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Abstract

Cytoplasm contains important metabolism reaction organelles such as mitochondria and chloroplast (in plant). In particular,
mitochondria contains special DNA information which can be passed to offsprings through maternal gametes, and has been
confirmed to play a pivotal role in nuclear activities. Experimental evidences have documented the importance of cyto-
nuclear interactions in affecting important biological traits. While studies have also pointed out the role of interaction
between imprinting nuclear DNA and cytoplasm, no statistical method has been developed to efficiently model such effect
and further quantify its effect size. In this work, we developed an efficient statistical model for genome-wide estimating and
testing the cytoplasmic effect, nuclear DNA imprinting effect as well as the interaction between them under reciprocal
backcross and F2 designs derived from inbred lines. Parameters are estimated under maximum likelihood framework
implemented with the EM algorithm. Extensive simulations show good performance in a variety of scenarios. The utility of
the method is demonstrated by analyzing a published data set in an F2 family derived from C3H/HeJBir and C57BL/6 J
mouse strains. Important cyto-nuclear interactions were identified. Our approach provides a quantitative framework for
identifying and estimating cyto-nuclear interactions subject to genomic imprinting involved in the genetic control of
complex traits.
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Introduction

One of the central foci in biological study is to unravel the

genetic secrets of complex traits of agricultural, evolutional and

biomedical importance. Quantitative trait locus (QTL) mapping

has been the major tool for this purpose over decades [1–3]. In

QTL mapping, the identified QTLs are chromosome segments

harboring potential genetic variants that could give rise to

phenotypical manifestation. Large successes have been witnessed

in the past [4]. However, there are still many phenomena that

could not be explained by Mendelian genetics, leading to the new

exploration of research focus on epigenetics [5].

Genomic imprinting, one of the major epigenetic phenomena,

plays key roles in controlling embryonic growth and development

[6,7]. Let subscript letter M and F denote the parental origin of

two alleles in a diploid organism, then a locus with two alleles A
and a is thought to be imprinted if two heterozygotes AM aF and

aM AF have different expressions [8]. The malfunction of

imprinted genes could potentially lead to abnormal characters

such as cancers or other genetic disorders [9].

Genomic imprinting effect is considered as one type of parent-

of-origin effect due to allelic effect with specific parental origin. In

contrast to this, maternal effect or cytoplasmic effect is also

considered as one type of parent-of-origin effect in which the

offspring’s expression is influenced by maternal parent. For

example, a mother’s genotype, even if not transmitted to her

offspring, may influence in utero conditions and increase risk and/

or interact with genetic predisposition for particular diseases

among those offspring [10]. For cytoplasm, it contains a wide

variety of organelles such as mitochondria and chloroplast (in

plant). Almost all the reactions of cellular metabolism take place in

such an environment. It has been demonstrated that cytoplasm

plays a central role in coordinating the activities of nuclear genetic

materials [11–15]. Thus, the identification of cyto-nuclear

interaction could shed novel insights into the genetic and

epigenetic control of phenotypic variation. A number of empirical

studies have documented the significant contribution of cyto-

nuclear interaction to phenotypic variation in organisms such as

wheat, rice, mice, yeast and Drosophila [16–19].

On the other hand, the existence of such parent-of-origin effects

may lead to incorrect interpretation of the (marginal) effects of

particular genes when performing genetic mapping studies, unless

such effects are appropriately accounted for in the analysis [20].

Statistical methods for dissecting genomic imprinting effect has

been extensively studied in literature (e.g., [21–26]). Tang et al.

[27] developed a model to evaluate cyto-nuclear interaction effect

based on experimental crosses. However, how the two types of

parent-of-origin effects, one in nuclear level and one in cytoplas-

mic level, interact to influence phenotypic variation is largely

unknown due to the lack of proper statistical models.

In this work, we discuss potential scenarios of parent-of-origin

effects, and present a statistical method to dissect the cyto-nuclear

interaction effects subject to genomic imprinting. The developed
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framework is based on experimental crosses which can be realized

through two different designs, reciprocal backcross and F2 design.

When an F2 design is considered, sex-specific difference in

recombination fractions, which is initially discovered in [28,29]

and later observed in many species, is incorporated into our model

to distinguish the genetic differences between two reciprocal

heterozygote. Such information can be found in literature, such as

the female-to-male recombination ratio of 1.6:1 for human [30],

1.4:1 for pig [31], 1.4:1 for dog [32], 1.25:1 for mouse [33] on

average across the whole genome. A genome-wide scan for the

identification of iQTL mapping cyto-nuclear epistasis is performed

based on the interval mapping theory, and parameters are

estimated based on the framework of maximum likelihood method

implemented with the EM algorithm [34]. Extensive simulations

are conducted to evaluate the performance of our model under

different scenarios, such as different sample sizes, different

heritability levels, and different gene effects. The utility of the

method is illustrated by applying it to a genome-wide scan of four

traits in an F2 family derived from two inbred mouse strains.

Statistical Methods

Genetic designs
Consider a design initiated with two inbreed lines with two

segregating alleles A and a. Let subscript letter M and F represent

the parental origin of offspring alleles inherited from the mother

and father, respectively. A complete dissection of the cyto-nuclear

interaction subject to imprinting needs experimental designs that

can distinguish the quantitative variation between two heterozy-

gotes AMaF and aM AF , and also against the cytoplasmic effect.

For this purpose, a reciprocal backcross or F2 design is proposed so

that variations and interactions can be fully introduced.

Figure 1 illustrates the reciprocal backcross design. Let the

maternal parent carrying genotype AA (denoted as P2) has a

cytoplasmic effect in contrast to the maternal line carrying

genotype aa (denoted as P1) as the reference line. In the diagram,

individuals that carry the maternal effect coming from the

maternal parent with genotype AA are denoted by gray squares.

Four possible backcrosses can be initiated as illustrated in Fig. 1.

As shown in the figure, any backcross offsprings coming from the

middle two designs carry the cytoplasmic maternal effect derived

from the AA genotype.

Figure 2 shows the F2 design. Denote the left one as design S1,

and the right one as design S2. The cross of two F1’s generates four

possible allele-specific F2 genotypes. Assuming there is a cytoplas-

mic effect, F2 offsprings may show different phenotypes depending

on the genotype of the maternal parental lines. For example, if

maternal cytoplasmic effect exists, the offspring phenotypic value

for AA genotype may be different depending on whether it comes

from the S1 or S2 design. In the F2 design, the two reciprocal

heterozygotes AMaF and aMAF cannot be distinguished in

general. Sex-specific recombination difference in male and female

needs to be considered in order to distinguish the two (Cui et al.

2006) [25].

Statistical parameterization
For a particular cross, let yj (j~1, � � � ,n) denote the phenotypic

value of interest. Following Tang et al. [27], the one-QTL genetic

model can be expressed as,

yj~mzcx1jzax2jzdx3jzix4jzicax5jzicdx6jzicix7jzej ð1Þ

where m is the overall mean; c is the cytoplasmic effect; a, d and i

are the additive, dominance and imprinting effects of a QTL,

respectively; and ica, icd and ici are the cytoplasm by additive,

cytoplasm by dominance and cytoplasm by imprinting interac-

tions, respectively; x1j is an indicator variable, denoting x1j~1 for

the AA maternal cytoplasm and x1j~{1 for the aa maternal

cytoplasm; x2j ,x3j , � � � ,x7j are other indicators of various effects

describing the additive, dominance and the interaction effect

between the cytoplasm and genetic variables.

For the S1 design in the F2 population initiated with cross

AA|aa, the mean genotypic values of four possible genotypes

formed by different allelic combination from the two F1 parents

can be expressed as,

m1~mzczazica, for AMAF ,

m2~mzczdzizicdzici, for AMaF ,

m3~mzczd{izicd{ici, for aMAF ,

m4~mzc{a{ica, for aMaF :

8>>><
>>>:

ð2Þ

Similarly for the S2 design initiated with cross aa|AA, the

genetic model can be expressed as,

m5~m{cza{ica, for AMAF ,

m6~m{czdzi{icd{ici, for AMaF ,

m7~m{czd{i{icdzici, for aMAF ,

m8~m{c{azica, for aMaF :

8>>><
>>>:

ð3Þ

For the reciprocal backcross design which consists of B1, B2, B3

and B4, the indicator variables in Eq. (1) describing different QTL

genotypes are defined in Table 1.

For simplicity, we will use matrix form to rewrite the models.

Let us denote

b~(m,c,a,d,i,ica,icd ,ici)
T, m~(m1,m2,m3,m4,m5,m6,m7,m8)T:

Figure 1. A reciprocal backcross design.
doi:10.1371/journal.pone.0091702.g001
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Then the relationship between the eight genetic means and the

eight parameters can be written as

m~Db, ð4Þ

where

D~DBC~

1 {1 1 0 0 {1 0 0

1 {1 0 1 {1 0 {1 1

1 1 1 0 0 1 0 0

1 1 0 1 {1 0 1 {1

1 1 0 1 1 0 1 1

1 1 {1 0 0 {1 0 0

1 {1 0 1 1 0 {1 {1

1 {1 {1 0 0 1 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

, ð5Þ

for the reciprocal backcross design, and

D~DF2~

1 1 1 0 0 1 0 0

1 1 0 1 1 0 1 1

1 1 0 1 {1 0 1 {1

1 1 {1 0 0 {1 0 0

1 {1 1 0 0 {1 0 0

1 {1 0 1 1 0 {1 {1

1 {1 0 1 {1 0 {1 1

1 {1 {1 0 0 1 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

, ð6Þ

for the F2 design. For the purpose of illustration, the following

estimation and inference is demonstrated through the F2 design.

The same procedure applies to BC design too.

The mixture model and the likelihood
Statistical methods for QTL interval mapping based on a

mixture model traced back to the work by Lander and Botstein

[1]. In the mixture model, each observation y is modeled as a

weighted mixture of J (known and finite) components, and each

component, which corresponds to a certain genotype category

depending on the underlying genetic design, follows a certain

distribution fj with weight pj . Conditional on the marker genotype

M and unknown parameters w and g, the density of the observed y

has the following expression

y*p(yDM,w,g)~p1f1(yDM,w1,g)z:::zpJ fJ (yDM,wJ ,g), ð7Þ

where p~(p1,:::,pJ )T refers to the mixture proportions which are

constrained nonnegative and
PJ

j~1 pj~1; w~(w1,:::,wJ )T is a

vector for the component-specific parameters, with wj being

specific to jth component; and g consists of parameters (i.e.,

residual variance) that are common to all components.

For the F2 design we described above, there are four genotypes

at each locus (AMAF , AM aF , aMAF , and aMaF ). The genotype of

the QTL is generally unobservable, but can be inferred by using

the two flanking markers’ information. Given the flanking marker

genotypes of the ith individual, the conditional probabilities

pi~(pAM AF Di,pAM aF Di,paM AF Di,paM aF Di) of the QTL genotype can be

calculated. These conditional probabilities become the mixture

proportions in the mixture model (7). Let us denote

pi~(p1Di,p2Di,p3Di,p4Di) to simplify the notation. These conditional

probabilities are expressed in terms of sex-specific recombination

rates in order to distinguish the two reciprocal heterozygotes.

Figure 2. A reciprocal F2 design.
doi:10.1371/journal.pone.0091702.g002

Table 1. QTL genotypes and corresponding genetic components under different backcross designs.

Backcross design BC QTL genotype c a d i ica icd ici

B1 AM AF 21 1 0 0 21 0 0

aM AF 21 0 1 21 0 21 1

B2 AM AF 1 1 0 0 1 0 0

aM AF 1 0 1 21 0 1 21

B3 AM aF 1 0 1 1 0 1 1

aM aF 1 21 0 0 21 0 0

B4 AM aF 21 0 1 1 0 21 21

aM aF 21 21 0 0 1 0 0

doi:10.1371/journal.pone.0091702.t001
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Please refer to Cui et al. [25] for the conditional probabilities of

QTL genotypes given marker genotypes in terms of sex-specific

recombination fractions for an F2 design.

Assume the total number of F2 offsprings for design S1 and S2

are n1 and n2 respectively, and let n~n1zn2. Phenotype data for

a certain quantitative trait can be observed and recorded as a

vector y~(y1,:::,yn), where y(1)~(y1,:::,yn1
) are from design S1

and y(2)~(yn1z1,:::,yn) are from design S2. Marker information

can be reorganized as matrix M~(M1; M2)T , where the jth
(j~1,:::,n1) row of M (the1 jth row of matrix M) contains all the

marker information of the jth individual under design S1 and the

kth (k~1,:::,n2) row of M2 (the (n1zk)th row of matrix M)

contains all the marker information of the kth individual under

design S2. Based on the mixture model (7), and with the

independence assumption, the joint likelihood function for the

F2 family with total n individuals, constructed by combining design

S1 and S2 together, can be formulated as,

L( DM, y)~ P
n1

i~1
½p1 Di f1(yi )zp2 Di f2(yi )zp3 Di f3(yi)zp4 Di f4(yi )�

| P
n

i~n1z1
½p1Dif5(yi)zp2Dif6(yi)zp3Dif7(yi)zp4Dif8(yi)�,

ð8Þ

where the unknown vector contains the QTL position, QTL

effects and residual variance, and the density function fj (j~1,:::,8)

is assumed to follow a normal distribution with mean mj and

common variance s2. More specifically, parameter vector can be

divided into two subsets, l and g, where l describes the location

of QTL and g contains all the genetic parameters, including

QTL-effects vector b~(m,c,a,d,i,ica,icd ,ici)
T and residual variance

s2 in our model.

Parameter Estimation
To estimate the unknown parameters ~( l , g), several

algorithms could be implemented, such as Expectation-Maximi-

zation (EM), Newton Raphson and Fisher Scoring. Among all

these methods, EM algorithm, which was initially developed by

Dempster et al. [34], is most commonly used in QTL mapping

study. In this paper, EM algorithm is applied to obtain the

maximum likelihood estimates (MLEs). This procedure involves

differentiating the log-likelihood function with respect to each

unknown parameter, letting the derivatives equal to zero, and

solving the log-likelihood equation for the corresponding param-

eter. Please read Appendix S1 for the detailed derivations of

parameters estimation and the algorithm.

For the QTL position which is unknown in the model, we did

not estimate parameters l directly. As commonly treated in QTL

mapping studies, we applied a grid search approach to estimate

the putative QTL position via scanning the entire linkage genome

by 1 or 2 cM increment flanked by two markers and did a

hypothesis testing at each putative position. A likelihood ratio or

LOD profile plot can be generated to graphically display the LR

or LOD test statistic for a putative QTL at each testing position.

The genomic position which corresponds to a peak in the profile

plot is the MLE of the QTL location, given that the peak passes

the genome-wide threshold determined by the permutation tests

detailed below. Bootstrap methods can be applied to assess the

confidence interval of the estimated position [35].

Hypothesis Test
Testing the overall QTL effect on the quantitative trait is the

first step toward a complete dissection of different genetic

contributions to the trait. Once the MLEs of the parameters are

obtained, the presence of QTL responsible for the variation of the

quantitative phenotype can be tested by using the following

hypotheses,

H0 : a~d~i~ica~icd~ici~0

H1 : not all equal zero

�

The test statistic for testing the above hypotheses is calculated as

the log-likelihood ratio test statistic (LR) of the full model (H1) over

the reduced model (H0):

LR~{2 log L( ){L( )½ � ð9Þ

where and denote the MLEs of the unknown parameters

under H0 and H1, respectively. Since a genome-wide scan involves

multiple correlated tests, we use the permutation tests proposed by

Churchill and Doerge [36] to find the threshold value.

If there is a QTL, a number of other hypothesis tests can also be

performed to test the property of the detected QTL. To test the

imprinting effect, we can simply formulate the hypothesis as

H0 : i~0 vs H1 : i=0 to assess the mean difference of the two

reciprocal heterozygotes. To test the cytoplasmic maternal effect,

the hypothesis can be stated as H0 : c~0 vs H1 : c=0. The

epistatic effects of all interaction terms can also be tested as

H0 : ica~icd~ici~0

H1 : not all equal zero

�

Similarly, additive and dominance effects can be tested as

H0 : a~d~0

H1 : not all equal zero

�

If specific interest is focused, for instance, the interaction of

imprinting and maternal effect, the hypothesis can be formulated

as H0 : ici~0 vs H1 : ici=0. All the above tests can be done by

applying the likelihood ratio test in which the test statistic

asymptotically follows a x2 distribution with degrees of freedom

equal to the difference of the parameters under the null and the

alternative hypotheses. For example, when testing H0 : a~d~0,

the LR test statistics is compared with the x2
2 cutoff with 2 degrees

of freedom.

Results

Monte Carlo simulation
Monte Carlo simulations were performed to investigate the

statistical behavior of our model. We simulated an F2 population,

with one half of the population coming from design S1 and the

other half coming from design S2. A genome with 100 cM long

linkage group, composed of 6 equidistant markers, was construct-

ed. The position of QTL was assumed to be located at 48 cM

away from the first marker on the linkage group. The marker

genotypes in the F2 population were simulated by mimicking sex-

specific recombination fractions in mice, i.e., rM~1:25rP [33]. A

series of simulation study with different sample size (n~400 vs

n~800) and different heritability levels (H2~0:1,0:25,0:4) was

conducted to examine the impacts of parameter spaces on

parameter estimation and testing power. These simulation designs,

which were aimed to give a better understanding of model

iQTL Mapping Cytonuclear Epistasis
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performance under different situations, can provide biologists

some empirical evidences to design their experiments.

In the simulation study, the residual variance was calculated

under different heritability levels. For the F2 design, the genetic

variances of various terms can be calculated as follows: s2
a~a2=2,

s2
d~d2=4, s2

i ~i2=2, s2
c~c2, s2

G~s2
azs2

dzs2
i zi2

ca=2zi2
cd=2z

i2
ci=2zcicd , and the broad sense heritability level can be expressed

as

H2~s2
G=(s2

Gzs2
czs2

e ):

For given genetic parameters and the heritability level, the residual

variance can be calculated as s2
e~(s2

Qzs2
cQ)(1=H2{1){s2

c ,

from which the phenotype data can be generated.

The MLEs of the QTL position and effect parameters, based on

200 simulation replicates under different heritability levels and

sample sizes, are displayed in Table 2. The square root of mean

squared error (RMSE) of parameter estimates are given in

parenthesis to show the estimation accuracy. As we expected,

the accuracy of parameter estimates increases as the sample size

and heritability level increase. For instance, the RMSE of

estimated QTL position decreases from 13.28 to 3.81, an 71%

increase in accuracy when the sample size increases from 400 to

800 under a fixed heritability level 0.1. The other parameter

estimates show the same pattern. If we increase the heritability

level when the sample size is fixed, a clear reduction in RMSE can

be observed. For example, with 400 samples, the RMSE of

estimated QTL position decreases from 13.28 to 4.99, then to 2.77

as H2 gradually increases from 0.1 to 0.4. From the decreasing

RMSEs of the parameter estimates, we observed that simply

increasing sample size is less efficient than increasing heritability

level in order to increase the precision of parameter estimation.

Since high heritability corresponds to small environmental

variability [37], reducing environmental variation is of more

practically important than just simply increasing sample size.

Note that we did not list the estimation of the imprinting effect i
and cyto-imprinting interaction ici, which are not estimable under

the F2 design. The reason is that the imprinting direction cannot

be inferred from the F2 design [25]. However, we can still conduct

hypothesis test to infer the imprinting effect as well as its

interaction with cytoplasmic effect. To further investigate the

testing performance of cytoplasmic and imprinting effects, we

introduced two proportions, namely gc and gi, where gc~s2
c=s2

G

and gi~s2
i =s2

G . We can evaluate the test power under different

cytoplasmic and imprinting effect sizes. Given all other genetic

parameter values fixed (as shown in Table 2), simple algebra shows

that the cytoplasmic effect c and imprinting effect i can be

calculated for a given value of gc or gi, i.e.,

c~
icdgcz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(icd gc)2z4gcQ1

q
2

, and i~

ffiffiffiffiffiffiffiffiffiffiffiffi
2giQ2

1{gi

s

where Q1~s2
azs2

dzs2
i zi2

ca=2zi2
cd=2zi2

ci=2, and

Q2~s2
azs2

dzi2
ca=2zi2

cd=2zi2
ci=2zcicd .

Based on 1000 simulation runs under different heritabilities,

sample sizes and variation proportions, the power of cytoplasmic

effect test, imprinting effect test, interaction effects test and

additive/dominance effects test are listed in Table 3. As we expect,

the test power increases with the increasing of sample size and

heritability level. For example, the cytoplasmic testing power

increases from 0.663 to 0.905 as sample size increases from 400 to

800, a 36.5% increase in power for fixed gc~0:1 and H2~0:25.

The same pattern is observed for the imprinting test. As the

proportion of variance explained by the cytoplasmic and

imprinting effect increases, the power increases accordingly.

Noted that when both gc and gi are zeros, the testing power

corresponds to the type I error rate for the corresponding factor.

From the table we can see that the size of imprinting test is well

controlled under different sample sizes and heritability levels. For

the cytoplasmic effect, the size is a little inflated under n~400, but

it gets close to the nominal 5% level as sample size increases to

800, especially under large heritability (e.g., H2~0:4). In sum, the

simulation evidences show that the model performs reasonably

well in both parameter estimation and testing.

Table 2. The MLEs of the QTL position and effect parameters based on 200 simulation replicates under different heritabilities and
sample sizes.

H2 n Position 48 cM m~10 c~1 a~1 d~0:8 i~0:6 ica~0:6 icd~0:5 ici~0:4 s2

0.1 400 47.93 10.00 0.99 0.96 0.78 - 0.59 0.49 - 3.679

(13.28) (0.33) (0.35) (0.35) (0.55) - (0.32) (0.53) - (0.22)

800 47.35 10.01 1.02 0.98 0.77 - 0.60 0.45 - 3.73

(3.81) (0.23) (0.21) (0.24) (0.39) - (0.22) (0.33) - (0.15)

0.25 400 47.04 10.02 1.00 0.96 0.78 - 0.60 0.50 - 1.99

(4.99) (0.17) (0.18) (0.16) (0.26) - (0.17) (0.26) - (0.11)

800 47.65 10.00 1.01 0.98 0.81 - 0.59 0.50 - 2.01

(2.29) (0.12) (0.12) (0.12) (0.20) - (0.10) (0.18) - (0.08)

0.4 400 48.02 9.99 1.00 0.99 0.81 - 0.60 0.50 - 1.23

(2.77) (0.10) (0.11) (0.09) (0.16) - (0.10) (0.17) - (0.06)

800 47.95 9.99 0.99 0.99 0.81 - 0.60 0.51 - 1.24

(1.78) (0.07) (0.07) (0.08) (0.12) - (0.07) (0.11) - (0.04)

The squared roots of the mean squared errors (RMSE) of the MLEs are given in parentheses.
The locations of the QTL is described by the map distances (in cM) from the first marker of the linkage group. The hypothesized s2 value is 3.81 for H2~0:1, 2.04 for

H2~0:25 and 1.26 for H2~0:4.
doi:10.1371/journal.pone.0091702.t002
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A case study
We applied the model to a published F2 cross data set based on

design S1 and design S2 aimed to find QTLs that contribute to

variation in quantitative traits related to colitis severity in 1L-10-

deficient mice [38]. The data contain 411 F2 mice derived from

inbred strains, where 203 mice are from design S1 and 208 mice

are from design S2. Ninety-one markers were obtained with an

average length of ,15 cM spanning acroos the 19 autosome

chromosomes. For more information about the data, the readers

are referred to the original paper [38].

It has been reported that on average the female chromosome is

25% longer in genetic distance between homologous loci than the

male in mice [38]. The sex-specific recombination fraction,

expressed as rM~1:25rP, was reconstructed based on the marker

information (see Cui et al. for details [25]). The method was

applied to four phenotypes, cecum total score (CTS), spleen/body

weight ratio (SBWR), mesenteric lymph node(MLN)/body weight

ratio(MBWR), and secretory IgA (SIgA) level, where cecum total

score was graded by using colitis-related criteria, including

severity, hyperplasia, ulceration and the percentage of area

involved. Box-Cox transformation was applied to all traits before

fitting the Gaussian-mixture model. The genome-wide LOD

profile plots for the four phenotypes are shown in Figure 3, where

the solid blue curves correspond to the LOD values and the

dashed red lines correspond to the 5% genome-wide threshold

values out of 1000 permutations. The LOD score is calculated as

log10LR, where LR is obtained from equation (9) to test the null

hypothesis: H0 : a~d~i~ica~icd~ici~0.

As shown in Figure 3, one QTL on chromosome 3 is detected

for cecum total score trait, two QTLs on chromosomes 3 and one

on chromosome 1 are detected for spleen/body weight ratio trait,

three QTLs on chromosome 3 are detected for MLN/body weight

ratio trait, and two QTLs located on chromosome 3 are detected

for SIgA trait. The QTL located at 60.6 cM on chromosome 3 is

common to three traits. The one located at 52.6 cM for SIgA trait

is very close to it. It is highly possible that it is the same QTL that

controls the four traits. Such a pleiotropic effect needs to be further

evaluated. It should be mentioned that the QTL detected in the

original paper for the four traits is located at 61.8 cM on

chromosome 3 [38], which is 1.2 cM away from the one we found.

Such a difference may arise because of the capitalization of sex-

specific recombination rates and different models fitted.

In addition to the QTL identified in our analysis and the

original paper, some other major QTLs which are not detected in

Farmer et al. [14], such as those at 52.6 cM and 38.6 cM on

chromosome 3, stand out in our model and therefore need further

investigation. Almost all the QTLs on chromosome 3 are clustered

together, whose local LOD profiles of four traits are shown in

Figure 4.

The marker interval for each QTL is listed in Table 4, which

also tabulates the p-values under four different tests for each

estimated QTL using permutation tests. From the test results, it

can be seen that most QTLs have strong additive and dominance

genetic effect, except for the spleen/body weight ratio QTL

located at D1Mit156+31.1 cM on chromosome 1. This QTL

shows evidence of cytoplasmic, imprinting as well as cyto-nuclear

interaction effects (p-values for the three tests are 0.0282, 0.0296

and 0.0073, respectively), but shows no sign of additive and

dominance effect. In addition, the MLN/body weight ratio QTL

located at D3Mit78+5.6 cM shows evidence of cytoplasmic effect.

In summary, we identified one QTL on chromosome 1 with

evidence of cyto-nuclear interaction effect and this QTL also

shows evidence of cytoplasmic and imprinting effect. Further

functional validation is needed to confirm the results.

Discussion

The cytoplasmic environment influences the expression of

nuclear information in a very complicated way, which is still an

unravel mystery to many organisms. For example, Burgess and

Husband have demonstrated great maternal contributions to the

fitness of mulberry hybrids [39]. While it is an important parent-of-

origin effect affecting offspring fitness, genomic imprinting, another

source of parent-of-origin effect can also lead to phenotypic

variation. Increasing evidence from cytoplasmic substation and cell

fusion experiments suggests that weakness of hybrids may connect

with the interactions between cytoplasm and nuclear [40,41], and

the evidences about interaction between cytoplasm and imprinting

have also been observed [42,43]. As the source of genetic variation

for many traits, these two types of parent-of-origin effects are often

confounded, making it difficult to distinguish without proper

statistical dissection. Although the role of cross-talk between the

two sets of factors on phenotypic variation has been recognized,

which genes are involved in the process and in what form they

respond to the cytoplasmic changes are still unclear.

In this paper, we developed a statistical model to evaluate the

cytoplasmic environment and nuclear gene interaction subject to

imprinting effect within the framework of QTL interval mapping.

Table 3. The power of four hypothesis tests based on 1000 samplings under different heritabilities, sample sizes and variation
proportions.

n H2 Power1 Power2
Power3 Power4

gc~0% gc~10% gc~20% gi~0% gi~10% gi~20%

400 0.10 0.088 0.353 0.528 0.066 0.085 0.089 0.654 0.678

0.25 0.081 0.663 0.928 0.051 0.263 0.432 0.990 0.992

0.40 0.064 0.930 0.998 0.050 0.807 0.942 1.000 1.000

800 0.10 0.073 0.464 0.753 0.059 0.100 0.126 0.898 0.927

0.25 0.066 0.905 0.998 0.047 0.473 0.713 1.000 1.000

0.40 0.049 0.997 1.000 0.050 0.980 0.997 1.000 1.000

Power (k k~1,2,3,4) refer to the powers for testing 1) H0 : c~0 vs H1 : c=0; 2) H0 : i~0 vs H1 : i=0; 3) H0 : ica~icd~ici~0 vs H1 : not all equal to 0; and 4)
H0 : a~d~0 vs H1 : not all equal to 0, respectively. For a given gc , all other effect values are fixed as 0.8 except for c, which can be calculated in terms of gc and other
parameters. The hypothesized c value is 0 for gc~0, 0.461 for gc~0:1 and 0.679 for gc~0:2. Similarly, the value of i, which depends on imprinting effect variation
proportion gi , is 0 for gi~0, 0.680 for gi~0:1 and 1.020 for gi~0:2.
doi:10.1371/journal.pone.0091702.t003

iQTL Mapping Cytonuclear Epistasis

PLOS ONE | www.plosone.org 6 March 2014 | Volume 9 | Issue 3 | e91702



Figure 3. The LOD profiles of the four traits across the 19 chromosomes using the linkage map constructed from microsatellite
markers [38]. The genomic positions corresponding to the peak of the curve are the MLEs of the QTL locations.
doi:10.1371/journal.pone.0091702.g003

Figure 4. The local LOD profiles of the four traits across chromosomes 3.
doi:10.1371/journal.pone.0091702.g004
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The model that considers eight genetic factors which measure the

degree of imprinting, cytoplasmic, additive, dominance effects as

well as the interaction effects among them, provides a complete

dissection of cyto-nuclear epistasis subject to imprinting effect. A

number of hypothesis tests can be performed not only to assess

major genetic effect(s) responsible for phenotypic variation, but also

to find the statistical evidence for the existence of imprinting,

cytoplasmic effect as well as the cyto-nuclear interactions. Simula-

tion study showed relative good performance of the model under the

F2 design, in which parameters are estimated efficiently with modest

heritability and sample size. Low heritability level (H2~0:1) and

small sample size (n~400) result in large mean squared error of

parameter estimation. This result is valuable in practice as we need

to be careful about the interpretation of genetic effects obtained in

real data analysis when the proportion of variance explained by the

QTL is small (i.e., low heritability). Although our model cannot

estimate the imprinting effect (so the cyto-imprinting interaction

effect) due to the nature of the F2 design, existence test of imprinting

(or cyto-imprinting interaction effect) can be achieved. Nevertheless,

such imprinting estimation problem can be solved under the

reciprocal backcross design illustrated in Figure 1.

In the real data analysis, one QTL located on chromosome 1

were found to have significant cytoplasmic, imprinting effect and

cyto-nuclear interaction effects for spleen/body weight ratio.

Other than that, no imprinting effect was found for all other

QTLs, and only one on chromosome 3 that shows cytoplasmic

effect for the MLN/body weigh ratio trait. It is worth mentioning

that several QTL on chromosome 3 are detected by our model,

but they are located relatively close to each other, as shown in

Figure 3. For the sake of cautiousness, we reported all of them.

However, these detected clustered QTLs may be due to the

limitation of interval mapping, which can be overcome by fitting a

composite interval mapping model as following,

yj~mzcx1jzax2jzdx3jzix4jzicax5jzicdx6jzicix7j

z
XK

k~1

(akx2jkzdkx3jkzikx4jkzicak
x5jkzicdk

x6jkzicik
x7jk)zej

where x2jk, � � � ,x7jk are corresponding variables for the kth

marker, assuming total K markers are selected for controlling

background genetic effect. Although more variables are intro-

duced in the model, theoretically some dimension-reduction

techniques such as LASSO, can be applied to implement the

variable selection for each marker before fitting them into the final

model [44]. The composite interval mapping is know for its

improved resolution in QTL detection. Regardless of the potential

limitations mentioned above, the integration of cyto-nuclear

interactions into the QTL mapping framework provides a testable

platform with feasible experimental design for biologists to test the

existence of cytoplasmic and imprinting effects, as well as the

interactions of interested. The proposed model will have important

biological implications with potentials to lift a corner of the great

veil of the genetic system.
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Table 4. List of QTL positions, corresponding marker intervals and p-values under different tests for the four traits.

Trait Ch QTL postion Marker interval p-value1 p-value2 p-value3 p-value4

CTS 3 60.6 cM D3Mit78-D3Mit348 0.6680 0.3046 0.5005 v10{11�

(D3Mit78+5.6 cM)

SBWR 3 60.6 cM D3Mit78-D3Mit348 0.4322 0.6107 0.4502 v10{16�

(D3Mit78+5.6 cM)

3 32.6 cM D3Mit203-D3Mit212 0.2003 0.9502 0.2700 v10{13�

(D3Mit203+11.4 cM)

1 63.9 cM D3Mit156-D1Mit17 0.0282* 0.0296* 0.0073* 0.8064

(D1Mit156+31.1 cM)

MBWR 3 38.6 cM D3Mit203-D3Mit212 0.3574 0.2651 0.1658 v10{9�

(D3Mit203+27.4 cM)

3 60.6 cM D3Mit78-D3Mit348 0.0102* 0.9708 0.4831 v10{8�

(D3Mit78+5.6 cM)

3 52.6 cM D3Mit189-D3Mit78 0.2120 0.6421 0.7095 v10{8�

(D3Mit189+2.9 cM)

SIgA 3 52.6 cM D3Mit189-D3Mit78 0.1016 0.6488 0.3195 v10{9�

(D3Mit189+2.9 cM)

3 38.6 cM D3Mit203-D3Mit212 0.7174 0.4051 0.8020 v10{7�

(D3Mit203+27.4 cM)

p-valuek (k~1,2,3,4) refer to the p-values obtained with the likelihood ratio tests for testing 1) H0 : c~0 vs H1 : c=0; 2) H0 : i~0 vs H1 : i=0; 3) H0 : ica~icd~ici~0

vs H1 : not all equal to 0; and 4) H0 : a~d~0 vs H1 : not all equal to 0, respectively. Significant test results are indicated with the ‘‘�’’ sign.
doi:10.1371/journal.pone.0091702.t004
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