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INTRODUCTION 
 

Cholangiocarcinoma (CCA) is a highly fatal cancer, 

with often challenging disease diagnosis, treatment, and 

prognosis [1]. Most CCA patients with advanced 

disease have short median survival times of less than 1 

year after diagnosis [2]. The molecular mechanism 

underlying the malignant progression of CCA remains 

ambiguous. Very limited clinical treatment options are 

available because CCA is insensitive to conventional 

chemotherapy and radiation treatment [3]. Therefore,  

 

how to develop novel therapeutic strategies for CAA is 

crucial and urgent, especially for recently concerned 

strategy of molecular targeted therapy. 

 

Over the past decade, abnormally expressed genes 

associated with CAA have been studied. These genes 

have been shown to largely contribute to CCA 

occurrence and development. Some of these genes are 

related to the processes of cell growth, DNA mismatch 

repair, immortalization, the cell cycle, and other 

biological pathways [3]. Specifically, p53 and 
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ABSTRACT 
 

Cholangiocarcinoma (CCA), an aggressive tumor with poor prognosis, is a malignant cancer with increasing 
incidence and mortality rates. It is important to survey crucial genes in CCA to find and design potential drug 
targets, especially for those genes associated with cell proliferation that is a key biological process in 
tumorgenesis. Herein, we surveyed genes associated with cell proliferation via a comprehensive pan-cancer 
analysis. Candidate genes were further analyzed using multiple approaches, including cross-analysis from 
diverse molecular levels, examination of potential function and interactions, and additional experimental 
validation. We primarily screened 15 potential genes based on 11 validated genes, and these 26 genes were 
further examined to delineate their biological functions and potential roles in cancer treatment. Several of 
them were involved synthetically lethal genetic interactions, especially for RECQL4, TOP2A, MKI67 and ASPM, 
indicating their potential roles in drug design and cancer treatment. Further experimental validation indicated 
that some genes were significantly upregulated in several cancer cell lines, implying their important roles in 
tumorigenesis. Our study identifies some genes associated with cell proliferation, which may be potential 
future targets in molecular targeted therapy. 
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p16INK4A contribute to oncogenesis in the biliary tract, 

and are often abnormally expressed in cancer [4, 5]. For 

cancer cells with unlimited proliferation, some genes 

are crucial for the cell proliferation process, which is 

coordinated with cell death during normal cell 

development. Genes associated with cell proliferation 

can be used as markers to track the cell state. Abnormal 

expression of such genes, especially up-regulation 

patterns, may indicate the deregulation of cell 

proliferation. These genes may also provide potential 

therapeutic targets for targeted therapy strategies. 

Therefore, the screening and identification of 

abnormally expressed genes during CCA would provide 

potential molecular targets for exploiting novel 

chemopreventive and therapeutic strategies. 

 

Herein, we systematically analyzed genes associated with 

cell proliferation based on abnormal expression profiles 

through a pan-cancer analysis with multiple validations. 

First, we identified a series of experimentally validated 

genes associated with cell proliferation in the published 

literatures. Candidate genes were identified based on 

their deregulation in CCA in combination with the pan-

cancer analysis. We then performed functional and drug 

response analyses, examined synthetic lethal genetic 

interactions, and evaluated other levels, to understand the 

potential biological roles of these candidate genes. 

Specific candidate genes were further validated using 

protein profiling and experimental validation to validate 

their expression patterns. This study provides information 

about genes associated with cell proliferation in CCA, 

which may be used as potential drug targets in 

therapeutic strategies. 

 

RESULTS 
 

Overview of expression landscape in 

cholangiocarcinoma 

 

We first analyzed the CCA expression landscape to 

understand the differential expression profiles. Using 

this approach we identified many deregulated genes 

with significantly upregulated or downregulated 

expression patterns (Figure 1A and Supplementary 

Figure 1A). Abnormal expression patterns are partly 

caused by negatively regulating by non-coding RNAs, 

especially for microRNAs (miRNAs). For example, 

miR-21 may be oncogenic by inhibiting PDCD4 and 

TIMP3 in CCA [6], and miR-204 and miR-320 can 

regulate Bcl-2 and Mcl-1, respectively [7]. 

miRNA:mRNA interactions are widespread based on 

validated datasets in Starbase [8] (Supplementary  

Figure 1B). Some pairs show significant negative 

correlations, implicating their interactions and potential 

regulatory roles of miRNAs. Indeed, many miRNAs 

have been shown to have important regulatory roles and 

to contribute to abnormal mRNA expression profiles 

[9–11].  

 

Our screening of abnormally expressed genes revealed 

different enriched KEGG (Kyoto Encyclopedia of 

Genes and Genomes) pathways for upregulated and 

downregulated genes (more enriched pathways were 

found in downregulated genes), indicating potentially 

different biological functions between these deregulated 

genes (Supplementary Figure 1C). Few of the 

abnormally expressed genes were identified as 

functional genes, such as core essential genes, 

oncogenes, and cancer gene census (CGC) (Figure 1B 

and Supplementary Figure 1D). Random testing showed 

that functional genes were more likely to be normally 

expressed than they were to be deregulated (based on 

1,000 times, p = 1.0000, Figure 1B). These results 

suggest that the crucial nature of functional genes 

means that they are strictly regulated and stably 

expressed owing to their important biological roles. 

Hallmarks of cancer could be detected, such as growth 

signal self-sufficiency and insensitivity to antigrowth 

signals (Supplementary Figure 1E), implying that these 

abnormally expressed genes have biological roles in 

tumorigenesis. To understand the dominant expression 

landscape in CCA, we first screened 94 abundantly 

expressed deregulated genes (|log2FC| > 2 and padj < 

0.05). These genes were abnormally expressed at least 

in nine cancer types, and the majority showed consistent 

expression distribution across various tissues (Figure 

1C). Consistent abnormal expression patterns across 

diverse cancer types indicates that these genes may 

contribute to basic biological processes, particularly in 

relation to their potential roles in tumorigenesis.  

 

Our CCA sample sizes were insufficient to perform 

prognostic analysis. Therefore, to investigate the 

potential relationship between abnormally expressed 

genes and prognosis, we selected some genes and 

performed survival analysis in cancer types related to 

CCA. These mainly included liver hepatocellular 

carcinoma (LIHC) and pancreatic adenocarcinoma 

(PAAD). The molecular pathogenesis of CCA is similar 

to that of hepatocellular cancer, and some dominant risk 

factors are associated with both cancer types. Moreover, 

transcriptome analysis has confirmed some common 

genomic features between the two cancer types [12–14]. 

These deregulated genes, including BIRC5 and HRG 

(histidine-rich glycoprotein), may be correlated with 

prognosis, although they show dynamic expression 

across diverse tissues (Figure 1D). BIRC5 was 

upregulated in intrahepatic cholangiocarcinoma,  

and may contribute to the development of diagnostic 

and therapeutic strategies [15]. Another gene, HRG,  

was significantly deregulated in intrahepatic 

cholangiocarcinoma and may inhibit tumor growth and 



 

www.aging-us.com 2628 AGING 

 
 

Figure 1. Abnormally expressed genes in CCA (named CHOL in TCGA) and their expression patterns across diverse cancer 
types. (A) Gene expression profiles in CHOL. Red point shows up-regulated gene (log2FC > 1.5 and padj < 0.05), blue point shows  

down-regulated gene (log2FC < -1.5 and padj < 0.05), and grey point shows normally expressed gene. Some abnormally expressed genes are 
presented their names. Red dotted lines show thresholds of log2FC (1.5 and -1.5) and padj (0.05). The baseMean values in DeSeq of these 
involved genes are not less than 50. (B) For screened abnormal genes, distributions of associated functional genes (mainly including essential 
gene, CGC, oncogene, etc) are presented. Compared with random result in the equal number of normally expressed genes, fewer abnormal 
genes are identified as functional genes. (C) Pan-cancer analysis of expression distributions of 94 screened dominant abnormal genes in CHOL 
(baseMean value > 500, log2FC > 2 or < -2, padj < 0.05), and all of these genes are abnormally expressed (log2FC > 2 or < -2, padj < 0.05) at least 
in 9 cancer types. (D) Examples of survival analysis of BIRC5 and HRG in LIHC and PAAD, and their expression distributions across different 
cancer types. (E) BIRC5 expression in paired tumor and normal samples, and the log2FC value and p value are also presented based on paired t-
test. T indicates tumor samples, and N indicates paired normal samples. The total sample size is presented after cancer name. 
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metastasis [16]. Furthermore, to validate the expression 

patterns of BIRC5 and HRG across individuals, paired 

samples were used to present their expression patterns. 

The results of paired analysis indicated that  

the expression of these genes was relatively stable 

(Figure 1E and Supplementary Figure 1F), while 

significant expression differences were observed across 

diverse cancer types. Based on current sample 

distributions, these results further validate that 

differential analysis produces stable results. 

 

Screening of genes associated with cell proliferation 

 

MKI67, a typical proliferation marker, is a key gene in 

cell proliferation [17–19], and it is used to screen 

candidate cell proliferation related genes. To increase 

our screening sensitivity, we included another 10 genes 

associated with cell proliferation in breast cancer 

(BIRC5, CCNB1, CDC20, CEP55, NDC80, TYMS, 

NUF2, UBE2C, PTTG1, and RRM2) [20]. Together, 

these 11 validated genes were used to further screen 

potential cell proliferation associated genes.  

 

These 11 genes showed significantly upregulated 

expression patterns in CCA, and most were also 

upregulated in other cancer types (Figure 2A). 

Upregulated expression of these genes supports the 

contention that they may have crucial cellular roles and 

contribute to the occurrence and development of diverse 

cancer types. The observed consistent expression trends 

indicate that these genes have common features in 

tumorigenesis. Based on the 94 deregulated genes 

identified by screening (Figure 1C), we performed a 

comprehensive correlation analysis in CCA. To filter 

potential genes associated with cell proliferation, we 

screened this data set for genes with expression that 

significantly positively correlated with the 11 validated 

genes. Using this approach, we identified 15 genes, all 

of which were significantly upregulated in CCA, and 

were positively correlated with MKI67 and at least three 

other validated genes (R > 0.30, FDR < 0.05) (Figure 

2B). To understand the expression patterns of these 15 

genes in diverse cancer types, we analyzed their R 

coefficient distributions with 11 validated genes. We 

found that these screened 15 genes tended to show 

positive R coefficient distributions across diverse 

tissues (Figure 2C), implying that they may be crucial in 

pathophysiological cancer processes via over-

expression. Therefore, we collected 26 genes associated 

with cell proliferation. The 11 validated genes were 

previously reported in other cancer types, so we 

analyzed their expression in CCA to predict their 

potential roles in tumorigenesis. All 26 genes were 

significantly upregulated in tumor samples (p < 2.2e-16, 

Figure 2C). Similar results were also observed across 

diverse cancer types (Supplementary Figure 2A).  

We found that these 26 genes showed dynamic 

expression across different tissues, but consistent over-

expression patterns were observed (Figure 2D). The 

stable over-expression patterns in diverse cancers 

implies that these genes are crucial for the occurrence 

and/or development of cancers. Some of the identified 

genes have important roles in tumorigenesis. For 

example, FOXM1 and MYBL2 may be key regulators of 

cell proliferation in non-small lung cancer [21], MYBL2 

is associated with cell proliferation in liver cancer cells 

[22], TPX2 may be a potential therapeutic target in 

genomically unstable cancer cells [23], and PLK1 may 

contribute to autophagy in osteosarcoma cells [24].  

 

Function analysis showing important biological roles 

for 26 genes 

 

To understand how the collected 26 genes correlate with 

cancer, we examined whether they have crucial cellular 

roles. We found that most of these genes have important 

roles or contribute to biological functions. Of the 26 

genes, 17 (65.38%) were identified as core essential 

genes, 14 (53.85%) were oncogenes, 11 (42.31%) were 

enriched in KEGG pathways, and nine (34.62%) were 

correlated with hallmarks of cancer (Figure 2C). Several 

genes, including CCNB1, CDC20, CDC6, PLK1, and 

PTTG1, had multiple roles as core essential genes, 

oncogenes, and roles as hallmarks of cancer and in 

KEGG pathways. The cell cycle was the most enriched 

KEGG pathway (FDR = 0.0150), while no significant 

pathway was enriched in the 94 deregulated genes 

identified through screening (without 11 validated 

genes). Gene Ontology (GO) analysis for biological 

process terms revealed that only platelet degranulation 

was enriched in the 94 deregulated genes. However, 

eight terms were significantly enriched in the 26 genes 

associated with cell proliferation (Figure 3A). Taken 

together, these results imply that the 26 genes identified 

are crucial and have important roles in multiple 

biological processes.  

 

The cell cycle and oocyte meiosis were the most 

dominantly enriched pathways for these 26 genes, and 

growth signal self-sufficiency and insensitivity to 

antigrowth signals were the most enriched cancer 

hallmarks (Supplementary Figure 2B). Some candidate 

genes showed significant over-expression patterns and 

were crucial nodes in the cell cycle process. These 

indicated that the screened 26 genes have important 

biological roles, especially in relevant pathways or 

biological processes associated with cell proliferation 

(Supplementary Figure 2B and 2C). Similar results were 

also obtained for cellular component terms (Figure 3A 

and Supplementary Figure 3A), indicating that these 26 

genes have important biological roles and contribute to 

multiple crucial biological pathways. 
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To understand the complex association between these 

screened genes and other disease types, we predicted 

the potential associations of gene sets and diseases. 

Using the 94 genes deregulated in CCA, we found that 

several disease types were enriched. These include 

malignant neoplasm of mouth, invasive ductal breast 

carcinoma, chronic liver disease, thrombosis, and liver 

cirrhosis (Figure 3B). Some diseases were also enriched 

for the 26 identified genes, including invasive ductal 

breast carcinoma, retinoblastoma, and polycystic ovary 

disease (Figure 3C, Supplementary Figure 2C and 3A). 

Although there were 15 common genes in both of these

 

 
 

Figure 2. Screening candidate genes associated with cell proliferation. (A) Expression patterns of validated 11 genes associated with 

cell proliferation across diverse cancer types. (B) Correlation analysis of screened abnormally expressed genes with 11 validated genes in CCA 
(repeated genes have been removed from 94 genes). Deregulated patterns are also presented on the left. * indicates significant statistical 
result (padj < 0.05 for the left figure or FDR < 0.05 for the right figure, and these involved genes show up-regulated or down-regulated 
expression with |log2FC| > 2 and padj < 0.05). Fifteen up-regulated genes with positive correlation with more than 4 validated genes are 
believed as candidate genes with cell proliferation. (C) Distribution of correlations of 15 candidate genes across different cancer types, showing 
many of them have positive correlations with validated genes. The total 26 genes show significant difference between normal and tumor 
samples in CCA (p < 2.2e-16). (D) These 26 genes show dynamic expression patterns across various cancer types, but most are up-regulated.  
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Figure 3. Function analysis of deregulated genes. (A) Enriched significant GO terms based on 26 candidate genes using David platform. 

(B) Enriched disease network of 94 deregulated genes.(C) Enriched disease network of screened 26 candidate genes. 
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gene sets, only invasive ductal breast carcinoma was the 

common enriched disease type. We further queried the 

roles the filtered 26 genes in multiple biological 

processes (Supplementary Figure 2C and 3A, 3B). 

Some of these genes were crucial nodes in the cell cycle 

pathway, could be enriched in several significant GO 

terms, and some were related with other disease types. 

Taken together, these results provide evidence for their 

roles in basic biological and pathophysiological 

processes, especially in tumorigenesis, and support their 

potential in targeted cancer therapy. 

 

Potential synthetic lethal genetic interactions for 26 

genes 

 

Synthetic lethality, a type of genetic interaction, is 

emerging as a promising potential anticancer strategy 

that may be used to identify new antibiotic or 

therapeutic targets [25, 26]. For the 26 genes with 

potential roles in cell proliferation, it is necessary to 

further query potential negative genetic interactions 

between them and other genes. Such information will 

contribute to identifying their potential roles in anti-

cancer strategy. 

 

We analyzed the mutation profile of these screened 

genes across 33 cancer types, and identified mutated 

sites in many cancers (Figure 4A and 4B). In  

eight cancer types, mutations in all 26 genes were 

detected in patients. However, in patients with CCA, 

mutations were identified in only four genes: MKI67, 

ASPM, TOP2A, and RECQL4 (Figure 4B). This may 

be a function of the small CCA sample size in this 

study. Mutation profiles in other cancer types, with 

larger sample sizes, were sufficient to show the 

mutation trends of these genes and their potential 

association with the occurrence of cancer (Figure 4B 

and Figure 4B).  

 

Then, according to currently gene pairs with synthetic 

lethality (experimentally validated and predicted), these 

26 genes were surveyed for potential gene pairs (pairs 

contained one candidate gene were collected). Negative 

interactions were detected between 23 candidate genes 

and another 213 genes, and a total of 284 gene pairs 

were finally filtered. Among of these, 75% of genes 

were detected in one interaction, and only 11 genes 

were detected in more than 10 interactions with other 

genes (with the exception of NAE1, all other genes  

were those screened and identified in our study). In 

particular, 93 interactions were detected for TYMS 

(Figure 4C). TYMS has been reported as an important 

gene in diverse cancers, including red blood cell folate 

and homocysteine concentrations [27], and metastatic 

colorectal cancer [28–30]. Further, the interaction 

network showed that these genes showed diverse 

expression patterns in CCA, and that the pattern of over-

expression was dominant (Figure 4D). Four genes with 

mutations identified in patients with CCA, RECQL4, 

TOP2A, MKI67, and ASPM, were found to have 

complex interactions with other genes, some of which 

showed significantly positive expression correlations 

(Figure 4D). These potential gene interactions indicate 

that complex gene networks can be used to identify 

novel antibiotic or therapeutic targets, and that the 

interactions will be more complicated if non-coding 

RNAs are involved.  

 

Moreover, among these 26 genes, only eight gene pairs, 

containing 12 genes, were detected. Nine of these 12 

genes were identified as essential genes, and two of 

them were involved in mutation (Supplementary Figure 

3C). All of the gene pairs with synthetic lethality 

implied negative interactions, indicating that potential 

drug targets can be screened based on synthetic 

lethality. Indeed, increasing attention is being paid to 

synthetic owing to the potential application as a drug 

target in novel treatment method.  

 

Potential roles in cancer pathway activity and drug 

response 

 

To understand the potential relevant cancer pathway 

roles of the 26 screened genes, we performed the 

relevant analysis using GSCALite [31]. This analysis 

allows us to predict activation or inhibition roles in 

cancer-related biological pathways. We found that  

most of these genes showed consistent roles in  

relevant pathways, including activation roles in cell 

cycle and apoptosis pathways, and inhibition roles in 

RAS/MAPK and hormone ER pathways (Figure 5A). 

These results indicate that these genes are crucial in 

diverse biological processes, and that their abnormal 

expression may lead to the activation or inhibition of 

normal biological pathways. Specifically, CDC20 was 

associated with apoptosis (Supplementary Figure 3D), 

indicating that it contributes to the cellular apoptosis 

process. The functional role of CDC20 has been 

reported in the cell cycle, proliferation, and apoptosis 

[32, 33], and it may present a potential novel cancer 

therapeutic strategy as a candidate target [34]. Our 

results indicate that these candidate genes are always 

abnormally enriched in cancer samples, and are prone 

to over-expression (Figure 2), implying a potential 

correlation between their abnormal expression and 

cancer processes.  

 

Given the association between these genes and cancer, 

we analyzed their potential drug responses to 

understand their potential roles as drug targets. First, 

based on the 94 abnormally expressed genes in CCA, 

we found some of them showed significant correlations 
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Figure 4. Potential synthetic lethal genetic interactions in CCA. (A) Distribution of mutation genes across cancer types based on 26 

screened genes. (B) Distribution of mutation gens across individuals for 4 genes with mutation. (C) Distribution of interacted numbers based 
on validated/predicted synthetic lethal genetic interactions, and several genes with more than 10 interactions are also presented. (D) 
Interaction networks among synthetic lethal genetic interactions based on 26 genes. Networks of 4 genes with mutations are detailed 
presented on the right, and the correlations with the 4 genes are also presented. * indicates significant correlations between these interacted 
genes (FDR < 0.05). 
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with drugs (Supplementary Figure 4A). For specific 

drugs, most related genes showed consistent gene-drug 

associations, indicating the existence of complex gene-

drug interactions, and potential interactions between 

different genes (such as genetic interactions among 

genes). Then, for the screened 26 genes, only 3 of them 

had significant drug responses in CCA (Figure 5B and 

Supplementary Figure 4B). For example, RECQL4, 

TYMS, and TPX2 showed correlations with some  

drugs, and multiple interactions were be detected 

between these genes. Although the CCA sample size 

obtained from The Cancer Genome Atlas (TCGA) was 

small, the significant correlations observed between 

genes and drugs validate that the identified genes of 

interest may be potential drug targets for the design of 

corresponding drugs. Further survival analysis 

indicated that most candidate genes were significantly 

correlated with prognosis in LIHC and PAAD, 

implying their potential roles in cancer prognosis 

(Figure 5C, Supplementary Figure 4C, and 4D). Some 

of them have been shown to have important roles in 

disease prognosis. For example, TPX2 is associated 

with poor survival in gastric cancer [35], targeting 

TPX2 can suppress tumor cell growth in prostate 

cancer, and TPX2 is a potential therapeutic target and a 

prognostic indicator in clear cell renal cell carcinoma 

[36]. The roles of these candidate genes, their 

interactions with other molecules, and their potential 

 

 
 

Figure 5. Interactions of gene-drug and potential biological roles of some genes. (A) Pie distributions of associations of 26 genes 

and pathways, and their roles in pathways, activation or inhibition, are also presented. (B) Gene-drug interactions in CCA. All of these 
involved drugs are predicted with positive (DR > 0.1, p < 0.05) or negative (DR < -0.1, p < 0.05) correlations. Red lines show significant positive 
or negative correlation. (C) Survival analysis of TPX2 in relevant cancer types showing their potential role in disease prognosis.  
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roles as drug targets genes should be examined in 

future experiments. 

 

Protein expression profiling and experimental 

validation showing deregulated proteins 

 

Functional analysis showed that some of genes of 

interest may be potential drug targets. To validate the 

expression levels of these relevant genes, we performed 

protein expression profiling using Triple TOF 5600in 

11 paired CCA tissue samples. 

 

First, the expression profiles of 94 abnormally 

expressed genes were queried, and 39 showed high 

enrichment levels (Figure 6A). Then, examination of 

the 26 upregulated genes revealed that four of them 

were identified as upregulated proteins that were 

consistent with mRNA expression result (Figure 6B and 

Figure 6C). Over-expression of these four genes at 

both mRNA and protein levels verified their roles in 

the carcinogenic process, and further drug analysis 

(based on diverse cancer types) verified that CENPF 

may be a potential drug target (Figure 6D). These four 

genes have important roles in biological pathways, 

including activation roles in EMT pathways, and 

CENPF has significant activation roles in apoptosis, 

cell cycle, and DNA damage response (Figure 6E and 

Supplementary Figure 4E). 

 

Further experimental validation showed that both 

COL10A1 and CENPF were significantly upregulated 

in four cell lines, and CTHRC1 was significantly 

upregulated in the HCCC-9810 cell line specifically 

(Figure 6F–6H). Upregulation of COMP was validated 

via protein profiling, but COMP expression was 

inconsistent across the four cell lines used. COMP 

expression was significantly upregulated in CCT, but 

significantly downregulated in other cell lines (Figure 

6G and 6H). Indeed, CENPF was mechanically linked 

to altered metabolism and progression in prostate 

cancer, and may be a crucial regulator [37]. 

Overexpression of CENPF may correlate with poor 

prognosis in breast cancer [38], CENPF may be a new 

prognostic biomarker in nonmuscle invasive bladder 

cancer [39], and the HnRNPR-CCNB1/CENPF axis 

contributes to gastric cancer proliferation and 

metastasis [40]. FOXM1 and CENPF co-expression 

could be a potential robust prognostic indicator of poor 

survival and metastasis in prostate cancer [41], and 

these two genes may contribute to driving prostate 

cancer [42]. 

 

DISCUSSION 
 

Homeostasis of cell number is quite important for the 

maintenance of the architecture and function of normal 

tissues. However, cancer cells become masters of their 

own destinies by deregulating growth-promoting 

signals, and sustained proliferative signaling is a 

hallmark of cancer [43]. The detailed regulatory process 

in cancer cells is quite complex, and genes associated 

with cell proliferation may be crucial markers for 

tracking or assessing cell status. It is important to 

understand which of the genes that are crucial for cell 

proliferation are also crucial for abnormal cancer cells. 

This understanding will contribute to further screening 

and the identification of potential antibiotic or 

therapeutic drug targets.  

 

We are particularly interested in genes associated with 

cell proliferation in CCA. Cell proliferation is an 

important process in tumorigenesis so we used a pan-

cancer analysis to identify genes associated with cell 

proliferation. We performed a systematic analysis 

across different cancer types and tissues which allows 

for cross-validation. First, we screened for genes that 

were abnormally and dominantly expressed in CCA and 

further queried their expression patterns in other tissues. 

Genes with consistent expression levels were used to 

filter target genes. Validation of abnormally expressed 

genes in other tissues may provide additional gene 

expression pattern information and could implicate 

them as having important roles in biological processes. 

Second, 11 experimentally validated genes associated 

with cell proliferation were collected and their 

expression patterns were analyzed (MKI67 is the most 

crucial gene, because it is a classical marker gene in cell 

proliferation). Candidate gene expression patterns were 

compared with those of the 11 validated genes and 

correlations were identified. Significantly positive 

expression correlation is crucial for screening genes 

associated with cell proliferation. As crucial 

components of the cell proliferation process, the 

expression levels of these  genes may reflect cell 

proliferation. Third, candidate genes were further 

queried for their potential functions, which indicates 

their biological roles in the cell proliferation process. 

Using these methods, our primary screen identified 15 

candidate genes, and further analysis revealed a total of 

26 candidate genes. Most of these genes have important 

biological roles that have been previously reported, and 

functional analysis and validation revealed some of 

them as potential targets in cancer treatment, especially 

their roles in clinical anticancer therapies based on 

synthetic lethal genetic interaction. 

 

Taken together, using a systematic analysis across 

different cancer types and tissues, we identified 26 

candidate genes associated with cell proliferation. These 

genes may be crucial for the occurrence and 

development of CCA. Further validation should focus 

on their roles as potential therapeutic targets. 
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Figure 6. Further expression patterns of relevant proteins via protein profiling. (A) Expression distribution of detected proteins 

based on screened 94 genes. (B) The 4 proteins, CENPF, COL10A1, COMP and CTHRC1, are abnormally over-expressed in tumor samples (FC > 
1.3, p < 0.05). (C) For the 4 up-regulated proteins, consistent expression patterns are detected in CCA at mRNA levels. (D) Drug responses for 
CENPF across different cancer types.* indicates significant correlations (p < 0.05). (E) Predicted roles of the 4 genes in biological pathways 
(activation or inhibition). (F). RT-PCR results for screened genes in different cell lines. * indicates p < 0.05, ** indicates p < 0.01, and *** 
indicates p < 0.001 (all experiments are repeated three times). (G) The detailed expression trends for each gene based on each experimental 
validation. (H) The detailed expression trends for each cell line based on each experimental validation. 
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MATERIALS AND METHODS 
 

Data source 

 

Mutation data, RNA sequencing data, and clinical  

data for 33 cancer types were obtained from  

TCGA (https://tcga-data.nci.nih.gov/tcga/) using the 

“TCGAbiolinks” package [44] (http://doi.org/10.1093/ 

nar/gkv1507). Other data used, including drug data, 

were obtained from public databases and/or published 

literatures, and they would be described in 

corresponding parts.  

 

Screening potential genes associated with cell 

proliferation 

 

Differential expression profiles were estimated in diverse 

cancers using DESeq2 [45], and genes with abnormal 

expression profiles were filtered if |log2FC| > 1.5 and 

padj < 0.05 (adjusted p-values). Genes differentially 

expressed in CCA (named CHOL in TCGA database) 

were collected. To understand the roles of these genes in 

other cancer types, their expression patterns were queried 

in diverse tissues (abnormal expression profiles were 

collected from 16 cancer types, because some cancer type 

had small sample sizes in either the normal or tumor 

groups (< 8)). Genes involved in the cell proliferation 

process should have consistent features across different 

cancer types because they are important in the 

development of cancer. Therefore, it is important to 

assess the expression patterns of candidate genes in 

diverse cancer types, not only in CCA.  

 

We then developed a panel of 11 genes with 

experimentally validated cell proliferation association. 

These included the MKI67 cell proliferation genetic 

marker, and an additional 10 genes [20]. Potential aim 

genes were first screened based on their patterns of 

upregulation and their positive correlation with the 11 

validated genes. Candidate genes, together with the 11 

validated genes in other cancer type, were further 

analyzed to identify their biological roles.  

 

Function enrichment analysis 

 

To understand the potential biological function of the 

screened mRNAs, we performed functional enrichment 

analysis using The Database for Annotation, 

Visualization and Integrated Discovery (DAVID) 

version 6.8 [46]. Simultaneously, to further understand 

how the potential candidate gene features related to 

their biological function in cancer physiology, we also 

analyzed potential distribution of these genes in related 

cancer hallmark [47] (http://software.broadinstitute.org/ 

gsea/msigdb/), CGC [48] (http://cancer.sanger.ac.uk/ 

census), core essential genes (derived from the common 

essential genes from Hart et al. [49], Blomen et al. [50] 

and Wang et al. [51]), actionable genes [52], oncogene, 

and tumor suppressor gene [53] datasets. 

 

To understand whether related genes were potential 

drug targets, genes were further queried for drug 

response using the Genomics of Drug Sensitivity in 

Cancer database (GDSC) [54]. Detailed drug response, 

including sensitivity or resistance, was mainly identified 

according to |DF| > 0.1 and p < 0.05.  

 

Based on our pan-cancer analysis and the consistent 

expression features of important cell proliferation 

genes, we used clusterProfiler [55] to delineate the 

complex association between the genes involved and 

disease types. 

 

Estimating potential synthetic lethal genetic 

interactions 

 

Recently, synthetic lethality, a genetic interaction first 

identified in yeast, has been widely considered as a 

means for identifying novel antibiotic or therapeutic 

targets [25, 26]. To examine synthetic lethality in the 

screened genes potentially associated with cell 

proliferation, we identified gene pairs with 

experimentally validated and predicted relevant 

interactions from the SynLethDB database [56], Syn-

Lethality database [57], and published literature [58]. 

Interacting genes were completely screened based on 

the identified gene pairs, and expression patterns and 

gene characters were also queried for those genes  

with interactions to predict their roles as potential 

therapeutic targets.  

 

Survival analysis 

 

To estimate the correlations of candidate genes with 

cancer prognosis, survival analysis was performed. The 

clinical data retrieved from TCGA included survival 

status, cancer stage and grade, survival time, and 

molecular subtype. The patients involved were divided 

into two groups according to the median expression 

level of a specific gene. We used a log-rank test to 

estimate the potential difference between the two 

groups. Statistical significance was assumed when the p 

value was less than 0.05.  

 

Randomization test 

 

To determine the significance of a detected frequency  

of special gene classification, we performed a 

randomization test by randomly selecting normally 

expressed genes with equal numbers. This procedure 

was repeated 1,000 times (the significance was 

estimated based on the proportion of times), and was 

https://tcga-data.nci.nih.gov/tcga/
http://doi.org/10.1093/nar/gkv1507
http://doi.org/10.1093/nar/gkv1507
http://software.broadinstitute.org/gsea/msigdb/
http://software.broadinstitute.org/gsea/msigdb/
http://cancer.sanger.ac.uk/census
http://cancer.sanger.ac.uk/census
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Table 1. Primers used for the real-time PCR.  

Gene Forward Primer Reverse Primer 

CENPF 5'-TTGTAAAGAAAGGGTTTGC-3' 5'- CCAGCTGTTGGTTTGGAGG -3' 

COL10A1 5'-CTTCACTTGAATGGGAGGCACAAGG-3' 5'-TGCAAGGTGCTTTCATCAATGAACC-3' 

COMP 5'-AACACGGTCACGGATGACGACTATG-3' 5'-CACAGAGCGTTCCGCAGCTGTTC-3' 

CTHRC1 5'-TCATCGCACTTCTTCTGTGGA-3' 5'-GCCAACCCAGATAGCAACATC-3' 

 

used to estimate whether the average correlation values 

observed were higher than the real average correlation. 

 

Hierarchical clustering analysis 

 

We performed hierarchical clustering analysis of the 

most dominantly and abnormally expressed mRNAs in 

CCA to present their expression patterns across different 

cancer types using the R package “pheatmap” and the 

average distance algorithm. Simultaneously, correlation 

between genes and validated genes to be involved in cell 

proliferation were also assessed using similar methods. 

 

Protein profiling using Triple TOF 5600 

 

To validate protein expression profiles in CCA, we 

collected 11 pairs of tumor and normal (adjacent-to-

tumor samples) samples from 11 patients that were 

diagnosed with CCA in the First Affiliated Hospital of 

Nanjing Medical University, Nanjing, Jiangsu, China. To 

ensure sample homogeneity, all included patients were 

male with similar ages, and had similar disease processes. 

This study was conducted in accordance with the 

declaration of Helsinki and with approval from the Ethics 

Committee of Nanjing Medical University. Written 

informed consents were obtained from all participants. 

 

Total protein (100 μg) was extracted from each sample 

solution and the protein was then digested with Trypsin 

Gold (Promega, Madison, WI, USA). Dried peptides were 

reconstituted in 0.5 M TEAB and processed using the 8-

plex iTRAQ reagent (Applied Biosystems) following the 

manufacture’s protocol. Protein profiles from the paired 

samples were measured using the Triple TOF5600 

System (AB SCIEX, Concord, ON) fitted with a 

Nanospray III source (AB SCIEX, Concord, ON) at LC-

BIO Technologies (Hangzhou) CO., LTD. Differentially 

expressed proteins were identified using the paired 

Wilcoxon rank sum test, and only those with p < 0.05 and 

fold change > 1.2 were considered significant.  

 

Experimental validation using quantitative real-time 

RT-PCR 

 

To validate the expression of the screened genes, 

particularly those that were overexpressed and verified 

by protein profiling, we selected four CCA cell lines 

(RBE, HCCC-9810, HuCCT1, and QBC939) to verify 

expression patterns based on BEC normal cell lines.  

 

Total RNA was extracted from CCA cells using the 

TRIzol reagent (Invitrogen, Carlsbad, CA, USA). 

cDNA was generated from total RNA using a reverse 

transcription kit (Takara, Dalian, China). Gene 

expression was measured by qPCR (Lightcycler96, 

Roche, Basel, Switzerland) using a SYBR green kit 

(Yeasen, Shanghai, China) and following the 

manufacturer’s instructions. The used primers were 

shown in Table 1, and 36B4 was used as an internal 

control for normalization. 

 
Statistical analysis and network visualization 

 
All statistical analyses were performed using R 

programming language (version 3.4.3), and included the 

Wilcoxon rank-sum test and trend test. Interactions 

between related genes, and drug-gene interactions were 

first estimated, and further network visualization was 

performed using Cytoscape 3.6.0 [59]. Venn distributions 

were generated using a publicly available tool 

(http://bioinformatics.psb.ugent.be/webtools/Venn/). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Expression patterns of abnormally expressed genes. (A) Distributions of baseMean, log2FC and padj in 

abnormally expressed mRNAs in CCA. (B) An example of miRNA-mRNA interaction. Several miRNAs and their target genes are presented, and 
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all of these miRNA-mRNA interactions are detected at least in 15 cancer types (the detailed distributions are presented below the network). 
All of these involved mRNAs are dominantly expressed in CAA. Blue circle shows down-regulated miRNA or mRNA in CAA, red circle shows 
up-regulated miRNA or mRNA, and grey circle shows normally expressed miRNA and mRNA. (C) Enriched significant KEGG pathways of up-
regulated and down-regulated mRNAs, and enriched significant GO terms are shown on the right. (D) Random testing for distributions of 
functional genes based on normal genes. (E) Distributions of KEGG pathways and cancer hallmarks according to abnormally expressed genes. 
(F) HRG expression in paired tumor and normal samples, and the log2FC value and p value are also presented using paired t-test. T indicates 
tumor samples, and N indicates paired normal samples. The total sample size is presented after cancer name.  
 

 
 

Supplementary Figure 2. Gene distribution of screened genes associated with cell proliferation. (A) Distribution of fold change of 

26 genes associated with cell proliferation across diverse cancer types. (B) Distributions of KEGG pathways and cancer hallmarks for 26 genes. 
(C) Expression patterns of screened 26 genes in cell cycle pathway based on expression profiles in CCA, and enriched network of related 
diseases.  
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Supplementary Figure 3. Functional analysis and expression distributions. (A) Enriched significant GO terms using 94 genes. (B) 

Distributions of enriched diseases based on 26 screened genes associated with cell proliferation. (C) Interaction network among 26 screened 
genes with synthetic lethal genetic interactions. Several gene pairs can be detected among these candidate genes. (D) CDC20 is associated 
with cell apoptosis. 
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Supplementary Figure 4. Drug response and potential markers for disease prognosis. (A) Significant drug response of 55 

dominantly expressed genes in CCA (all of these genes have higher enrichment levels in 94 primarily screened genes), and related drug 
results across cancer types (below figure). This figure only presents significant drug result. (B) Only 3 genes associated with cell proliferation 
are detected significant drug response in CCA. This figure only presents significant drug result. (C) Survival analysis of 26 genes associated 
with cell proliferation in LIHC and PAAD, and most genes show significant correlation with prognosis. No significant difference can be 
detected between the two cancer types (p = 0.0370). (D) Survival analysis of two genes in PAAD, showing their roles in disease prognosis. (E) 
Association of screened 4 genes (their protein levels are deregulated) and biological pathways. 


