is the clinical standard. Instead,
they judged plan quality according to their unique interpre-
tation of the Likert scoring criteria outlined in Table 2.
Results
Generation of a planning template

A total of 129 Ethos initial intents and intent revisions
were created throughout this analysis (94 for the tuning
cohort, 35 for the validation cohort), resulting in the
Table 2 Physician qualitative review grading scheme

Score Description

5 Use as-is: Clinically acceptable plan

4 Minor edits that are unnecessary: R
acceptable for treatment.

3 Minor edits that are necessary: Revi
in the judgment of the reviewer, c

2 Major edits: Reviewer would require
the reviewer would require signific

1 Unusable: The plan quality is so poo
harm to the patient).
calculation and subsequent evaluation of 774 unique radia-
tion plans. This volume of intents was necessary because
many of the ARTIA-Lung planning objectives were not
achieved for the tuning cohort when plans were directly
optimized using the ARTIA-Lung objectives without using
lower dose constraints and optimization structures. Thus,
avoidance structures were created for any normal tissues
potentially proximal to the target (lungs, heart, and esopha-
gus). A 3-mm planning OAR spinal cord structure was also
generated to aid in decreasing spinal cord dose and to
account for patient setup uncertainty. The resulting tem-
plate, found in Table 3, prioritized PTV coverage the most,
followed by spinal cord avoidance then PTV hotspot
reduction. Lung GTV (referred to as “lungs”) V20 Gy was
deemed the most important OAR metric aside from the
spinal cord D0.03 cc; its avoidance structure was therefore
placed at the bottom of priority 1. This template (right-
sided) in XML format is included in the Supplementary
Materials Table E1.
Dosimetric comparison

The Ethos validation cohort plans selected for compar-
ison to clinical and RP plans included 9 equidistant 9-field
plans (26%), 13 equidistant 12-field plans (37%), 11 ipsi-
lateral 7-field plans (31%), 1 3-arc VMAT plan (3%), and
1 VMAT plan with 2 partial arcs (3%). The clinical and
RP validation cohorts included 3 6-field IMRT plans, 2 7-
field IMRT plans, 1 10-field IMRT plan, 14 VMAT plans
with 2 partial arcs (ranging from 199°-224°), 3 VMAT
plans with 3 partial arcs (ranging from 189°-199°), 6 2-arc
VMAT plans, and 6 3-arc VMAT plans. Figure 1 shows
boxplots comparing Ethos plan metrics to clinical and RP
plan metrics for all ARTIA-Lung target and OAR objec-
tives. Eighty percent (28/35), 49% (17/35), and 51% (18/
35) of Ethos, clinical, and RP plans, respectively, were per
protocol or met variation acceptable ARTIA-Lung met-
rics. For Ethos and RP plans, only lung V5 Gy metrics
were variation unacceptable. The clinical cohort con-
tained 2 PTVp D0.03 cc, 3 PTVn D0.03 cc, 15 lung V5
that could be used for treatment without change.

eviewer prefers stylistic changes but considers current plan

ewer would require changes before treatment and the changes,
an be implemented by minimal editing of the objectives.

changes before treatment, and the changes in the judgment of
ant modification of the objectives.

r that it is deemed unsafe to deliver (ie, would likely result in



Table 3 Ethos standard fractionation lung planning template

Priority Structure Structure derivation Planning goal Acceptable variation

1 PTVp V100% ≥ 98.5% V100% ≥ 90%

PTVn V100% ≥ 98.5% V100% ≥ 90%

PTVp V95% ≥ 100% V95% ≥ 95%

PTVn V95% ≥ 100% V95% ≥ 95%

Spinal cord D0.03 cc ≤ 30 Gy D0.03 cc ≤ 50 Gy

PTVp D0.03 cc ≤ 110% D0.03 cc ≤ 115%

PTVn D0.03 cc ≤ 110% D0.03 cc ≤ 115%

_AvdLungs Lungs (PTV + 0.3 cm) V20 Gy ≤ 25% V20 Gy ≤ 35%

2 SpinalCord_PRV03 Spinal cord + 0.3 cm D0.03 cc ≤ 33 Gy D0.03 cc ≤ 50 Gy

_AvdLungs Lungs (PTV + 0.3 cm) Dmean ≤ 15 Gy Dmean ≤ 20 Gy

_AvdHeart Heart (PTV + 0.3 cm) V30 Gy ≤ 11% V30 Gy ≤ 50%

_AvdHeart Heart (PTV + 0.3 cm) V45 Gy ≤ 5% V45 Gy ≤ 40%

_AvdEsophagus Esophagus (PTV + 0.3 cm) D0.03 cc ≤ 57 Gy D0.03 cc ≤ 63 Gy

_AvdEsophagus Esophagus (PTV + 0.3 cm) Dmean ≤ 28 Gy Dmean ≤ 34 Gy

Lungs − GTV V20 Gy ≤ 28% V20 Gy ≤ 37%

Lungs − GTV Dmean ≤ 20 Gy Dmean ≤ 22 Gy

Heart V30 Gy ≤ 12% V30 Gy ≤ 55%

Heart V45 Gy ≤ 6% V45 Gy ≤ 40%

Esophagus D0.03 cc ≤ 63 Gy D0.03 cc ≤ 66 Gy

Esophagus Dmean ≤ 34 Gy Dmean ≤ 40 Gy

_AvdLungs Lungs (PTV + 0.3 cm) V5 Gy ≤ 55% V5 Gy ≤ 60%

Lungs − GTV V5 Gy ≤ 60% V5 Gy ≤ 65%

Ipsilateral brachial plexus D0.03 cc ≤ 66 Gy D0.03 cc ≤ 66 Gy

Abbreviations: GTV = gross tumor volume; PTV = planning target volume; PTVn = nodal planning target volume; PTVp = primary planning target
volume.
All optimization and planning organ-at-risk structures were generated in the Ethos workspace using the summarized derivations.
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Gy, 1 esophagus D0.03 cc, and 1 brachial plexus D0.03 cc
variation unacceptable metric. Ethos plans had higher
mean esophagus dose than clinical plans (P = .002) and
similar lung V20 Gy, esophagus D0.03 cc, and brachial
plexus D0.03 cc metrics. Ethos showed significant
improvement over clinical plans for all other metrics (P ≤
.001). Ethos-generated plans showed improved PTVp and
PTVn V95% coverage (P < .001) and reduced lung GTV
V5 Gy and esophagus D0.03 cc metrics (P ≤ .003) but
increased mean esophagus and brachial plexus D0.03 cc
metrics (P < .001) compared with RP plans.

Figure 2 shows validation cohort-averaged DVHs with
standard deviation bounds for the PTVp, PTVn, lungs,
heart, spinal cord, and esophagus. Ethos PTVp and PTVn
have noticeably lower V105% values, and the mean Ethos
DVH has sharper drop-off above prescription dose than
clinical plans, indicating greater target homogeneity.
Ethos spared the lungs below 10 Gy relative to clinical
and RP plans. On average, RP resulted in increased heart
sparing when considering heart doses below 30 Gy; in
contrast, Ethos plans resulted in superior heart sparing
for heart doses above 30 Gy. On average, RP plans have a
lower spinal cord volume receiving below 28 Gy, but
Ethos plans have a lower volume receiving above 28 Gy.
Ethos plans generally produce less than 60 Gy outside of
the target compared with clinical and RP plans.
Plan quality

As shown in Fig. 3, the mode Likert qualitative score
for physicians A and C was 5, whereas physician B had a
mode score of 4. Seventy-eight percent of plans were con-
sidered of clinically acceptable quality (score of 4 or 5) to
each reviewing physician, whereas 22% (11/50) of plans
had at least 1 physician score of 3 because of hotspots in
OARs or balancing of PTV coverage to OAR sparing. No
plans received a score of 1 or 2 from any physician. The
average physician scores for the tuning and validation
cohorts are 4.36 and 4.39, respectively, suggesting no



Figure 1 Boxplots summarizing Ethos, clinical plans recalculated in AcurosXB, and RapidPlan cohort ARTIA-Lung plan-
ning metrics. Open and closed circles indicate outlier and mean values, respectively. Dashed and solid lines indicate per
protocol and variation acceptable constraints. Significance values obtained via the Wilcoxon signed rank test are annotated
as follows: ns: P > 0.004; *: P ≤ 0.004. Abbreviations: Clin = clinical; GTV = gross tumor volume; ns = not significant;
PTV = planning target volume; RP = RapidPlan.
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decrease in quality when plans were generated without
bias.
Discussion
In this study we present, to our knowledge, the largest
Ethos treatment planning study of a single treatment site
and the only thoracic Ethos planning study, where auto-
matically generated RT treatment plans for locally
advanced lung cancer are quantitatively and qualitatively
evaluated. Evaluation of the final planning template
resulted in 80% of Ethos-generated plans meeting plan-
ning objectives without user input. These findings are
supported by independent qualitative evaluation of indi-
vidual plans, which showed that a large majority of plans
(78%) for lung would be approved by multiple physicians
as-is or with minor edits that are not necessary (ie, stylis-
tic in nature and likely not clinically effective).

The high ratio of IMRT to VMAT plans in the valida-
tion cohort, along with the increase in time for VMAT
dose calculation relative to IMRT, suggest that it may be
clinically optimal to only perform IMRT calculations
using this template, as adaptive treatment plans are calcu-
lated with patients on the treatment table. These results
are in good agreement with Calmels et al,19 who observed
that, for most planning objectives, the Ethos TPS gener-
ates plans with similar or better target coverage and OAR



Figure 2 Validation cohort dose volume histogram comparison of Ethos, clinical plans recalculated in AcurosXB, and
RapidPlan plans. Shaded areas illustrate the mean § standard deviation and insets elucidate the difference between mean
population dose volume histograms (ie, Ethos plan volume minus alternative plan volume). Abbreviations: GTV = gross
tumor volume; PTV = planning target volume; PTVn = nodal planning target volume PTVp = primary planning target
volume.
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sparing compared with manually generated Eclipse
VMAT plans for anal, rectal, and prostate cancers. It
should be noted that further studies are needed to decon-
flate the effects of the Ethos treatment machine and opti-
mizer on plan quality relative to the Eclipse TPS. More
explicitly, a controlled experiment is required to deter-
mine what portion of Ethos plan difference is attributable
to the double banked MLC and what portion is attribut-
able to its IOE.

Although nonparametric testing is appropriate for
analyzing differences in dose metric distributions that
are not normal, nonparametric tests often fail to capture
the magnitude of difference between 2 samples. As an
example, the Wilcoxon signed rank test yields a signifi-
cant improvement (P < .001) of Ethos PTVp V95% met-
rics over RP plans because there is a high probability
that a randomly sampled patient will have a V95% value
that is higher in Ethos versus RP. However, the means of
the 2 V95% distributions are only 0.2% different. Thus,
significant P values may not all translate to clinically
meaningful improvements. Because of this, DVH curve
comparison (Fig. 2) is used to elucidate TPS dose differ-
ence continuously as a function of target/OAR volume
when necessary.



Figure 3 Likert qualitative plan review results by physi-
cian. The grading scale ranged from 1 to 5, but no scores
below 3 were given.
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Higher Ethos esophagus and brachial plexus metrics
are due to the architecture of the optimizer in the dose
preview workspace. Although all Eclipse TPS structures
can be given an equal priority and therefore have a similar
effect on the cost function, Ethos optimizer priorities are
necessarily different from each other. Therefore, esopha-
gus objectives would need to be moved higher than spinal
cord, lung, or heart objectives in the dose preview work-
space to further improve Ethos esophagus metrics relative
to clinical and RP plans. However, the spinal cord, lungs,
and heart were deemed more critical structures, and were
therefore assigned a higher priority.

In this study, we recalculated clinical AAA plans in
AXB and normalized to 95% prescription coverage. In
AAA, none of the validation cohort PTVp and PTVn
D0.03 cc metrics exceeded 115%, and none of the esopha-
gus or brachial plexus D0.03 cc metrics exceeded 66 Gy.
After recalculation in AXB, 5 validation cohort plans
failed to achieve these constraints. This is consistent with
literature that reports increased heterogeneity when tran-
sitioning from AAA to AXB.22,23

Although the original clinical intent cannot be known
retrospectively, nor were the clinical or RP plans gener-
ated according to the ARTIA-Lung clinical trial, it is
assumed that lung dose was limited to the extent possible
during the initial planning process. The fact that signifi-
cantly more Ethos plans met the lung V5 Gy objective
suggests the Ethos template proposed in this work is well-
tuned for limiting low levels of lung dose, thus complying
with the ARTIA-Lung lung V5 Gy planning objective.

During physician plan review, disease extent and locale
were considered to judge plan difficulty, and dose distri-
butions were evaluated on a slice-by-slice basis, ensuring
that the location of the dose inside the target or OAR was
appropriate. The clinical effects of high dose “streaking”
and hotspot location were also judged. Because reviews
were unbiased, plan quality was based on reviewer-spe-
cific target and OAR objectives that were subjective and
often more stringent than the trial objectives. Physicians
were not satisfied with plans simply because all dose met-
rics were achieved but were looking instead for techniques
that would allow plans to further improve. Generally
speaking, physician A preferred target coverage over OAR
sparing, physician B preferred minimizing maximum
doses within OARs at the expense of target coverage,
and physician C preferred that the target and OARs be
somewhat equally prioritized. To that end, the goal of this
work was to elucidate planning techniques for generating
high quality, automated lung plans in the Ethos
workspace, not to propose that certain target and OAR
constraints be implemented in a particular clinic. Addi-
tionally, the goal of the ARTIA-Lung trial is to reduce tar-
get margins for adaptive treatment. With smaller target
margins there will be less overlap between OARs and
targets, and thus a lower dose to OARs.29 This template
could therefore potentially generate superior plans for
patients treated adaptively.

Calmels et al19 observed that median active plan prepa-
ration time ranged from 7.0 to 15.0 minutes for prostate,
rectum, and anal cases. The median amount of passive
times required for the IOE to generate plans ranged from
2.2 to 4.1 minutes for IMRT plans and 10.1 to 18.1
minutes for VMAT plans.29 They then estimated that the
time required for a planner to manually generate a plan is
between 60 and 120 minutes. Although we did not docu-
ment automated or manual planning times, our observa-
tions are consistent with the findings of Calmels et al.19

We estimate that each lung IMRT and VMAT plan
required 3 to 4 minutes of passive optimization time and
approximately 15 minutes of passive optimization time,
respectively; thus the 6 Ethos plans optimized for each
patient in this work required approximately 1 hour to
generate. However, unlike Calmels et al,19 who altered
failing planning objectives in the dose preview workspace
before optimization, our work is entirely automated (ie,
we used the same template for every patient in this study).
Therefore, we estimate that only approximately 5 minutes
of active planner time is required to choose the template
and planning image, then associate the structure set. We
further speculate that 1 to 2 hours is a good estimate for
the active time required for a skilled planner to generate
the clinical plans in this study.

Similar to the Ethos plans, RP plans require around 5
minutes to associate the structure set, set the beam geome-
try, and pair structures from the patient to structures in
the model. After this initial setup, the RP plans used in this
work were calculated automatically with no intervention as
described by Harms et al,30 with optimization and dose cal-
culation together taking on average 15.0 § 4.9 minutes.

To that end, automated planning in Ethos does not
require additional interaction from physics once the plan-
ning templates are obtained, assuming the optimization
objectives do not require altering. In the same way, dosi-
metrists can easily use RP without further physics inter-
vention once the model has been built and validated.
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Future work includes the clinical implementation and
prospective clinical use of the resulting planning template.
Furthermore, the methodology presented in this study will
be translated to subsequent analyses focusing on extending
our library of planning templates for other cancer sites.
Another potential avenue for future study entails directly
comparing Ethos halcyon plans generated using the Eclipse
optimizer to those generated by the Ethos IOE.

The content and framework of this manuscript were
constructed for consistency with the recently published
RT treatment planning guidelines for generating high-
quality planning studies.31 The agreed-upon self-assess-
ment score of 2 authors was 94% (197/210). The resulting
spreadsheet is shared as Supplementary Materials
Table E2.
Conclusion
The Ethos planning template developed in this study
was applied to 50 patients with stage IIIA-IIIC non-small
cell lung cancer. Automatically generated Ethos plans
were overall similar in quality to RP plans, with per proto-
col or variation acceptable dosimetry in 80% of cases,
without intervention or replanning. Seventy-eight percent
of automatically generated plans were deemed clinically
acceptable by multiple physicians. This template, or a var-
iation thereof, enables an automated, high-quality plan-
ning approach for patients requiring adaptive standard
fractionation treatment for locally advanced lung cancer.
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