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Abstract

Recent single-cell RNA-seq protocols based on droplet microfluidics use massively multiplexed barcoding to enable
simultaneous measurements of transcriptomes for thousands of individual cells. The increasing complexity of such
data creates challenges for subsequent computational processing and troubleshooting of these experiments, with
few software options currently available. Here, we describe a flexible pipeline for processing droplet-based transcriptome
data that implements barcode corrections, classification of cell quality, and diagnostic information about the droplet
libraries. We introduce advanced methods for correcting composition bias and sequencing errors affecting cellular and
molecular barcodes to provide more accurate estimates of molecular counts in individual cells.

Background
RNA-seq protocols have been optimized to enable
large-scale transcriptional profiling of individual cells.
Such single-cell measurements require both improved
molecular techniques as well as effective ways to isolate
and process a large number of cells in parallel. While
single-cell RNA-seq (scRNA-seq) remains a challenging
technique, several solutions are being increasingly
applied, most notably techniques based on droplet
microfluidics such as inDrop [1], Drop-seq [2], and the
10x Chromium platform. In these approaches, cells are
encapsulated in water-based droplets together with bar-
coded beads and necessary reagents within an oil-based
flow. This allows the RNA material extracted from each
cell to be contained within the droplet and tagged by a
unique cellular barcode (CB) carried on the bead.
InDrop and similar approaches pool material from
different cells to prepare the library, and rely on compu-
tational analysis to recognize the reads originating from
the same cell based on the CB contained in the read
sequence. The reads also carry a random barcode—a
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unique molecular identifier (UMI) [3, 4]—that can be
used to discount the redundant contribution of reads
originating from the same cDNA molecule as a result of
library amplification. As such, the primary aim of the
data-processing pipeline, including the one presented
here, is to provide accurate estimates of the number of
molecules that have been observed for each gene in each
measured cell—a molecular count matrix. Accurate
estimation of such a matrix is crucial, as it commonly
provides the starting point for all downstream analysis,
such as cell clustering or tracing of cell trajectories.
Several factors complicate the estimation of this
molecular count matrix, well beyond simple parsing of
the read sequences. First, the procedure must separate
reads originating from droplets containing real cells
from contributions of empty droplets which can amplify
extracellular background transcripts and significantly
outnumber the real cells. Some of the droplets may
contain damaged or fragmented cells, which complicates
such separation. The procedure must also address
problems stemming from sequencing errors, particularly
errors within the CB or UMIs which result in misclassifi-
cation of reads. Similarly, skewed distribution of UMIs
can lead to biased estimation of molecular counts.
Finally, as droplet-based scRNA-seq protocols are still
relatively new, detailed diagnostics and multiple quality
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control steps are typically needed to ensure high-quality
measurements and identify likely sources of problems.
Given the current lack of such general processing pipe-
lines for droplet-based scRNA-seq, we have set out to
provide an open-source implementation.

Results

We have developed a high-performance pipeline to per-
form initial pre-processing and analysis of droplet-based
scRNA-seq data. The pipeline characterizes the quality of
a library using a wide range of diagnostic indicators, filters
out artefactual cellular barcodes, evaluates and corrects
for potentially confounding effects of uneven UMI cover-
age, and corrects for UMI and cellular barcode sequencing
errors based on molecular similarity measures that do not
require prior knowledge of the possible barcode se-
quences. It is designed to be used with different alignment
methods and provides configuration options to accommo-
date alternative scRNA-seq protocol designs.

Uneven UMI frequency distribution distorts molecular
count estimation

In UMI-based protocols, the expression magnitude is typ-
ically estimated as a number of unique UMIs associated
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with a given gene in a given cell. If the space of possible
UMI sequences is limited, it becomes possible for two
separate molecules of the same transcript to be labeled by
the same UMI. To account for such UMI collisions, Fu et
al. originally proposed a correction based on assumption
of uniform distribution of UMIs in the overall dataset [3].
Such correction is rarely used, given relatively large num-
bers of possible UMIs. Examining droplet data from differ-
ent protocols, however, we find that UMI frequency
distribution tends to be highly skewed, with a small
fraction of UMIs contributing to a disproportionately large
number of molecules (Fig. 1a, b, Additional file 1: Figure
S1). The outlier UMIs with the highest frequencies show
lower diversity of nucleotides (Fig. 1a, Additional file 1:
Figure S2A). Such biases may arise due to errors generated
during the library construction protocol or truncated
barcode constructs. Even when such erroneous UMIs are
filtered out, the overall UMI distribution remains signifi-
cantly skewed (Additional file 1: Figure S1B,F), suggesting
that a more advanced approach is needed to correct for
the impact of UMI collisions. In implementing corrections
for the UMI collisions, we therefore moved away from the
assumption of a uniform UMI distribution and modeled
the true UMI frequency distribution (see “Methods”). This
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Fig. 1 Skewed distribution of UMIs leads to increased number of UMI collisions. a Distribution of UMI occurrence frequencies across all genes is
shown for mouse embryonic stem (ES) cells (dataset 1). The top-right inset shows position-specific nucleotide frequencies of the outlier UMIs
(highlighted by gray shading on the main plot). Significant skewness of the UMI distribution decreases the effective pool of UMIs. b Proportions
of different nucleotides in the UMI sequences are shown as a function of the overall UMI frequencies (x-axis orders UMIs so that most frequently
occurring UMI sequences have low rank) for the mouse ES cells (dataset 1). ¢ Estimated number of UMI collisions as a function of the true gene
expression level (x-axis) is shown for different UMI lengths (simulated by trimming 10-nucleotide UMIs; see text). The estimates based on the
uniform and empirical UMI distributions are shown. The 10x Chromium human post-transplant BMMC dataset (dataset 7) was used. For short
UMIs, the number of collisions observed at highly expressed genes can be comparable to the true number of molecules. Longer UMIs decrease
the number of collisions
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approach is effective at correcting UMI collisions on
simulated data (Additional file 1: Figure S2B) and, as we
will demonstrate in the next section, provides notable
improvements on real data.

Errors in UMI sequence lead to overestimation of
molecular counts

An error introduced into a UMI sequence during the
library preparation can be mistakenly interpreted as an
additional molecule. Computational corrections have
been proposed to avoid such overestimation. The sim-
plest such approach [5] omits for a given gene all UMIs
that have an adjacent UMI sequence (Hamming distance
equal to 1) with a larger number of reads (as in [6] we
refer to this method as cluster). Indeed, the probability
of two molecules of the same transcript in the same cell
being labeled by UMIs of Hamming distance 1 is low,
given sufficient size of the UMI pool relative to the
number of molecules of that transcript (see “Methods”).
However, for moderately expressed genes the observed
number of such events exceeds the expected frequency
by a factor of ~ 40 (Additional file 1: Figure S3), suggest-
ing that most adjacent UMI occurrences are erroneous.
A more complex, network-based solution [6] (referred
to here as directional) considers a UMI to be erroneous
if it has an adjacent UMI with more than twice the num-
ber of reads.

An alternative approach, implemented in the 10x
Chromium Cell Ranger pipeline [7], uses UMI base call
quality to distinguish erroneous UMIs. Examining differ-
ent droplet-based datasets, we find that the fraction of
UMI errors that can be distinguished by lower base call
quality varies between datasets, within the range of
29.4-85.6% (Additional file 1: Figure S4). This suggests
that a substantial fraction of UMI errors may originate
during PCR amplification or other library preparation
steps preceding the sequencing itself. Base call quality
would not be informative in such cases. Furthermore,
the existing methods do not consider the total number
of molecules for a given gene, even though the probabil-
ity of observing adjacent UMIs by chance increases.
Such increase is further exacerbated by an uneven distri-
bution of UMI frequencies described in the previous
section. For instance, for the inDrop Bone Marrow
dataset (dataset 11; see “Methods”), the probability of
observing adjacent UMIs under the empirically observed
distribution is up to 20% higher than under the uniform
distribution (Additional file 1: Figure S5A).

To improve the accuracy of UMI filtering, we devel-
oped a Bayesian approach to estimate the posterior
probability of a UMI being erroneous based on the gene
expression magnitude, the observed number of adjacent
UMI sequences, the prior distribution of UMIs, as well
as the base-call quality in the position of the nucleotide
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substitution (see “Methods”). To evaluate performance
of different UMI correction approaches, we used artifi-
cially trimmed UMIs, where the expected ground truth
would be known with high certainty. Specifically, we
used the 10x post-transplant bone marrow mononuclear
cell (BMMC) data (dataset 7), which has relatively long
10 bp UMIs [8]. Given the lower rate of accidentally
observing UMIs at Hamming distance 1 in these longer
UMIs, we applied the cluster UMI filtering procedure to
obtain benchmark ground truth expression estimates for
the dataset. We then simulated datasets with shorter
UMIs by trimming the UMI sequences, comparing the
resulting molecular count estimates to the correspond-
ing full-length benchmark values (see “Methods”). As
nucleotide diversity can vary depending on the position
in the UMI, we used two versions of trimming: from the
front of the UMI sequence and from the back. Both sce-
narios showed significant excess of UMI collisions com-
pared to what is expected from the uniform distribution
(Additional file 1: Figure S5B). More collisions were ob-
served under the front trimming scenario leading to
more collisions than with back trimming, indicating
lower sequence diversity towards the end of the UML

While errors in the UMI sequences lead to
over-estimation of the molecular abundance, UMI colli-
sions lead to underestimation. The probability of such
collisions increases for shorter UMIs, which results in
pronounced underestimation of molecular counts at
short UMIs (Fig. 2a, Additional file 1: Figure S6). Con-
versely, overestimation due to sequencing errors is
more apparent at longer UMIs. Comparing different
UMI collision correction methods, we find that the
proposed approach based on the modeling of the em-
pirical UMI frequency distribution shows much better
performance than correction based on the uniform
UMI distribution assumption (Fig. 2b). We then com-
pared different methods for correcting UMI sequence
errors (Additional file 1: Figure S7). In addition to the
standard cluster algorithm [5], we also evaluated a
variant that disallows merging of UMIs of equal sizes
(cluster-neq). We found that the Bayesian approach pro-
posed here significantly outperforms existing methods
(Fig. 2¢, Additional file 1: Figure S8). The impact of both
collision and sequencing error corrections is most notable
for genes within the high expression range, and for data-
sets with short UMIs (Fig. 2b, Additional file 1: Figure S8).
Therefore, for datasets with moderate sequencing depth
and long UMIs, analysis can use cluster or directional
algorithms, which are also implemented in the developed
pipeline, to reduce computational time.

To further compare the accuracy of UMI corrections
introduced by different methods, we examined the
distribution of edit distances between two random UMIs
following different corrections, comparing it with the
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Fig. 2 Comparison of UMI collision and sequencing error correction methods. Comparison of UMI collision adjustment and UMI correction algorithms
is shown using the 10x post-transplant BMMC dataset (dataset 7). a The scatter plot shows percentage error (y-axis) in estimation of the molecular
counts for different genes using computationally timmed UMIs (down to 6-9-nucleotide lengths, as designated by color) from their original
10-nucleotide length, as a function of the full-length UMI estimate (x-axis; see “Methods”). The line shows spline-smoothed dependency with the 95%
confidence band. Points show median y value for a given x. The errors result from two opposing trends, with UMI sequencing errors inflating the
resulting count estimates, and UMI collisions deflating the estimates. Shortened UMIs result in a larger number of collisions. b The effect of different
UMI collision corrections is shown on the 6-nucleotide trimmed UMIs. ¢ Comparison of different UMI sequence error correction methods is shown for
the 8-nucleotide trimmed UMIs. UMI collisions were corrected using an empirical approach in all cases except for “no correction”. d We estimated
theoretical distribution of edit distances (x-axis) between two randomly sampled UMIs. The theoretical probability of observing a given edit distance is
shown as a number above each edit distance group. The histograms show relative absolute difference between this theoretical distribution and
observed distributions after the different UMI correction algorithms. For each method and edit distance, the y-axis shows the absolute difference
between the observed and theoretical distribution, expressed as a fraction of the theoretical probability of observing that edit distance. @ Dependency
of the magnitude of UMI correction (y-axis) on the expression magnitude without correction (x-axis) is shown. Each point represents a single gene
within a cell, pulled across all cells. Genes with expression magnitude < 10 were omitted
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expected analytical estimate of the edit distance distribu-
tion. Such validation was originally proposed by Smith
et al. [6] in describing the directional method. Figure 2d
shows that, in contrast to other correction methods, the
distribution of edit distances after the Bayesian correc-
tion closely resembles the theoretical estimation. The
differences in probabilities are most notable for edit
distances of 1 and 2.

Correction of the cellular barcode sequence errors

The number of different cellular barcodes (CBs) in a
droplet-based library normally exceeds the number of
actual encapsulated cells by several fold (Additional file 1:
Figure S9). Similar to issues encountered for UMIs, add-
itional CBs can result from sequence errors introduced

during library construction or sequencing. This would
result in material from one droplet being mistakenly split
up into several different CBs. Alternatively, additional CBs
may also be empty droplets that did not encapsulate a real
cell, but instead captured background RNA or cell debris
together with an indexing bead [9]. To evaluate whether
this is a significant factor, we examined the read compos-
ition in published 10x [10] and Drop-seq [2] datasets (data-
sets 4 and 12) with mixtures of human and mouse cells
(see “Methods”). We found that in these experiments, back-
ground barcodes contained a constant ratio of mouse and
human reads, consistent with the idea of extracellular back-
ground admixture (Fig. 3a, Additional file 1: Figure S10).
However, the absolute abundance was dependent on the
total size of each barcode, suggesting more complex
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Fig. 3 Correcting for cellular barcode errors. a The number of molecules mapping to human and mouse genomes in a human-mouse Drop-seq
dataset (dataset 12) is shown for each cell (points) on a log scale. The plot shows annotations of high-confidence cells for each organism, doublets,
and background barcodes. b The number of equidistant adjacent CBs of larger size (i.e, number of molecules) is shown for each of the observed CBs
in the mouse embryonic stem cell dataset (dataset 1). The main plot shows adjacent CBs selected from an a priori known set of valid CB sequences.
The inset shows counts of adjacent CBs selected from all CB sequences observed in the dataset. ¢ To illustrate the effect of CB corrections, the plot
shows the increase in number of molecules per CB (x-axis) following a CB merge correction procedure, relative to the original size. The 10x 8k PBMC
(dataset 13), Drop-seq human—-mouse mixture (dataset 12), and inDrop BMC (dataset 11) datasets are shown
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interaction with library preparation and processing. Fur-
thermore, we were not able to reconstruct a uniform back-
ground “transcriptome”, as the identity of the admixed
transcripts varied considerably among different barcodes.

We first examined methods for correcting CB
sequence errors. In doing so we considered two
scenarios: one where a list of possible valid CB se-
quences is known (e.g., 10x or inDrop), and another
where CBs can be an arbitrary nucleotide sequence
(e.g., Drop-seq). Pre-designed CB sequences are typic-
ally evenly spaced in the sequence space, and replacing
an erroneous CB with the closest matching valid CB se-
quence is an effective strategy. The space of potential
valid CBs can be further narrowed down by taking into
account that the valid CB shouldn’t have fewer counts
than the erroneous CB. However, if the list of possible
valid CBs is unknown, or if there are many similar CBs
(e.g., short barcodes), the number of possible merge
targets increases significantly (Fig. 3b). To accurately
determine the probability that two CBs originated from
one CB, we used UMI-gene composition similarity,
which evaluates the likelihood that two independent
cells will end up producing equivalent UMI-gene com-
binations (see “Methods”). This method was compared
with the simpler approach, which, for every CB, checks
if another CB exists with similar CB sequence (Ham-
ming distance < 2) and containing more molecules, and
then merges such CBs.

To compare the two approaches, we again examined
the 10x [10] and Drop-seq [2] human/mouse mixture
datasets (datasets 4 and 12). As the list of real barcodes
is known for the 10x data, we compared the merges
introduced by the two approaches with the list of real
barcodes. The proposed molecular content-based merge
algorithm outperforms the simple approach (Table 1)
and shows performance similar to the scenario when the
list of true barcodes is known. The proposed approach
also reduces the fraction of CBs erroneously merged
across the two organisms to negligible levels, while such
a fraction is notable with the original method. The
differences become more pronounced for larger datasets.
For instance, analyzing the 10x 33k peripheral blood
mononuclear cell (PBMC) data (dataset 10) [11], 10x
Cell Ranger identifies 33,148 real cells, making use of
the known barcode list. Reanalysis using the proposed
merge procedure (without the knowledge of true
barcodes) identifies 31,164 cells containing at least 100
genes. By comparison, the simple approach over-merges,
yielding only 12,388 cells at the same minimal gene
number threshold. Despite the low false-positive merge
rate, the proposed approach can increase the number of
molecules per cell (up to 15%; see Fig. 3c).

Recognizing damaged or low quality cells
The number of molecules associated with a given CB gen-
erally provides reasonable criteria for selecting real cells



Petukhov et al. Genome Biology (2018) 19:78

Page 6 of 16

Table 1 Analysis of merge targets on human-mouse mixture datasets

Dataset Merge type Number of merges Fraction of mixed merges Similarity to merge with barcodes
10x Poisson 8999 0.58% 99.74%

10x Known barcodes 8985 0.62% 100%

10x Simple 21,827 32.96% 20.67%

Drop-seq Poisson 15,186 0.83% -

Drop-seq Simple 26,154 8.74% -

[1, 7]. Similarly, CBs with very few associated reads likely
represent empty droplets. However, classifying CBs in the
intermediate range poses a challenge. The intermediate
size CBs likely contain damaged or dying cells from which
relatively little mRNA material could be recovered [9].
This complicates the optimization of a size separation
threshold. Such low-quality cells could also cover a range
of sizes, making the use of a single size cutoff ineffective.
Classification of low quality cells was examined by
Ilicic et al. [9], where a support vector machine (SVM)
classifier was trained based on examination of cell
morphology from microscopy data prior to lysis and li-
brary preparation. As such data are difficult to obtain for
droplet-based techniques, and an existing SVM cannot
be directly applied to different protocols or cell types,
we aimed to develop a self-contained approach that
would not require high-quality experiments for training.
While the true labels for low- and high-quality cells are
not available, we argued that large cells initially include
a large fraction of high-quality cells and small cells in-
clude a very low fraction of high-quality cells. We then
aimed to train a classifier to distinguish high-quality
cells based on a limited set of technical features (see
“Methods”), taking into account that the initial labels of
the training set will contain some fraction of errors. The
tolerance of different classifiers to training set errors can
vary considerably. We evaluated performance of several
appropriate approaches (KDE [12], Random Forest [13],
and Robust Gaussian Processes [14]; see “Methods”). In
addition to the cross-validation score, we measured
robustness of the classifiers with respect to: removal of a
random 20% of the training data (fivefold cross-validation;
Table 2); introduction of artificial noise into the data
(Additional file 1: Figure S11A, B); and narrowing/widen-
ing of the thresholds used to separate large and small cells
for the initial label assignment (Additional file 1: Figure
S11C). Based on the resulting performance and runtime

Table 2 Fivefold CV comparison of classifiers

complexity (e.g., Robust Gaussian Processes has a high
complexity of O(n®) relative to the number of samples) we
chose the Kernel Density Estimation (KDE) classifier.

Cell size-based thresholding approaches, such as the one
implemented by the Cell Ranger software, can provide a rea-
sonable guess for the initial separation of high-quality cells.
We implemented a modified threshold-selection method
that does not require assumptions about the number of true
cells. For most datasets, the determined thresholds are
similar to those chosen by the Cell Ranger approach; how-
ever, the difference was notable for some datasets. For
instance, for the 10x human BMMC dataset (dataset 8), the
threshold determined by our approach recovers 1105
additional cells that show subpopulation-specific expression
signatures (Fig. 4, Additional file 2: Table S4). We note that
these additional cells are not evenly distributed across differ-
ent subpopulations but preferentially augment certain sub-
populations, such as the non-dividing subgroup of pre-B
cells (expressing both IGLL5 and CD37). The cells in these
populations show smaller average library sizes (number of
detected molecules), explaining their over-representation
within the tail of the cell size distribution. For details on cell
type annotation see Additional file 1: Figures S12—-S14 and
Additional file 2: Tables S1-S3.

KDE-based quality scores refine identification of
high-quality cells around size-based thresholds (Additional
file 1: Figures S15 and S16). While the quality scores overall
show expected correlation with cell size, some of the
smaller cells are able to attain high scores, and some of the
large cells are assigned low scores (Additional file 1:
Figure S15A). For the 10x 8k PBMC dataset (dataset 16),
the quality scores pick up an additional 170 cells relative
to the size threshold determined by Cell Ranger (Add-
itional file 1: Figure S15B,C, Additional file 2: Table
S5). When compared to our own threshold-determination
method, the quality scores correctly filter out poor-quality
cell clusters (Fig. 5). In the context of inDrop mouse

Classifier Sensitivity on CV (%) Specificity on CV (%) Stability on class 1 (%) Stability on class 0 (%)
KDE 904 (+0.8) 91.1 (£34) 89.8 (+2.9) 973 (£13)
Random Forest 89.6 (£2.3) 92.7 (£1.6) 87.3 (£7.3) 97.7 (£1.3)
Robust GP 87.7 (£2) 94.8 (£2.2) 85.3 (0) 99.3 (+0.5)

Mean + standard deviation values are shown. Here, class 1 is high-quality cells, class 0 is low-quality cells
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d t-SNE visualization of the 10x BMMC dataset. All cells which pass both Cell Ranger and dropEst thresholds are shown as circles. Cells which were

pancreatic cells [15] (Additional file 1: Figure S17, Additional
file 2: Table S6) and the inDrop mouse BMC dataset (data-
set 11; Fig. 6, Additional file 2: Table S7), quality scores re-
cover additional cells that show expression patterns
consistent with the major subpopulations.

Discussion

Droplet-based microfluidics protocols and other high--
throughput methods are enabling production of large
single-cell RNA-seq datasets (10°-10° cells). Complex
barcoding schemes employed by such methods require
in-depth computational analysis to achieve accurate re-
covery of molecules associated with different cells and

genes. In order to avoid collisions of cellular barcodes,
large numbers of cells necessitate longer CBs, increasing
the probability that a sequence error will be introduced
into a CB during the bead construction steps [1], library
preparation procedures, or library sequencing. We show
that for many such errors there are multiple equidistant
CBs from which the molecule may have originated. The
implemented solution, which merges CBs based on the
probabilistic assessment of the molecular overlap between
the CBs, provides accurate correction even in cases when
the set of possible valid CBs is not known in advance.
Errors affecting molecular barcodes (UMIs) pose a
similar challenge, which in this case is driven by
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Fig. 5 Filtration of low-quality cells for the 10x 8k PBMC dataset. This figure shows the result of the KDE-based algorithm for the filtration of
low-quality cells on the 10x 8k PBMC dataset (dataset 13). a t-SNE visualization of the cell subpopulations; only cells which either passed the size
threshold or have a quality score > 0.9 are shown. Cells passing the dropEst size threshold and having a quality score>0.1 are shown with circles.
A few cells falling below the size threshold but with a high (> 0.9) quality score are shown with triangles. Cells passing the size threshold but with
a low (< 0.1) quality score are considered as filtered and are shown with black crosses. Most filtered cells originated form three distinct clusters,
marked by a high fraction of intergenic or mitochondrial reads and a low number of reads per UMI (see labels). b—d Distributions of distinguishing
characteristics (x-axes) are compared between clusters of low quality cells and the real cell population. Here, we consider a cell to be real if it passes
the size threshold and has a quality score > 09

increasing sequencing depth of individual cells. This has
been recognized by earlier studies [5], and several cor-
rection strategies have been proposed. We show that the
overall distribution of UMI sequence occurrences is not
uniform, and the resulting bias reduces the effective
UMI space leading to increased number of UMI colli-
sions in well-expressed genes and deflated molecular
counts. Some of the UMI errors appear to result from
occurrence of aberrant library molecules incorporating
mononucleotide primers, such as poly(T) into the UMI
position. On the other hand, point mutations in UMIs
and aberrant base calls can lead to inflated molecular
counts. While most UMI errors can be mitigated experi-
mentally by increasing the UMI length, we show that
taking into account empirical distribution of UMI fre-
quencies allows adjustment for both UMI collision and
sequence error effects.

Even with corrections of CB sequence errors, most of
the CBs encountered in the current droplet-based datasets
do not represent real cells. These additional molecules

may originate from empty droplets capturing extracellular
background. Indeed, examination of mouse—human data-
set mixtures suggests that smaller CBs have a higher
cross-organism contamination fraction than one would
expect from extracellular background. In addition to
empty droplets, some of the low-magnitude CBs may
represent damaged, dying, or dead cells, as well as cells
that were not successfully measured for other reasons.
The challenge of identifying damaged cells has been
previously examined by Ilicic et al. [9] in the context of
the Fluidigm C1 protocol, where the proportion of
low-quality cells is typically in the range of 10-40%. This
fraction can be much higher in the inDrop data (e.g., 90%
of CBs), and obtaining microscopy-based labeling for the
classification is challenging given the rapid flow within the
devices. We instead explored application of fault-tolerant
classifiers to identify technical features consistent with an
imperfect initial separation of high-quality cells based on
the size criteria alone. Such an approach is able to pick up
relatively large cells that resemble poorly measured cells
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based on their technical features, and rescue some of the
smaller cells that look consistent with the high-quality tail
of the cell distribution.

Conclusions

Overall, we hope that the developed pipeline will facilitate
analysis of droplet-based single-cell RNA-seq data, provid-
ing helpful diagnostics (see Additional file 3: Supplementary
Note 1 for an example of a dropEst pipeline report) and im-
proving the accuracy of the resulting expression estimates.

Methods

The dropEst pipeline operates in three phases: i) identifier
parsing phase; ii) read mapping phase; and iii) filtering
and quality control phase. The first phase takes as an
input FASTQ files containing paired-end read and index
data. The output of this phase is a modified FASTQ file
with reads which can be aligned to a transcriptome refer-
ence during the second phase using a standard
splice-aware aligner (e.g., STAR [16] or TopHat 2.1.0 [17],
which was used in our work). The third phase takes BAM
files with the aligned reads [18] and a gene annotation file
in GTF format. BAM files produced by the 10x Cell
Ranger pipeline can also be provided when running this
stage. The result of pipeline is an R-readable file that
contains molecular count matrix and other processed

information, as well as a report with diagnostic informa-
tion on the library. Sample runtimes for different pipeline
steps are shown in Additional file 2: Table S8.

Correction of UMI collisions
In cases when the number of UMIs per gene is compar-
able to the total UMIs pool size, the gene expression
level will be underestimated [3] and needs to be
adjusted by taking UMI collisions into account. Fu et
al. [3] assumed uniform distribution of UMI
probabilities, and then the number of unique UMIs
expected for number of molecules # from a UMI pool
of size m is k=m[1-e "], thus n=-m In (1-%).
To account for a non-uniform UMI distribution
observed in the droplet datasets, we estimated n(k, m)
by modeling the collisions process. Let’s assume that
we have a gene with k distinct UMIs G; and a
distribution of UMI probabilities P(u;). In this case, the
probability of observing a new distinct UMI is p(u/'¢Gy)
=37 p(u) * (1-p(u;))"™ . The expected number of
collisions prior to obtaining a new distinct UMI is equal
to p(u'¢ G and n(k+1)=n(k) + p(u'¢ G) . Thus,
we can use a step-by-step procedure to estimate n(k) V
kel:m.

To validate the developed method, we simulated UMI
collisions using a bootstrap procedure (Additional file 1:



Petukhov et al. Genome Biology (2018) 19:78

Figure S2). To do so, we estimated the number of
collisions by sampling UMIs from the common distri-
bution one by one, until the expected number of dis-
tinct UMIs was reached.

Correction of UMI sequence errors
To determine whether two UMIs represent technical varia-
tions (sequencing errors) of the same UMI, we use a Bayes-
ian approach to estimate the number of errors within each
gene within each cell by maximal likelihood. To do so, we
can model the process of generating UMI composition.
Given two UMIs within a gene, we considered the fol-
lowing features:

e U, sequence of the first UML.

e 1, sequence of the second UML

e R, number of reads for the first UML

e 1, number of reads for the second UMI, r<R.

e Ns, number of adjacent (Hamming distance of 1)
UMIs for the UMI U with the number of reads r':
r'<R.

e Nj, number of adjacent UMIs for the UMI U with
the number of reads R": R'> R.

e S, number of UMIs in the gene.

e ¢, mean Phred quality score of the distinguishing
position for the UMI u. Here, we use mean value as
we already include parameter r, which is strongly
correlated with the total (sum) quality score.

Let us denote:

e #Errors is the number of erroneous UMIs
e #Real is the number of real UMIs

We can divide set QO of all adjacent UMIs into two
sets: Qf and Q_r, which means erroneous and real
UMIs, respectively. We aim to estimate:

p(#Errors = k) = Z

QE N |QE| = k7
Q. Q| = |Q]-k

P(Qe, Qop).

The probability of the state with separation Qg Qg
within a gene of size S, is:

p(vagﬂf) :p(R7 7a 77NS
= dim(7), Ny, U, Sg, Err(Qg), ~Err(Q-r)) =
=p(q17,R,Ns,Ny,Sg,Err(Q), ~Err(Q.g))*

>i<p(Err(Q]5)7 ~Err(Q.p)|7,R,U,Ng, N, Sg)
*P(T:R» U7NS:NL;Sg)

Here, event Err(Q)r) means that all UMIs from Qf
were generated from U by an error (Erry ,Nu'eQp). We
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can omit p(7’,R,U,Ns,Np,S,) as it doesn’t depend on
the separation Qf, Q_g. We can also assume independ-
ence of properties of Qf and properties of Q_g:

(q_nbf 1qq 7o, 1L E’) | (Err(QE), ﬂErr(QﬂE))

Thus:
p(Qp, Q) = p(7|7,R, U,Ng,Np,Sq, Err(QE), ﬂErr(QjE))*
«p(Err(Qg), ~Err(Q.g)| 7, R, U,Ns,N) =

=p(qo,| 7, R, U Ns,Ny,Se, ~Err(Q.))
+p(qo, |7, R, U, N5, Ny, Sq, Err(Q)) =

*p(Err(QE), -Err(Q-g)|7,R,U,Ns, N, Sg)

Let us make the following independence assumptions:

FL§, (@G LR

@ LU, LU

(7 1S5).(d 1S,)

(? 1 NL)! (‘F 1 NS)' ((_j 1 NL)! ((_j 1 NS)

P(Qp, Qp) = p(qqg  |~Err(Q-p)) * p(qq, | Err(QE))*

*p(Err(QE), -Err(Q-g)|7,R,U,Ns, N, Sg)

Also, we can assume distributions of #Errors and
#Real to be independent. Then, we can write the last
part as:

p(Err(Qg), ~Err(Q.g)|7,R,U,Ns,N;,S,) =
:p((#Errors = |Q¢|), (#Real = |Q_g|)| 7, R, U,NS,NL,Sg) =

:p(#Errors = Q|| 7, R, L[,NS,NL,Sg)
x p(#Real = |Q-g||7,R,U,Ns,Ny, Sg)

Let us make the following additional independence as-
sumptions:

. (#Errors LU, NL,Sg)|NS
o #Errors Lrq_
e (#Real IL# R)|Ng, N,

p(Err(Qg), ~Err(Q.g)| 7", R, U,Ng,N,S,) =
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= p(#Errors = |Qg||ro, , R, Ns)
* p(#Real = |Q-g||U,Ns, Ny, S;)

As several erroneous UMIs can have the same se-
quence, we adjust the overall probability:

p(Err(QE), -Err(Q.p)|7,R,U,Ns,Np, Sg)
= p(#Real = |Q_g||U,Ns, Ny, S;)*

Ny
*Z p((#Errorsy = i), (#Collisions = i~|Q|)|7a, , R, Ns)
i=[Q|

where p(#Collisions) is the probability that the number of
erroneous UMIs which have the same sequence is equal
to #Collisions. #Errorsy is the total number of errors, in-
cluding those that were not observed. We can assume that
(#Collisions 1 7q,,R,U,Ns, NL,Sg)|#Errors::

p(Err(Qg), ~Err(Q.g)|7,R,U,Ns, N, S,)
= p(#Real = |Q ||U,Ns,Ny, Sg)*

*Zggf‘p(#Collisions = i—|Qg||#Errorsy = i)
* p(#Errors = i|rg, , R, N).

which yields a complete formula for the overall
probability:

p(Qp, Qf) = p(m\—'Err(QﬂE)) *p(q_gﬂ Err(QE))
*p(#Reﬂl = |Q_,EHU,N5,NL,Sg)*

*Z:QE‘p(#Collisions = i—|Qg||#Errorsy = i)
*p(#ErrorsT = i|r—Q£,R,Ng)

Direct estimation of the distribution p(#Errors = k)
= Y p(Qf Q.p) requires an exhaustive search over all
subsets of Q, which takes O(2!’!) operations, making it
computationally intractable. To optimize this estimation,
let us assume that we can estimate p(u € Qf). Further-
more, we can assume that event (€ Q) is equal to (u«
"€eQp)Vu':p(u" € Qr)=p(ucQr). The opposite would
be true as well: event (1 ¢ Q) is equal to ("¢ Qp)Vu':
pu’ € Qp) < p(u e Qf). Thus, we can order all UMIs ac-
cording to this probability and reduce the search space
to O(|Q). In practice, we don’t even need to estimate
p(u € Qp), because for a fixed U it depends only on two
parameters: r and g. Moreover, it decreases exponentially
with increasing r (see explanation below), but there is no
such fast dependency for g. So, we can order UMIs by
descending r (first), and then by g (second).

Estimating probabilities

Estimation of the quality probabilities

Components of g, can be assumed to be independent.
Thus:
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p(4q,| Err(Qg)) = Huenfp(qwrru,u);P(thrr(QjE))
- HueoﬁEp(ql_'ErrU,u)-

Distribution p(q| -Erry, ,) can be estimated as p(q|
-Erry, ) = p(q), since an event -Erry; ,, does not by itself
gurantee that u is real as # can be produced by an error
from a UMI other than U. Though distribution p(q) is
continuous, we estimated quantized version of this
distribution through the following procedure. First, we
estimated k uniformly distributed quantiles. All quantiles
with the difference in indexing variable g less than 107>
were assumed to be equal and merged. Then, each value
of g was rounded off to the nearest quantile. As a result
we obtained a discrete distribution with no more than &
possible values of the indexing variable. In this work we
used k = 15.

To estimate p(q| Erry, ,) we created a training sam-
ple, which contained only pairs of UMIs where u
occurred because of an error in U. Such a set was as-
sembled by choosing genes containing two adjacent
UMIs only. The theoretical probability p(u, U| S, =2,
=Erry, ) is negligible. We therefore expect almost all
such events to have occurred because of an error in
U. Such a training sample is representative because g
is independent of S, Because values of g are discrete
following the quantization, estimation of p(q| Erry, )
becomes straightforward.

Estimation of the number of real UMIs

Probability p(#Real = |Q_g|| U, Ns, N;, S;) depends on
the large numbers of parameters, making the training
approach impractical. We use theoretical estimation
of p(#Real | U,N;,S,) (see the algorithm below),
assuming that:

p(#Real = |Q_g||U,Ng,Ny,S,;)
= p(#Real = |Q_||U,#Real<Ns,Ny,S;) =

p(#Real = |Qg| | U,Ny,S,)
Zféop(#Real =n|UNLS,)

Let us denote the following notations:

e L, length of an UML

o Ny total number of possible UMIs (in most cases
is equal to 4%).

e K, maximum number of the adjacent UMIs (in most
cases is equal to 3L).

®  Dadjacent = Padjacens(U), probability to observe an
UM, adjacent to U It is equal to Z p(u).

ucAdjacent(U)
e N, total number of real adjacent UMIs for the

UMI U.
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To estimate the distribution of p(#Real| Sy, U, N;) we
use the following assumption:

P(#Real=n|Sy,U,N1) = P(N'2n+ N.|Sg, U,N'>N)
_ P(N'2n+N(|S;,U)
K P(N'2K|S, U)

The distribution p(N'| Sg, U) was estimated by model-
ing the process of picking UMIs from a pool. Suppose
that we have already picked s UMIs, and we have k
different adjacent UMIs. Let us denote this state as (, s).
This state can occur in one of the following situations:

1. We were previously in the state (k, s — 1) and picked
a UMI which was not a new adjacent UMI (i.e.,
either a previously observed adjacent UMI or not
an adjacent UMI). The probability of such a pick is
(1_ %pAdjacent(u))'

2. We were previously in a state (k—1,s - 1) and
picked an UMI which is a new adjacent UMI. The

probability of such a pick is K’]IfIPAd;‘gcent(U ).

The model above can be evaluated using dynamic pro-
gramming. To do so we build a matrix 7= {f ¢, each
cell of which contains the weighted sum of the neighbor-
ing bottom-left and left cells in the matrix T (see
example in Table 3). Such matrices would need to be
computed for each UMI present in the dataset. However,
the asymptotic complexity of this approach is O(S,+ #
UMI+K) in terms of both time and memory, which
would be prohibitive for large datasets. To optimize it
we employed the following solution. The matrix 7' de-
pends on U only through pagiacen(U), and the rate of
change of the function within a cell is proportional to
pAdjacent(U) + O@Adjacent(u))' Thus) we assume P(N’| Sg’
U) to be a piecewise constant function from pagjzcendU)
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and perform a quantization by this probability. A
quantization step Ap = 0.01 was used.

Estimation of the number of erroneous UMls

To estimate p(#Errorsy = i|rq,,R,Ns) we can assume
that an erroneous UMI can occur with some constant
probability pr in each read. Thus, p(7q, R, Err(Qr)) = p
(re|R, Err(QE)), where rg is the total number of reads
across all erroneous UMIs: rg =), 1. Probability
p(re| R, Err(QE)) was approximated by a binomial distri-
bution with number of trials # =R +rz. Parameter pg
was estimated using the same training set as for p(q|

,
Qs

Erry, ) pp = S Afterwards, we can estimate
¢:Sg=2
distribution of the number of errors as:

p(ri|R, Err(Qg))

#E =1 Tor R N -
p(#Errorsy = i[ro;, R, N) > rera (TR Err(Qg))

where r; is ith component of vector 7q, .

The problem of estimation of total number of colli-
sions can be formulated as follows: find the distribution
of number of distinct UMIs (#Errors) after picking
#Errorsy UMIs from the pool of all adjacent UMIs. It’s
the same problem that we solved when estimating
P(N'| Sg, U). But in this case probability pagjscen:(U) is
equal to 1:

p(#Collisions = i|#Errorsy = k)
= p(N/ = k_l|Sg = k7pAdjacent(u) = 1) .

Iterative procedure of UMI sequence error correction

After the estimation of the decision boundary, all UMIs
that are determined to be erroneous are removed. This
changes the input parameters S,, N, and N of the algo-
rithm. Therefore, to perform a precise filtration, the

Table 3 Dynamic programming matrix with distributions of the number of adjacent UMIs

%9 1 2 3 Sg

0 1 1 = PNeight (1 = Preight)” (1,pN€/ghb)5ﬂ

1 0 Pneight (1 _pNe/ghb) * Pieighb + los—1 % PNeight +

+p/\/e/’ghb * (] “Pheight K%) Flys % (]_pNe/ghb %)

2 0 0 pﬁ/erghb KKi Gis-1 % Pheight K% +
+t251 % (1-Dpeigns 552

k 0 0 0 Th=1,5-1 * Preigh L +
Fls * (] “PNeight %)

K 0 0 0 Phieight

lk-1,5-1—x— + k-1

Here, K is the maximum number of adjacent UMIs, S, is the maximum number of molecules per gene. A cell t,, s of the matrix contains probability of observing k
adjacent UMIs for a fixed UMI in a cell of size s
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procedure is run iteratively.This does not add a signifi-
cant amount of runtime complexity because: i) dynamic
programming matrices are calculatd only once, since the
gene size cannot increase during filtration; ii) for genes
with a small number of UMIs, the procedure converges
after one or two iterations.

Validation

UMI trimming

The UMI error correction algorithms become less
effective as the number of molecules per gene in-
creases. To model such situations, we used the 10x
post-transplant BMMC dataset, which has 10-bp
UMIs and relatively small sequencing depth. We then
simulated more saturated measurements by trimming
UMIs to shorter lengths. The information about each
UMI consists of its sequence, the number of reads
per UMI, and the mean base-call quality for each nu-
cleotide in the sequence. By trimming both the nu-
cleotide sequence and the quality vector we obtain a
new, shorter UMIL. After trimming, sequences of some
UMIs become identical, which naturally models UMI
collision events. All such UMIs are merged by sum-
ming their number of reads and calculating the
weighted mean of base-call quality vectors (the weight
of each vector is equal to its number of reads). For
most of the analyses, we trimmed UMIs from the end
(back trimming). However, to test for variation of nu-
cleotide diversity along the UMI length, we also
trimmed UMIs from the front (see “Results”).

Distribution of Hamming distances between UMIs of the
same gene

Errors in UMI sequences lead to more frequent oc-
currence of adjacent UMIs. Yet, simply omitting all
adjacent UMIs would also be incorrect, as the prob-
ability of adjacent UMI occurrence is non-negligible
for shorter UMIs and highly expressed genes. Thus,
to assess the quality of UMI error correction methods
we followed Smith et al. [6] and analyzed distribution
of Hamming distances between UMIs within the same
gene. To do so we first estimated all pairwise dis-
tances between UMIs within each gene within each
cell, pooling all distances together. Next, we estimated
frequencies of each distance value P(ED=k), and
compared it with the theoretical distribution P*(ED =
k) of such distances. The theoretical distribution was
estimated by random sampling of UMI pairs from a
common UMI distribution. The relative difference be-

tween the observed distribution and the theoretical

|P(ED=k)-P* (ED=k)|
P*(ED=k)

rection algorithms.

one ( ) was compared for different cor-
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Correction of cellular barcode sequence errors

CB sequence errors split a fraction of the molecules ori-
ginating from one cell into smaller CBs. Given that the
number of reads per UMI is generally higher than one,
the smaller CBs will contain some of the same gene—
UMI combinations as the true CB. In other words, the
smaller CBs will have similar molecular composition—
the set of cell unique genes—UMI combinations. We use
composition similarity as a criterion for determining
whether the two barcodes should be merged. The size of
the compositional intersection between two independent
cells is modeled using Poisson distribution with the
mean dependent on the UMI distribution and the num-
ber of molecules associated with the CBs.

Let us denote S, , as the set of all UMIs detected for
gene g in a cell c. The number of common gene-UMI
pairs for cells i and j can be estimated as C;; =Y ;" ;
| SixnSjx |. Thus, expectation would be EC;; = EY /",
| SiwnSjk |[= > k1 E | SixnSjk |. The expectation of the
UMI intersection (i.e., the number of shared UMIs) for a
pair of genes can be estimated as EC;; = Z (1-

uelMIs

(l—p(u))‘s;k‘) * (1—(1—p(u))|slf-k‘), where S;‘k is the num-
ber of UMIs in a gene adjusted for UMI collisions. It is
important to note that the expected number of shared
UMIs needs to be calculated only once for each pair (S,
S;):S;<S;. Having estimated EC; ; we can then assume
that C; ; follows Poisson distribution with the mean
equal to EC; ;. Using this estimated distribution, we then
perform a statistical test for hypothesis Hy: the observed
size of the intersection S"ersecrion Was obtained by
chance. The P value of this test is the tail probability of
the Poisson distribution P i (Sintersection = S” intersection|f>‘i , l?] ,
Pyuai), where A is the estimated intensity parameter.

The implemented pipeline uses this test to compare
each cell C; with all other cells C; that 1) have a higher
total number of molecules (S;>S;) and 2) whose CBs
have a Hamming distance from the CB of C; that is
lower than a fixed constant. In the presented results this
distance constant was taken to be 2. Bonferroni correc-
tion was used to account for multiple comparisons.

To compare merge algorithms, we evaluated their
quality on 10x [10] and Drop-seq [2] human-mouse
mixture datasets (datasets 4 and 12) using the following
procedure. First, we filtered out all cells that had <30
genes for 10x and <20 genes for Drop-seq. Next, for
each cell we determined the most likely organism,
assigning cells to the genome for which they had more
molecules. Next, we chose the largest cells and consid-
ered them as real. The exact choice of number of real
cells did not have a notable impact on the results. We
used 6000 cells for 10x and 1000 cells for Drop-seq. In
comparing merge algorithms we counted the number of
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merges performed between different organisms. Only
merges to real cells were counted.

Classifying damaged or low-quality cells

Classification algorithm

The implemented approach for classification of damaged
and low quality cells can be split into three tasks: (i) cre-
ation of the training sample, i.e., establishing the initial
class labeling; (ii) feature selection; and (iii) application
of the classifier algorithm.

The initial class labels were assigned based on the cell
size. To do so, the dataset was split into three parts: ‘big’
cells, ‘intermediate’ cells, and ‘small’ cells. To determine
the borders of big and small cells we used the plot
log(#UMI in cell) vs log(cell rank) (Additional file 1: Fig-
ure S10C). This heuristic is based on an observation that
the left part of such a plot has a negative second deriva-
tive, followed by a linear part, and a third part of the
plot has a positive second derivative. We implemented
an automated procedure that locates the upper (£;;) and
the lower (t;) position of the linear part. The cells with
size smaller than £; were then assigned the initial label
of ‘low-quality’ cells. The top 75% of the cells with size
larger than ¢;; were assigned the initial label of ‘high-qu-
ality’ cells. The remaining cells were labeled as ‘un-
known’. Alternatively, the initial label borders can be
specified manually, for instance based on the shape of
the log(#UMI in cell = # Cells) vs log(#UMI in cell) plots
(Additional file 1: Figure S10A, B).

Two types of features could be potentially considered
for distinguishing quality cells: biological features (e.g.,
expression levels of genes belonging to different GO cat-
egories [19, 20]), and technical features (e.g., different
statistics on the sequenced data). We expect most bio-
logical features to be dataset- and cell type-specific [9],
with the exception of the mitochondrial fraction, which
has appeared as a robust indicator of cell death across
most datasets [9]. Therefore, in choosing classifier fea-
tures we limited consideration of biological features only
to the “fraction of UMIs on mitochondrial reads”. The
following technical features were also utilized:

1. Mean number of reads per UML
Mean number of UMIs per gene.

3. Fraction of low-expressed genes (genes with one
molecule).

4. Fraction of intergenic reads.

5. Fraction of not-aligned reads (optional feature, as it
typically has to be calculated during the identifier
parse phase).

Given the initial labeling and the feature set, the cell
classification problem was considered as a problem of es-
tablishing robust classification in the presence of training
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label noise [21]. We compared three classifiers: Kernel
Density Estimation classifier [12], Random Forest [13],
and Robust Gaussian Processes Classifier [14]. Following
evaluation of robustness we chose the KDE classifier with
Normal Scale bandwidth selector [22] (the implementa-
tion provided by the R package ‘ks’ was utilized [23]). The
computational complexity of the KDE classifier estimation
has exponential dependency on the dimensionality of the
feature space. We therefore reduced the feature space by
using the first three principal components of the feature
space for classification. To increase the algorithm robust-
ness, we used sparse robust principal component analysis
[24] (R package ‘pcaPP’) with sparsity level A = 1.

The algorithm’s performance can be improved by
labeling cells with very high fractions of mitochondrial
and intergenic reads as ‘low-quality’. This can be done
prior to classifier training, or simply as an additional
filter after classifier training. To choose between these
two options we employed the following condition: if the
intergenic or mitochondrial fraction contributes to any
of the first three PCs with the loading >5%, we assume
that the algorithm is able to distinguish between high/
low fraction values, and labeling for the corresponding
fraction can be done prior to the classifier training.
Otherwise, labeling is done after the training. The
extreme fraction thresholds we determined as m +4a,
where m is the 20% trimmed mean mitochondrial (or
intergenic) fraction across cells in the dataset, and a is
the median absolute deviation of the corresponding
fraction.

Validation of the results

Validation of the algorithm was based on the assumption
that the rescued cells (i.e., cells with low numbers of mole-
cules, which would be filtered with size-threshold-based al-
gorithms) should have similar gene expression patterns to
the real cells. As a first step, KDE classification was per-
formed for all cells that passed a pre-defined threshold on
the minimal number of expressed genes. The threshold
value was taken to be 20 for the inDrop datasets and 50 for
the larger 10x 8k PBMC dataset. Cells that had a quality
score less than 0.9 and the number of molecules less than
£y were filtered out (omitted). Next, we annotated cell types
and performed differential expression analysis for each type.
We selected several cell types (i.e., cell clusters) that showed
substantial cell differences between the threshold-based
and KDE filtration, and generated gene expression heat-
maps for all cells in these clusters, showing the most differ-
entially expressed genes for each cluster (see “Results”). To
plot such gene expression heatmaps we: (i) normalized
molecule counts for each gene by the total number of
molecules detected in a given cell; (i) transformed expres-
sion values to their rank values within a gene; and (iii)
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normalized by the total number of cells on the plot
(to obtain values in the [0; 1] range). A similar
procedure was used for t-SNE visualization of gene
expression in Additional file 1: Figures S12-S14. To
choose cluster-specific genes we used the following
procedure:

1. For each cluster we identified differentially
expressed genes by comparing it against every other
cluster using the Seurat R package [25].

2. For each differential gene we counted the number of
clusters where it was detected. No more than 50 genes
with the largest number of clusters were picked.

3. Only genes that were expressed in > 60% of the
cells in at least one of the clusters were shown.

Mouse bone marrow inDrop measurements

Whole bone marrow cells were isolated from
11-week-old C57Bl/6 male mice (Jackson Laboratory).
The epiphysis/metaphysis fraction from long bones was
collected, crushed, cut into small pieces, and digested
using Collagenase I (STEMCELL Technologies) with
agitation for 30 min at 37 °C. Bone marrow cells were
filtered through a 70-um filter. Red blood cells were
lysed using Ack-lysis (ThermoFisher Scientific) on ice
for 5 min, quenched with Media 199 (ThermoFisher
Scientific) supplemented with 2% fetal bovine serum
(ThermoFisher Scientific), and spun down at 500 g for
5 min. Cells were stained for 30 min with the red blood
cell marker TER119 (Biolegend) and cells were sorted
using DAPI (ThermoFisher Scientific) as a live/dead via-
bility marker. Live whole bone marrow cells (400,000;
negative for TER119) were sorted into medium 199
(ThermoFisher Scientific). Before inDrop encapsulation
cells were counted using a Cellometer (Nexcelom
Bioscience). Cell viability was over 90%.

InDrop processing

The concentration of cells was adjusted to 300,000
cells/ml by adding PBS to the sorted cells. The cell
suspension was then mixed 1:1 (v/v) with PBS con-
taining 30% OptiPrep Density Gradient Medium
(Sigma D1556) to obtain 150,000 cells/ml in 15%
Optiprep. Using four microfluidics pumps and a poly-
dimethylsiloxane (PDMS) microfluidic device, about
10,000 cells were co-encapsulated with barcoded poly-
acrylamide beads and a reverse transcription mixture
containing Superscript III into water-in-oil droplets,
according to a published protocol [26]. The library
preparation and quality control procedures were car-
ried out as described [26]. Indexed libraries were
pooled and sequenced on a Next-seq 500 system
(Illumina) at 2 pM concentrations.
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Mouse-human cell line mixture inDrop measurement
CK1750 mouse lung cancer cells (Carla Kim laboratory,
Boston Children’s Hospital) and K562 human immortalized
myelogenous leukemia cells (ATCC) were mixed at a 1:1
ratio to obtain 70,000 cells/ml in PBS containing 15%
Optiprep. About 3000 cells were co-encapsulated with bar-
coded polyacrylamide beads and a reverse transcription
mixture containing Superscript III into water-in-oil drop-
lets; and a library was prepared according to a published
protocol [26]. The library was sequenced on a MiSeq sys-
tem (Illumina).

Availability and requirements
Name: dropEst
Homepage: https://github.com/hms-dbmi/dropEst
OS: linux, OS X
Programming language: C++, R
License: GPL-3.

Additional files

Additional file 1: Supplementary figures with legends. (PDF 4377 kb)
Additional file 2: Supplementary tables. (PDF 41 kb)

Additional file 3: Example of the report, generated by the pipeline.
(PDF 544 kb)
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Genomics frozen PBMCs (donor A), [7, 27]).
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omics AMLO35 pre-transplant BMMCs [7, 28]).

7. Human post-transplant bone marrow mononuclear cells (900 cells, 10x
Genomics AMLO35 post-transplant BMMCs [7, 8]).

8. Human frozen bone marrow mononuclear cells (2000 cells, 10x Genomics
frozen BMMCs (healthy control 1) [7, 29]).
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healthy donor [11]).
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12. Mixture of Tk human and mouse cells (1100 cells, Drop-seq, GEO GSE63269 [2]).
13. Human 8k PBMCs (8000 cells, 10x Genomics human 8k PBMCs from a
healthy donor, [31]).

The dropEst pipeline implementation is available on github (under GPL-3
license): https://github.com/hms-dbmi/dropEst [32].
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