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Although ontogenetic changes in body shape and its associated allometry has been studied for over a century, essentially
nothing is known about their underlying genetic and developmental mechanisms. One of the reasons for this ignorance is the
unavailability of a conceptual framework to formulate the experimental design for data collection and statistical models for
data analyses. We developed a framework model for unraveling the genetic machinery for ontogenetic changes of allometry.
The model incorporates the mathematical aspects of ontogenetic growth and allometry into a maximum likelihood framework
for quantitative trait locus (QTL) mapping. As a quantitative platform, the model allows for the testing of a number of
biologically meaningful hypotheses to explore the pleiotropic basis of the QTL that regulate ontogeny and allometry.
Simulation studies and real data analysis of a live example in soybean have been performed to investigate the statistical
behavior of the model and validate its practical utilization. The statistical model proposed will help to study the genetic
architecture of complex phenotypes and, therefore, gain better insights into the mechanistic regulation for developmental
patterns and processes in organisms.
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INTRODUCTION
An incredible diversity has been observed in the scaling relation-

ships among different body parts or traits, and between these and

overall body size [1–7]. The differentiation in such allometries

among traits has been thought to be a driving force by which

morphology evolves [8]. Perhaps the most fundamental allometric

relationship is the one that relates physiological, morphological and

anatomical attributes with body size [1,2,9,10]. Interestingly, the

preponderance of data suggests that many metabolism-related

structural traits scale as multiples of one quarter of body size [11],

rather than one third as expected from Euclidean geometric scaling.

Despite some vigorous debate [12–14], the quarter-power allometric

scaling has been regarded as a universal phenomenon in biology,

explained from fundamental principles of biology and biophysics

[15–18]. However, even with over a century of interest in the

evolution of allometry, essentially nothing is known about the genetic

and developmental mechanisms of differentiation in allometric

scaling relationships, although developmental processes must have

played a central role in maintaining the functional scaling relation-

ships among traits as well as in their evolution [6,19,20].

The past two decades have witnessed a surge of interest in

applying geometric morphometric approaches to understand how

body shape changes and how such a change is associated with

allometry during ontogeny [21–23]. For instance, these ap-

proaches have been used to study the ontogeny of body shape

change for a few number of fishes [24,25], showing that body

shape changes during ontogeny are not simply the result of

uniform large-scale events but that localized small-scale shape

changes contribute to its ontogeny. However, none of these studies

have attempted to detect the genetic machinery for ontogenetic

allometry from a developmental perspective.

One promising approach is to characterize specific genetic

variants that regulate the ontogeny of allometry and compare

them with those genetic variants that determine body size [26].

The feasibility of this approach results from two recent significant

developments. First, the progress of whole genome sequence

projects in microbes, plants, animals and human beings provides

fundamental information about the organization and structure of

genomes and proteins [27]. Second, the availability of powerful

statistical methods allows direct association studies between genetic

variants and complex metabolic processes [28–37]. Among these

methods, a full-dimensional analysis of multiple traits can map and

estimate quantitative trait loci (QTLs) for trait correlations [38–

41]. However, these multi-trait mapping approaches cannot take

advantages of ontogenetic allometry, and will thus be less powerful

than an approach that specifically incorporates allometry. Further,

these methods do not extend easily to many time points or to

missing data because of computational burden and estimation

instability [42]. By incorporating the mathematical aspects of

allometric scaling into the mixture model-based framework, Wu

and group developed a series of conceptual models and

computational algorithms for detecting QTLs that govern

allometry and testing the hypotheses about the genetic control of

allometry [43–46]. However, there is a serious lack of sophisticated

models that have power to detect genetic variants responsible for
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the combined effects of size and development on allometric

attributes at different organizational levels.

In this article, we will frame a general genetic model for explaining

universal allometric scaling laws and derive a statistical algorithm for

detecting particular QTLs that contribute to these laws. The model

embeds the allometric power equation into the framework for

functional mapping constructed to map a dynamic trait [26],

allowing the identification of QTLs that determine the degree and

pattern of the response of a body part to body size in development.

The new model can be readily extended to predict how the structure

and functioning of a biological system are affected by genetic

interactions derived from different regions of the genome. The

utilization of the model has been tested and validated by analyzing

real data from the soybean genome project, in which several

significant QTLs were detected on different soybean chromosomes

to affect the allometric scaling between stem and whole-plant

biomass during development. The empirical power of the model and

the precision of its parameter estimation for a practical data set have

been investigated through computer simulation studies. The model

will provide a quantitative framework for analyzing the genetic

architecture of ontogenetic changes in shape and allometry.

METHODS

Allometry
Consider a simple backcross or recombinant inbred line (RIL)

design in which n progeny are segregating in a 1:1 ratio at each

locus. A genetic linkage map, aimed to identify segregating

quantitative trait loci (QTL), is constructed with polymorphic

markers genotyped through the genome. All the progeny are

measured for two developmentally related traits, Z and Y, at T

time points, (t1,…tT). If two traits of a similar developmental origin

can be modeled by an allometric equation, this can be expressed as

Y tð Þ~Z0Zb tð Þ, ð1Þ

where t denotes a particular time, Z0 is a normalization constant

and b is a scaling exponent. Taking log-transformation at both

sides of Equation 1, the allometric equation is linearized as

log Y tð Þ~log Z0zblog Z tð Þ, or y tð Þ~azbz tð Þ, ð2Þ

where

y~log Y, a~log Z0, and z~log Z:

We assume that the log-transformed traits at time t have a normal

distribution. The observations for the two traits at time t can be

expressed as

y tð Þ~azbz tð Þze tð Þ,

where e(t) is the measurement error at time t following N(0, s2(t)).

Figure 1 plots two allometrically related traits, stem biomass and

whole-plant biomass, during development for soybean plants

randomly sampled from an RIL population, in which the original

power relationship (Fig. 1A) is straightened out after log-log

transformation (Fig. 1B). Such a log-linear allometric relationship

has been justified from fundamental biological principles [15–18].

Likelihood
For each of the two dynamic traits, z(t) and y(t), functional mapping

has established a general statistical framework for mapping its

underlying QTLs with molecular markers [47]. In this study, we

will incorporate the allometric scaling law (Equation 1) into

functional mapping. But different from the previous treatment for

bivariate functional mapping by Wu and Hou [45], we will found

functional mapping on the dependent trait, connected with the

independent trait by the allometric equation. To simplify the

description of our model, we assume that one single QTL is

involved in the allometric control. The derivation of a more

realistic multiple-QTL model is conceptually straightforward with

the idea of the one QTL model, but this extension raises many

statistical issues, such as model selection for the optimal number of

QTL involved (see ref. [33]).

Similar to Ma et al. [47], we formulate the likelihood function

for one dynamic trait, y, controlled by a QTL bracketed by a pair

of marker (M), as

L y,Mð Þ~P
n

i~1
v1jif yi; u1,Sð Þzv2jif yi; u2,Sð Þ
� �

ð3Þ

where yi = (yi(t1),…,yi(tT))9 is the observation vector, (t1,…,tT)9 denote

the time points when the observations are measured, f(yi;uj, S) is the

multivariate density function for different QTL genotypes (sub-

scripted by j = 1 for QQ or 2 for qq) with mean vector

uj = (uj(t1),…uj(tT))9 and time-dependent covariance matrix S, and

v1|i and v2|i are the conditional probabilities of a QTL genotype, 1

or 2, given the genotype of progeny i for two flanking markers. The

conditional probabilities are expressed in terms of the recombination

fractions (for the backcross design) or the proportions of recombinant

homozygotes (for the RIL design) [48] between the left marker and

QTL (r1) and between the QTL and right marker (r2).

Modelling the Mean Vector
If the allometric relationship between two biological traits is

controlled by a QTL, the linearized power equation (2) can be

used to model the genotypic mean vector in the likelihood (3) with

genotype-specific parameter sets (a1, b1) or (a2, b2). Thus, by

testing the difference between these two parameter sets, we can

conclude whether there is a specific QTL for allometric scaling

and how the QTL controls the scaling relationship. Wu and Hou

[45] modeled the allometric scaling relationship by incorporating

the genotypic vectors of the two traits, y and z, i.e.,

uj tð Þ~ajzbjvj tð Þ, j~1, 2 ð4Þ

where uj(t) and vj(t) are the genotypic values of traits y and z for

QTL genotype j at time point t. This treatment needs to

simultaneously estimate the genotypic vector of traits y and z,

expressed as (uj(t1),…, uj(tT), vj(t1),…, vj(tT)). More importantly, the

time-dependent covariance matrix for each trait and the time-

dependent covariance matrix between the two traits need to be

specified at a time, leading to a double-sized covariance matrix of

dimension 2T62T. All these will largely increase the number of

parameters to be estimated, making the computation quickly

prohibitive and the parameter estimation imprecise.

To overcome this problem, we will formulate a different model

for the allometric relationship. Given that the allometric change of

one trait is not only regulated by the underlying genes, but also by

physiology-and metabolism-related characteristics that contain the

influences of both genes and environments [7], we model the

genotypic vector of a trait with the phenotypic value of a second

allometrically related trait. Thus, Equation 4 is changed as

ujji tð Þ~ajzbjzi tð Þ, j~1, 2 ð5Þ

where uj|i(t) = E[yi(t)|Zi(t), QTL genotype j]. This can be explained
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from genetic and statistical perspectives. In genetics, Equation 5

states how the genotypic value of trait y for QTL genotype j scales

as, or responds to, the phenotypic change of trait z during

ontogeny. If parameter set (aj, bj) is not different between QTL

genotypes, this means that this QTL does not determine the

allometric scaling between traits y and z. Equation 5 indicates that

given the QTL genotype we can regress y on the covariate z using

a linear regression model.

Modeling the Time-Dependent Covariance
The residual covariance matrix, S, generally follows an autocor-

relation structure, which can be mathematically modeled. A

number of statistical models, such as autoregressive [49] and

antedependent [50] models, have been formulated to model such

a structure. In Zimmerman and Núñez-Antón [51], the advan-

tages of structured antedependent (SAD) model have been

extensively discussed, which include (1) the assumptions of

variance and correlation stationary are not needed, and (2) closed

forms exist for the inverse and determinant of the SAD matrix.

For first order SAD models with an antedependence parameter

r, if we assume the innovation variances s2(t) to be a constant s2

over time, explicit forms of variance and correlation functions can

be obtained as

var Y tð Þð Þ~ 1{r2t

1{r2
s2

cov Y tj

� �
,Y tkð Þ

� �
~rtj{tk

1{r2tk

1{r2
s2

corr Y tj

� �
,Y tkð Þ

� �
~rtj{tk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{r2tk

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{r2tj

p
for tk$tj. For this simplest SAD(1) model, the variance and

correlation functions are non-stationary. They change as time and

time interval change.

Computational Algorithm
When Equation 5 is substituted into the likelihood of Equation 3,

the likelihood function is now expressed as
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Figure 1. The allometric scaling relationship between stem biomass and whole-plant biomass for the RILs from a soybean mapping population.
doi:10.1371/journal.pone.0001245.g001
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L y zj ,Mð Þ~ P
n

i~1
v1ji 2pð Þ{

T
2 Sj j{

1
2exp {

1

2
yi{u1ji
� �0

S{1 yi{u1ji
� �� ��

zv2ji 2pð Þ{
T
2 Sj j{

1
2exp {

1

2
yi{u2ji
� �0

S{1 yi{u2ji
� �� �	

ð6Þ

where uj|i = (uj|i(t1),…, uj|i(tT))9(j = 1, 2) are the QTL genotype-

specific mean vectors which also depend on the trait z (see

Equation 5).

The underlying unknown parameters are composed of (r1 or r2,

aj, bj, r, s2). In the Appendix S1, we derive the EM algorithm to

obtain the maximum likelihood estimates (MLEs) of these

unknown parameters. The estimates of the sampling errors of

the MLEs can be obtained from Louis’ [52] approach derived

within the context of a mixture model.

The heritability of trait y at time t is calculated as follows:

H2 tð Þ~
s2

g tð Þ
s2

y tð Þ

where

s2
g tð Þ~ 1

2

X2

j~1

ajzbjuz tð Þ
� �2

{
1

2

X2

j~1

ajzbjuz tð Þ
� �" #2

and

s2
y tð Þ~ b2

1zb2
2

2
s2

z tð Þzs2 tð Þzs2
g tð Þ,

with

s2 tð Þ~ 1{r2t

1{r2
s2:

Here uz(t) and s2(t) are the mean and variance for trait z at time t,

respectively, which can be estimated from observations.

Hypothesis Testing
As shown in our previous publications [26,43,47,53], functional

mapping is advantageous for the tests of biologically meaningful

hypotheses regarding genetic actions and organ development.

Here, we outline several important hypotheses for the genetic

control of allometric scaling. The first hypothesis is about the

existence of QTL, which can be tested by formulating the null

hypothesis,

H0: a1 = a2 and b1 = b2

H1: At least one of the equalities in H0 does not hold.

The log-likelihood ratio statistic is calculated as

LR~{2 ln L0 ~aa,~bb,~rr,~ss2jy

 �

{ln L1 r̂r1 or r̂r2,âaj ,b̂bj ,r̂r,ŝs2jy,M

 �h i

, ð7Þ

where the tildes and hats are the MLEs of parameters under the

null and alternative hypotheses, respectively. The LR value is then

compared with the critical threshold determined from permutation

tests, as advocated by Churchill and Doerge [54], to test the

significance of the QTL hypothesized.

We are also interested in the genetic cause for the differentiation

in ontogenetic allometric scaling. This can be investigated by

testing the normalization (a) and exponent constant (b) in-

dividually. Some study suggests that a is a characteristic of species

or populations [10], whereas a recent survey by Niklas and Enquist

[55] shows that all plants have a similar normalization constant

and, therefore, comply with a single allometric formula. This

debate can be solved by testing whether a equals to a specific

constant for different plant species.

In practice, the exponent coefficient b can be considered as

a constant if the allometric relationship of the two traits studied is

known. For example, body length scales as the 1/4-power of body

mass [15,16]. In this case, b = 1/4 can be directly substituted into

Equation 5 to obtain estimates for the remainder of the unknown

parameters. Owing to the reduced number of the unknowns to be

estimated, such a substitution can potentially increase the precision

and power of parameter estimation.

All the tests for a and b can be performed by calculating

a likelihood ratio statistic which asymptotically follows a chi-square

distribution with the corresponding degrees of freedom. In actual

data analyses, an empirical approach based on simulation studies

can be used to determine the threshold for these tests.

RESULTS

A Worked Example
We used a real example from the soybean genome project to

validate the model proposed for mapping ontogenetic allometry.

Two original inbred lines of soybean, Kefeng No. 1 and Nannong

1138-2, as parents were crossed to generate an F1 population

which was selfed for 7 generations to produce an RIL population

composed of two groups of homozygous genotypes each contain-

ing two identical alleles from a different parental line. Let 1 and 2

denote the homozygotes derived from the Kefeng No. 1 alleles

and Nannong 1138-2 alleles, respectively. A total of 184 RILs

were genotyped for 488 molecular markers (restricted fragment

length polymorphisms, simple sequence repeats and amplified

fragment length polymorphisms) that construct a linkage map with

25 linkage groups covering 4,151.2 cM of the soybean genome

[56].

The RILs were planted in a simple lattice design with multiple

replicates in a plot at Jiangpu Station, Nanjing Agricultural

University, Nanjing, China. The plants were harvested to measure

their above- and under-ground biomass for eight times with the

first time at the 28th day after emergence and successive seven

times every 10 days thereafter. For the same RIL, the phenotypic

values measured for different times correspond to successive

measurements on a time scale. In this study, we will analyze the

genetic control of the ontogenetic allometric scaling relationship

between stem and whole-plant biomass.

As shown by a subset of RILs from the mapping population in

Figure 1, stem biomass scales as a power function of whole-plant

biomass. The Pearson correlation coefficients between the two log-

transformed traits from the samples for all subjects are all close to

1, ranging from 0.9381 to 0.9992. The sample mean of the

coefficients for all individuals is 0.9885 with a sample standard

error 0.0092. Thus, a high linear trend between the log-

transformed stem biomass and whole plant biomass is appropriate

for our allometric mapping model.

This relationship was incorporated into functional mapping to

characterize specific QTL that control the allometric change of

stem biomass relative to whole-plant biomass. Different from the

backcross population, the conditional probabilities of a QTL

genotype given marker genotypes are expressed in terms of the

proportion of recombinant homozygotes [57]. We detected five

significant allometry QTLs, two located between markers

GMKF082c and GMKF168b and at marker A520T on

chromosome 3, one located between markers GMKF059a and

satt319 on chromosome 6, one located between markers Satt372

QTL for Ontogenetic Allometry
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and Satt154 on chromosome 10, and one between markers

GMKF082b and satt331 on chromosome 24, as indicated by

peaks of the LR profile beyond the 5% critical threshold obtained

from 1000 permutation tests (Fig. 2). We tend to claim two QTL

on chromosome 3 in this particular example (although they were

not tested simultaneously) because their detected positions are

about 120 cM apart, suggesting an unlinked relationship. The

permutation tests [54] were performed by repeatedly reshuffling

stem biomass and whole-plant biomass among different RIL

progeny but leaving marker genotypes unchanged. It is interesting

to point out that the QTL on chromosome 6 is located between

two closely spaced markers (5 cM apart), with 4 cM to the left

marker and 1 cM to the right one. In conjunction with a narrow

LR peak, this suggests that the detection of this QTL has a high

resolution. Two QTLs were counted on chromosome 3 because

they are distant enough from each other to infer the existence of

two unlinked QTLs. On chromosome 24, there are two well-

separated peaks, but they are two close to claim the existence of

two different QTL. Thus, we only counted one QTL with a higher

peak. In the Discussion, we will provide a possible solution into the

test of two linked QTLs under the framework of allometry QTL

mapping by implementing the idea of composite interval mapping

[29,30].

The model provided the MLEs of genotype-specific curve

parameters and covariance-structuring SAD parameters when

each of the significant QTL was detected (Table 1). These

estimates display great precision, as reflected by their small

sampling errors estimated by Louis’ approach [52]. The estimated

genotypic power curve parameters are used to calculate additive

genetic effects, a(t), at each QTL that vary with time-dependent

whole-plant biomass by

a tð Þ~ 1

2
exp a1zb1z tð Þ½ �{exp a2zb2z tð Þ½ �f g

for an RIL design. The positive value of a(t) implies that parent
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Figure 2. The LR profile of the likelihoods under the null (there is no QTL) and alternative hypothesis (there is a QTL) across the lengths of 25
chromosomes for the allometric scaling relationship between stem and whole-plant biomass growth trajectories in a soybean RIL population.
The 5% significance critical threshold (10.98) determined from 1000 permutation tests is indicated by the broken horizontal line. The arrowed broken
vertical line indicates the MLE of the QTL location.
doi:10.1371/journal.pone.0001245.g002
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Kefeng No. 1 contributes favorable alleles to increased stem

biomass, whereas the negative value corresponds to the favorable

contribution made by parent Nannong 1138-2. As shown by Fig. 3,

the additive effects of each QTL on stem biomass change with

whole-plant biomass. Based on their signs, it is suggested that at

the two QTLs on chromosomes 10 and 24 favorable alleles for

increased stem biomass are contributed by parent Kefeng No. 1,

whereas the inverse pattern is true for the three QTLs on

chromosomes 3 and 6. We estimated the heritability of each QTL

for stem biomass at the fifth time point, which ranges from 0.0198

to 0.0381 for the five QTL detected at different chromosomes.

Computer Simulation
Monte Carlo simulation studies were performed to examine the

reliability of the parameters estimates in the soybean example

above by mimicking the data structure of the mapping population.

Also, additional simulation analyses were used to investigate the

statistical properties of the model in terms of estimation precision

and power under different sample sizes and heritability levels. An

RIL population was simulated for 11 equally spaced markers that

construct a linkage group of length 200 cM. A QTL that affects

the ontogenetic allometric scaling relationship between traits y and

z is assumed at 85 cM from the first marker. The data for marker

genotypes were simulated in terms of the recombinant homozy-

gote proportion (R). The genetic distances between markers are

calculated from the recombination fractions (r) with the Haldane

map function. The recombination fractions were calculated from

the recombinant homozygote proportions using

r~
R

2 1{Rð Þ

Dynamic trait y is assumed for each RIL plant to follow

a multivariate normal distribution with mean vector specified by

Equation 5 and covariance matrix specified by the SAD model.

Dynamic trait z is also assumed to follow a multivariate normal

distribution with time-increasing means and SAD-structured

covariance matrix. And observations of traits y and z are obtained

at 8 time points (1,…, 8). The innovative variance for trait y is

determined by assuming different heritability levels (H2 = 0.1 and

0.4) at the nearly middle period (time point 5) of time course. The

size of heritability reflects the contributions of other unobserved

genes to phenotypic variation as well as the influences of

measurement errors that cause observations to deviate from

allometry. Thus, a small heritability is partially associated with

a large degree of deviation from allometry. Two different sample

sizes (n = 100 and 400) are considered for the RIL population.

The ontogenetic allometric functional mapping was used to

map QTL for the simulated data. Figure 4 illustrates the LR

profiles for the data simulated under different heritability levels

and sample sizes. In general, the location of the QTL can be well

estimated even for a small sample size (100) and heritability (0.1).

The estimation accuracy of the QTL location can be increased when

the sample size increase to 400 and or the heritability increases to

0.4. The MLEs of the curve parameters and covariance-structuring

parameters are tabulated in Table 2. All the parameters can be

reasonably estimated as indicated by small standard errors, with

increased estimation precision associated with increased sample sizes

and heritabilities. When the sample size and heritability are small

(100 and 0.1), the power to detect a significant allometry QTL is

reasonably high, and can increase dramatically when n increases to

400 and/or when H2 increases to 0.4.

DISCUSSION
The term allometry that describes scaling relationships between

different organ parts can be understood from three different

perspectives: static, ontogenetic and evolutionary [19,58]. Static

allometry refers to the scaling among individuals between two

different traits after growth has ceased or at a particular

developmental stage. Ontogenetic allometry is the growth

trajectory of one trait relative to the other (i.e., shape) during an

individual’s lifetime. Evolutionary (or phylogenetic) allometry is

the size relationship between traits across species. Much earlier

work has focused on the developmental processes and constraints

that shape static allometry [5] as well as on the evolution of

allometries [8]. With the recognition of development as an

evolutionary factor, evolutionary developmental biology (evo-

devo) has revived an interest in understanding the process of

evolution [59]. It is anticipated that ontogenetic allometry that

determine the direction and pattern of development will be

a component of primary importance to construct the evo-devo

framework.

Table 1. Maximum likelihood estimates (MLEs) of genotype-specific power parameters (a and b) for each QTL detected and SAD(1)
parameters (r and s2 ) that model the covariance structure.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chromosome (Position)

3 (46.1) 3 (226.3) 6 (178.3) 10 (98) 24 (40.2)

a b a b a b a b a b

QQ 21.4653
(0.0088)

1.0268
(0.0046)

21.4728
(0.0089)

1.0276
(0.0053)

21.4735
(0.0090)

1.0251
(0.0046)

21.4714
(0.0096)

1.0673
(0.0053)

21.4750
(0.0075)

1.0605
(0.0045)

qq 21.4958
(0.0087)

1.0666
(0.0045)

21.4894
(0.0073)

1.0614
(0.0040)

21.4859
(0.0075)

1.0640
(0.0026)

21.4875
(0.0126)

1.0347
(0.0088)

21.4819
(0.0081)

1.0304
(0.0052)

r 0.7113 (0.0248) 0.7189 (0.0235) 0.7159 (0.0253) 0.6820 (0.0333) 0.7036 (0.0212)

s2 0.0192 (0.0003) 0.0190 (0.0003) 0.0182 (0.0003) 0.0183 (0.0004) 0.0188 (0.0002)

LR 12.0794 13.4529 18.0394 12.5744 16.2926

Genome-wide
threshold (5%)

10.9817

The numbers in the parentheses are estimated standard errors for the MLEs.
The position of a detected QTL is expressed as the genetic distance (in cM) from the first marker of a chromosome (see Fig. 2).
doi:10.1371/journal.pone.0001245.t001..
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Although allometry has been an important subject of biological

research for over a century, little is known about the mechanism of

its genetic control. Recent genomic technologies have opened

a new avenue to generate genome-wide marker data and,

therefore, characterize the specific loci or DNA sequence variants

that are associated with the phenotypic variation in static [28–

30,37] or dynamic traits [26]. In this article, we have developed

a statistical model for deploying such technologies to map

quantitative trait loci (QTLs) that are responsible for ontogenetic

allometry. This model allows for the characterization of genetic

loci that cause ontogenetic shape change and transformations

during growth and development.

The model for mapping ontogenetic allometry is built on the

foundation of functional mapping [47], aimed to map QTL that

control growth trajectories of a trait. Yet, the new model is

different from conventional functional mapping, in which

a different but allometrically related trait is embedded through

the power equation within the mean vector as a covariate in terms

of statistical definition. The function of such embedment is to

directly characterize specific QTL that determine ontogenetic

changes of allometry and push the hypothesis tests at the interface

between genetic actions and shape development. The approach

for treating ontogenetic allometric scaling in this article is different

from that published in Wu and Hou [45] who jointly modeled two

different growth trajectories. Because the current approach only

needs to model the relationship of the growth trajectory of two

traits, it is more efficient and precise in parameter estimation and

computation than Wu and Hou’s approach.

The proposed model has been tested through simulation studies.

It is possible that this model can provide the reasonable estimation

of the underlying parameters when a trait trajectory has a modest

heritability, i.e., with non-genetic variation outweighing genetic

variation. In practice, when a trait has a relatively low heritability

(e.g., 0.10), a sample size of 400 is recommended to provide

satisfactory precision for parameter estimation and power for QTL

detection. Our simulation did not test the influence of deviation

from allometry on parameter estimation and power. In a similar

dynamic genetic study, Yap et al. [60] found that such an influence

can be significant but can well be compensated by using a large

sample size. This model was used to analyze a real example from

the soybean genome project [56] in which there exists a strong

linear trend between stem and whole-plant biomass, leading to the
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Figure 3. Body size-dependent additive genetic effects calculated from ontogenetic allometry curves for two different genotypes at each of the
five QTL detected on chromosomes 3, 6,10 and 24.
doi:10.1371/journal.pone.0001245.g003
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detection of five significant QTLs that control ontogenetic

allometric scaling between these two traits.

The biological relevance of our model can be enhanced by

incorporating the growth equation into the mean vector.

Empirical studies on the basis of the goodness-of-fit of observa-

tional data suggest that growth can be described by a logistic curve

[61], which has been justified by fundamental biological principles

[62]. If a logistic equation is used to describe the growth trajectory
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Figure 4. The LR plots for the simulated data under different sample sizes (n = 100 and 400) and heritabilities (H2 = 0.1 and 0.4).
doi:10.1371/journal.pone.0001245.g004

Table 2. Averaged MLEs of the parameters (with standard errors given in the parentheses) based on 400 simulation replicates
under different simulation schemes combining different heritabilities (H2) and sample size (n).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Scheme QQ qq

H2 n Position a1 b1 a2 b2 r s2 Power

True value 85 21.2 0.7 21.4 0.5 0.7 0.1472

0.1 100 84.84 (16.20) 21.198 (0.052) 0.702 (0.047) 21.398 (0.053) 0.499 (0.049) 0.695 (0.031) 0.146 (0.008) 0.88

0.1 400 84.61 (3.14) 21.201 (0.025) 0.699 (0.02) 21.401 (0.024) 0.50 (0.022) 0.698 (0.015) 0.146 (0.004) 1

True value 85 21.2 0.7 21.4 0.5 0.7 0.0197

0.4 100 84.99 (2.49) 21.200 (0.016) 0.699 (0.014) 21.400 (0.016) 0.500 (0.015) 0.695 (0.032) 0.020 (0.001) 1

0.4 400 85.06 (1.10) 21.199 (0.008) 0.700 (0.008) 21.400 (0.009) 0.499 (0.008) 0.698 (0.017) 0.020 (0.001) 1

The power was empirically calculated as the percentage of the number of simulation replicates, in which significant QTL is detected, over the total number of simulation
replicates.
doi:10.1371/journal.pone.0001245.t002..
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of trait z, we can estimate the curve parameters for each

individual, using non-linear least-squares approach, on the basis of

zi tð Þ~ ai

1zbie{ri t
,

where parameter set (ai, bi, ri) define the curve shape of an

individual i. These estimates are then substituted into Equation 5

for genotype-specific scaling relationships, which is expressed as

ujji tð Þ~ajzbj

ai

1zbie{ri t

� 

: ð8Þ

The advantage of Equation 8 lies in its capacity to test the

relationship between ontogenetic allometry and growth trajectory

through the implementation of growth equation.

The model presented in this article illustrates the idea of

mapping the ontogenetic allometry of different biological traits by

assuming one underlying QTL. A more sophisticated model that

involves multiple QTL and their interactions in a genetic network

can be derived with this idea (see [53]) although it needs more

extensive computation and model selection [33]. The model

described here assumes a full marker data set, but it can be readily

modified to consider missing marker data based on a hidden

Markov model as advocated by Jiang and Zeng [48]. Also, when

phenotypic data are missing at arbitrary time points, the

measurement schedule will become unequally spaced. Hou et al.

[63] derived an approach for modeling the structure of

a longitudinal covariance matrix containing unequal spaced time

points, which can be used in this allometric mapping model.

In our example, more than one LR peak was detected on the

same chromosome 6. We claimed the existence of two different

QTL because they seem to be far enough from each other.

However, more precise determination of multiple QTL should be

based on multiple interval mapping as proposed by [32]. In

particular, Yandell and colleagues constructed a series of Bayesian

models that are shown to be powerful for the determination of

multiple QTL at the same time [34,35]. These advanced genetic

mapping approaches will stimulate our incorporation to build up

a practically more useful allometry mapping framework. Our

model can be extended to incorporate the effects of other factors

on ontogenetic allometry. For example, in animals, a significant

relationship occurs between reproductive status and ontogenetic

shape change [21–23]. Within both males and females, re-

productive classes had significantly different body shapes and in

females the trajectories of shape change among reproductive

classes were significantly different. By incorporating sexes into the

model, sex-dependent QTL for ontogenetic shape changes can be

estimated and tested.

Allometric shape changes in development may reflect functional

changes and possible relationships between morphology and

environment. It is straightforward to incorporate environmental

factors into the allometry model to test the genetic effects of QTL

on such relationships. The inclusion of multiple environments, as

reported in [64], will allow investigating the environment-

dependent expression of this allometry QTL.

SUPPORTING INFORMATION

Appendix S1

Found at: doi:10.1371/journal.pone.0001245.s001 (0.09 MB

DOC)
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