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Abstract

Background: Subfertility is a major issue facing the dairy industry as the average US Holstein cow conception rate
(CCR) is approximately 35%. The genetics underlying the physiological processes responsible for CCR, the
proportion of cows able to conceive and maintain a pregnancy at each breeding, are not well characterized. The
objectives of this study were to identify loci, positional candidate genes, and transcription factor binding sites
(TFBS) associated with CCR and determine if there was a genetic correlation between CCR and milk production in
primiparous Holstein cows. Cows were bred via artificial insemination (AI) at either observed estrus or timed AI and
pregnancy status was determined at day 35 post-insemination. Additive, dominant, and recessive efficient mixed
model association expedited (EMMAX) models were used in two genome-wide association analyses (GWAA). One
GWAA focused on CCR at first service (CCR1) comparing cows that conceived and maintained pregnancy to day 35
after the first AI (n = 494) to those that were open after the first AI (n = 538). The second GWAA investigated loci
associated with the number of times bred (TBRD) required for conception in cows that either conceived after the
first AI (n = 494) or repeated services (n = 472).

Results: The CCR1 GWAA identified 123, 198, and 76 loci associated (P < 5 × 10− 08) in additive, dominant, and
recessive models, respectively. The TBRD GWAA identified 66, 95, and 33 loci associated (P < 5 × 10− 08) in additive,
dominant, and recessive models, respectively. Four of the top five loci were shared in CCR1 and TBRD for each
GWAA model. Many of the associated loci harbored positional candidate genes and TFBS with putative functional
relevance to fertility. Thirty-six of the loci were validated in previous GWAA studies across multiple breeds. None of
the CCR1 or TBRD associated loci were associated with milk production, nor was their significance with phenotypic
and genetic correlations to 305-day milk production.

Conclusions: The identification and validation of loci, positional candidate genes, and TFBS associated with CCR1
and TBRD can be utilized to improve, and further characterize the processes involved in cattle fertility.
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Background
Subfertility remains a problem in the US dairy industry,
impacting profitability and sustainability as poor fertility
contributes to increased veterinary costs, culling rates,
replacement rates, and additional inseminations to
achieve a pregnancy [1, 2]. Within the dairy industry,

there are several measures used to determine fertility in
heifers and cows but conception rate (the number of
cattle pregnant divided by the total number of cattle in-
seminated) is an important measure as it identifies the
number of services required for a successful pregnancy
to be reached. There has been a substantial decline in
cow conception rates since the late 1950’s, with current
Holstein cow conception rates near 35% [3–5]. This de-
cline is likely due to numerous factors including changes
in physiology, nutritional management of transition
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period and fresh cows, and selection of traits that might
potentially have an adverse effect on fertility (e.g. pro-
duction traits) [3, 4, 6, 7]. As milk production hinges on
successful pregnancies, any antagonistic relationship be-
tween fertility and production traits is problematic. Con-
flicting reports exist, however, as to the exact nature of
the relationship between fertility and reproduction [8, 9].
After years focusing on the incorporation of manage-

ment practices to improve fertility, the dairy industry
has recently turned to genomic selection to further en-
hance fertility. Genomic selection has been widely used
in the dairy industry since the introduction of genomic
evaluations in 2009 with over a million cattle having
been genotyped [10]. Currently, most calves are tested
within a month of age to allow producers to make selec-
tion decisions earlier, reducing costs of raising calves
that will not be kept as replacements. Studies have
shown the positive impact genomic selection has had on
the dairy industry, with García-Ruiz et al. [11] reporting
that genetic improvement for lowly heritability traits in
US Holsteins has improved by a staggering 300–400%
within a 7 year time period. Similarly, the inclusion of
heifer and cow conception rates traits into selection in-
dices has proven to be successful even though the gen-
etic basis of subfertility in dairy cows is poorly
characterized [12, 13]. One way to better understand the
genetic basis of subfertility is to identify loci associated
with cow conception rate through a genome-wide associ-
ation analysis (GWAA). Once identified, these loci may be
used with genomic selection to improve fertility and to
provide insight into how specific loci elicit physiological
effects that lead to pregnancy (and pregnancy loss) in
cows and their effect on milk production in lactating cows.
Therefore, the objectives of this study were to identify loci,
positional candidate genes and transcription factor bind-
ing sites (TFBS) associated with cow conception rate
(CCR) at first service (CCR1) and after repeated services
(TBRD) in primiparous US Holsteins, and determine if
there was evidence of a genetic correlation with loci asso-
ciated with CCR1, TBRD, and milk production.

Results
Genome-wide association analyses
There were 123 (Fig. 1a), 198 (Fig. 1b) and 76 (Fig. 1c)
loci that were associated with CCR1 in the additive,
dominant, and recessive models, respectively (Fig. 2a; see
Additional file 2: Table S1). The estimated heritability of
CCR1 was 0.58 ± 0.06. The five most significant loci as-
sociated with CCR1 in the additive and dominant
models were shared and contained six positional candi-
date genes, while the five most significant loci in the re-
cessive model contained ten positional candidate genes
and two TFBS (Table 1). An additional 263 positional

candidate genes were identified in the remaining loci as-
sociated with CCR1.
For TBRD, 66 loci were associated in the additive model

(Fig. 3a), 95 loci were associated in the dominant model
(Fig. 3b) and 33 loci were associated in the recessive
model (Fig. 3c; see Additional file 2: Table S3). The esti-
mated heritability for TBRD was 0.42 ± 0.07. The top five
loci for TBRD in both the additive and dominant models
were shared (Fig. 2b) and contained eight positional candi-
date genes but these loci contained no TFBS (Table 1).
The five most significant loci in the recessive model con-
tained eight positional candidate genes and two TFBS. In
all, 125 additional positional candidate genes were identi-
fied in the remaining 134 loci associated with TBRD from
additive, dominant and recessive models.
After the GWAA were performed, significant loci as-

sociated with CCR1 and TBRD were compared to iden-
tify if any loci were shared. In total, 122 loci were shared
across phenotypes and models (Fig. 2c). This included
four of the top five loci shared in the additive, dominant,
and recessive models for CCR1 and TBRD (Table 1).
Eighty-three loci associated with CCR1 contained TFBS

for 51 transcription factors (see Additional file 2: Table S2).
This included one of the most significant loci association
with the recessive model (Table 1). Many of the TFBS were
shared in the loci associated with CCR1. For example, the
TFBS for NF-1/L was present at 15 loci, STAT4 was
present at 7 loci, HNF-3β was present at 7 loci, and Pax-5,
Nrf2:Mafk, JunD and c/EBPα were each present at 4 loci.
Twenty-eight loci associated with TBRD contained TFBS

for 27 unique transcription factors (see Additional file 2:
Table S4). None of the five most significant loci associated
with the additive, dominant, or recessive models contained
TFBS. However, four transcription factors (NF-1/L, Nrf2:
MafK, C/EBPα, JunB) had binding sites identified at mul-
tiple loci (see Additional file 2: Table S4).

Copy number variants (CNVs)
Of the 282 unique loci associated with CCR1, 55 (19.4%)
contained SNPs located within one or more CNVs iden-
tified in cattle (see Additional file 2: Table S1). When
the TBRD loci were compared with CNV boundaries, 30
loci contained SNPs that were located within one or
more CNVs which represents 22.4% of all of the unique
loci associated with TBRD (see Additional file 2: Table
S3). When the 122 shared loci associated with CCR1
and TBRD were compared, 26 (21.3%) were within a
CNV (see Additional file 2: Table S1 and Table S3).

Correlations to Milk yield
No significant correlations were identified between geno-
typic and phenotypic correlations between 305MY and
CCR1 or 305MY and TBRD (P > 0.05). The genetic correl-
ation between CCR1 and 305MY was − 0.046 ± 0.14 and the
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phenotypic correlation was − 0.0024 ± 0.031. Similarly, the
genetic correlation between TBRD and 305MY was 0.11 ±
0.17 and was 0.043 ± 0.032 for the phenotypic correlation.
The investigation of the pleiotropic effects of CCR1 and
TBRD with 305MY identified no significant correlations.

Discussion
Heritability estimates
The heritability estimates for CCR1 and TBRD were higher
than previously reported for fertility traits [14–20]. One ex-
ception was a recently published paper using a similar ex-
perimental design in Holstein heifers investigating loci
associated with heifer conception rate [21], which reported
a heritability of 0.61. These high heritability estimates are
likely due to the experimental design. Cows genotyped in

this study were not randomly sampled from the normal
range of a fertility distribution but were chosen from the
extreme tails of the distribution, resulting in a sampling
bias. Further sampling bias resulted from eliminating cows
with confounding factors such as lameness, disease, dys-
tocia and other health factors previously identified to re-
duce fertility. The selection of these cows from the tails of
the phenotypic distribution was designed to enhance the
study with cows that were more likely to conceive or fail to
conceive based on an underlying genetic predisposition. In
previous studies, particularly those based on national or
international data with tens or hundreds of thousands of
animals, heritability estimates are not based on sampling
cattle from extreme tails of the phenotypic distribution and
cattle that exhibited confounding factors such as lameness,

Fig. 1 Manhattan plots for genome-wide association analyses for conception rate at first breeding. Panels a, b, and c present results from the
additive, dominant, and recessive models, respectively. Single nucleotide polymorphisms are represented by a single dot. Bovine chromosomes
are listed on the x-axis. Negative log10 (P values)≥ 7.3 (black line) on the y-axis provided evidence for association (P < 5.0 × 10− 08)
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disease and dystocia were included in the population from
which heritability was estimated. Studies based on national
evaluations would also likely contend with more environ-
mental variability and variations in phenotypic measure-
ments than the smaller number of dairies involved in this
study. Directly comparing heritability estimates for fertility
traits in studies with differences in ascertainment should be
done with caution, as the phenotypes, AI sires, population
structures, and the herd management practices of the dif-
ferent study populations can be quite diverse. Although the
sampling biases within this study may have resulted in in-
flated heritability estimate, this disadvantage may have been
overcome by its theoretical advantage in detecting loci asso-
ciated with fertility in a GWAA with fewer samples.

Loci associated with both phenotypes
The measurement of CCR1 and TBRD provides an over-
view of the complex processes involved in fertilization,
placental development, implantation, maternal recogni-
tion of pregnancy and early embryonic development. It
is expected that some but not all loci associated with
HCR1 would be the same as those associated with TBRD
because of the complexity of the reproductive processes
in the first month of gestation. However, the overlap of
associated loci between models and across phenotypes
suggests a common genetic regulation of both fertility
measurements and the potential to improve both CCR1
and TBRD simultaneously with genomic selection. The
most significant loci associated with CCR1 and TBRD
will, therefore, be discussed further as these loci offer an
insight into both CCR1 and TBRD.

Eight of the top 15 loci (top 5 from each model) were
shared across phenotypes, including 4 loci shared between
the additive and dominant models and 4 loci shared between
the recessive models (Table 1). The function of the 12 over-
lapping positional candidate genes were similar, and could
be placed into three groups based on their functions related
to cell adhesion, olfactory receptors, and steroid hormones.
The four positional candidate genes associated with cell

adhesion (armadillo repeat gene deleted in velocardiofacial
syndrome (ARVCF), gap junction protein beta 4 (GJB4), gap
junction protein beta 5 (GJB5), and junction mediating and
regulatory protein, p53 cofactor (JMY)) are of interest as the
function of cell-cell junctions must change during early
pregnancy establishment [22]. The ARVCF gene is a mem-
ber of the catenin family with functions related to adherens
junctions, which are cadherin-based adhesive structures that
connect actin filaments between neighboring cells [23].
Adherens junctions are important regulators of uterine
structure, and influence uterine receptivity to implantation
in sheep [24]. The JMY gene produces proteins that are
involved in the regulation of cadherins [25], which form
adherens junctions, and are critical to pregnancy establish-
ment [26]. Cadherins and adherens junctions have multiple
functions during early pregnancy in sheep, as there is a
decrease in adherens junctions between days 10–12 of ges-
tation and then an increase in adherens junctions between
days 14–16 [24]. The initial decrease in adherens junctions
allows for an increased transudation that facilitates blasto-
cyst elongation, while the increase in adherens junctions
two days later facilitates implantation [24]. While ARVCF
and JMY proteins have functions relating to adherens

Fig. 2 Relationships of loci identified between genotypic models and phenotypes. Panel a compares loci associated with conception rate at first
breeding (CCR1) across the three genotypic models. Panel b compares loci associated with number of times bred to conception (TBRD) across
genotypic models. Panel c compares loci across both phenotypes and all genotypic models
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junctions, the gene products of GJB4 and GJB5 are import-
ant in gap junctions, which are intracellular ion channels
that allow the passage and exchange of second messenger
molecules and electrical impulses between the cytoplasm of
two cells. The function of gap junctions as a means of com-
munication between uterine stromal cells in early preg-
nancy is vital to uterine angiogenesis and embryo survival
[27]. The GJB4 and GJB5 genes are differentially expressed
depending on day of early pregnancy in placental tropho-
blast cells in mice [28] and in endometrial cells of pigs [29].
The second positional candidate gene group relates to

olfactory receptors and contains three genes: olfactory re-
ceptor 8 U9-like (LOC787620), olfactory receptor-like pro-
tein OLF2 (LOC787642), and olfactory receptor-like
protein OLF2 (LOC787667). Proteins encoded by these
genes constitute olfactory receptors important in signaling
pathways of the olfactory system [30, 31]. Olfactory recep-
tors, are commonly expressed by sensory neurons con-
tained in mammalian olfactory epithelium [32], and are
involved in reproduction in many mammalian species
[33–35] including cattle [36, 37]. However, several olfac-
tory receptors are expressed in other tissues such as the
uterus and the testis [38], although the functions of most
olfactory receptors located outside of olfactory neurons re-
mains unknown [39]. Olfactory proteins within the olfac-
tory epithelium have roles in fertility because of the

intimate relationship with the hypothalamic pituitary axis
and the release of reproductive hormones such as
gonadotropin-releasing hormone (GnRH), oxytocin and
vasopressin [40, 41] which are important in preparation
and maintenance of the uterus for pregnancy.
The final group of positional candidates contains zinc fin-

ger DHHC - type containing 21 (ZDHHC21) and catechol-
O-methyltransferase (COMT) genes which have functions
relating to estrogen and progesterone and/or their recep-
tors which play an important role in preparing the uterus
for and maintaining a pregnancy. This is the second study
to find an association of ZDHHC21 with fertility as
ZDHHC21 was also identified as associated with fertility in
a study using a pathway analysis of genes in beef heifers
subjected to serial embryo transfers [37]. The ZDHHC21
gene produces a protein that functions as a palmitoyl - acyl-
transferase for estrogen receptor alpha, progesterone recep-
tor, and the androgen receptor in mice [42]. The action of
progesterone, facilitated by the progesterone receptor in the
uterus, is critical for pregnancy success [43] as progesterone
signaling modulates endometrial gene expression essential
to embryonic development and pregnancy establishment
[44, 45]. Estrogen and estrogen receptors are also important
for a successful pregnancy as estrogen is essential for the
preparation of the uterus for implantation. The positional
candidate gene, COMT, is a critical component in estrogen

Table 1 Top loci associated with conception rate to first breeding and number of breedings to conception

BTA1 BP Position2 SNP ID3 Model4 CCR1
P-value5

TBRD
P-value6

Positional Candidate Gene(s)7 TFBS8

3 111,540,905
(110,948,044)

rs133945887 Recessive 1.33 × 10−14 7.25 × 10−12 GJB5, GJB4 –

6 38,447,022
(37,013,919)

rs109381958 Additive
Dominant

4.31 × 10−30

4.31 × 10− 30
4.39 × 10− 26

4.39 × 10− 26
– –

6 93,660,111
(91,908,296)

rs132854961 Recessive 1.56 × 10− 14 8.38 × 10− 12 CCNI, LOC101901983 –

8 29,615,889
(29,565,411)

rs134405734 Additive
Dominant

1.42 × 10− 36

1.42 × 10− 36
1.25 × 10− 24

1.25 × 10− 24
ZDHHC21 –

16 387,363
(591,660)

rs133778157 Additive
Dominant

2.99 × 10− 33

2.99 × 10− 33
5.68 × 10− 28

5.68 × 10− 28
LOC787642, LOC787620, LOC787667 –

16 10,340,087
(9,739,230)

rs137501137 Recessive 5.27 × 10− 14 1.12 × 10− 13 – NF-1, Cutl1

17 74,944,074
(72,930,491)

rs133921184 Additive
Dominant

3.35 × 10−37

2.93 × 10− 37
2.59 × 10− 23

5.98 × 10− 22
ARVCF, COMT –

20 23,886,196
(23,863,171)

rs41663374 Recessive 9.41 × 10− 17 1.58 × 10− 11 DHX29, LOC107131567 –

1Chromosome location of the locus
2Single nucleotide polymorphism (SNP) location as measured by numbered nucleotides in reference to the UMD 3.1 genome assembly (http://bovinegenome.org/
?q=node/61; accessed 15 September 2016) or the ARS 1.2 genome assembly (https://www.animalgenome.org/repository/cattle/UMC_bovine_coordinates/;
accessed 19 September 2018) in parentheses
3The most significant SNP in the locus associated cow conception rate as identified by rs number which is a reference number assigned to markers submitted to
the National Center for Biotechnology Information SNP database (https://www.ncbi.nlm.nih.gov/projects/SNP/; accessed 2 April 2018)
4Genome-wide association model
5Significance (P-value) of the most significant SNP associated with cow conception rate at first service (CCR1)
6Significance (P-value) of the most significant SNP associated with number of services per conception (TBRD)
7Positional candidate genes are defined as genes that are located within 17.8 kb on either side of the associated SNP(s)
8Transcription factor binding sites (TFBS) as identified using the Alggen Promo database (http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=
TF_8.3; accessed 26 July 2018)

Kiser et al. BMC Genomics          (2019) 20:840 Page 5 of 13

http://bovinegenome.org/?q=node/61;
http://bovinegenome.org/?q=node/61;
https://www.animalgenome.org/repository/cattle/UMC_bovine_coordinates/;
https://www.ncbi.nlm.nih.gov/projects/SNP/;
http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3;
http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3;


metabolic pathways [46]. The activation of COMT during
the estrous cycle and pregnancy has led researchers to
speculate that COMT activity is sensitive to estrogen levels
[47, 48]. In support of this, studies have linked mutations
in COMT with an increased risk of endometrial cancer
[49] and premature ovarian insufficiency [50] in humans.
Mutations that alter the function of estrogen, progester-
one, and their receptors have the potential to alter uterine
receptivity and implantation [51, 52] leading to pregnancy
loss prior to day 35 .
Transcription factor binding sites regulate gene expres-

sion and thus mutations at these sites may alter gene ex-
pression of positional candidate genes that they are near.
When the TFBS were investigated for the loci associated
with CCR1 and TBRD, C/EBPα, JunD, NF-1/L, and Nrf2:

MafK were identified in 2 or more of the 26 shared loci.
The sharing of TFBS at 26 loci suggests that there may be
joint regulation of CCR1 and TBRD loci in fertility pro-
cesses (see Additional file 2: Table S2 and Table S4). For
example, C/EBPα has been linked to impaired fertility,
likely through regulation of the lutenization and vascular
cell development in C/EBPα/C/EBPβ knockout mice stud-
ies [53], and has been linked to placenta development in
humans [54]. Similar to C/EBPα, the Nrf2:MafK heterodi-
mer regulates placental development in rats [55]. For the
developing embryo and placenta to continue, implantation
must be successful. The process of implantation requires
invasion of the endometrium and in a human study, JunD
and other AP-1 family members were involved in tropho-
blast cell invasion of the endometrium during the

Fig. 3 Manhattan plots for genome-wide association analyses for number of times bred to conception. Panels a, b, and c present results from
the additive, dominant, and recessive models respectively. Single nucleotide polymorphisms are represented by a single dot. Bovine
chromosomes are listed on the x-axis. Negative log10 (P values)≥ 7.3 (black line) on the y-axis provided evidence for association (P < 5.0 × 10− 08)
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implantation process [56]. Unlike the other transcription
factors, NF-1/L is not highly characterized but is thought to
function in a similar fashion to neurofibromin 1 (NF-1)
which negatively regulates the RAS/MAPK signal transduc-
tion pathway which also includes the transcription factors
C/EBPα, JunE, NF-1, and Nrf2:MAFK [57–62]. The RAS/
MAPK signaling pathway is involved in cellular growth,
division, and migration, tissue repair, and angiogenesis [63,
64]. All of these functions are critical for the early embryo
to survive and develop during the first weeks of gestation.
Proper placental angiogenesis is particularly important
and highly regulated as it is crucial for embryo survival
and pregnancy success [65]. Poor placental vasculature
can inhibit the exchange of embryonic nutrients and waste
leading to abnormal growth and/or development [65, 66].
Mutations that impact the function of these transcription
factors have the potential to interrupt the normal RAS/
MAPK signaling and the key functions necessary for
placental and embryonic development.

Loci within copy number variants
An unexpected feature of the loci associated with CCR1
and TBRD was the number of loci that identified within
CNVs. Of the unique (unshared) loci associated with CCR1
and TBRD, 59 (19.9%) were located within CNVs (see
Additional file 2: Table S1 and Table S3). These loci are
characterized by a lack of supporting SNP “trees” in Fig. 1
and Fig. 3, which is not unexpected given that a significant
portion of CNVs exhibit low LD with flanking markers
(r2 < 0.8) [67–69]. Given that the estimated frequency of
CNVs in cattle is 2 to 7% of the genome [70] this represents
an over representation of the number of fertility loci that
would be expected to be found in CNVs. Although others
have identified CNVs associated with reduced reproductive
performance in cattle, it has not been at this frequency. For
example, Kadir et al. (2014) [71] identified a single CNV on
BTA12 in Nordic Red cattle and McDaneld et al. (2014)
[72] identified a single CNV on BTA5 in Bos indicus cattle
that were associated with fertility. As this result was unex-
pected, the current study did not conduct an independent
CNV analysis as the Illumina BovineHD BeadChip was not
designed to have sufficient resolution to differentiate geno-
type intensity differences. Further studies are needed to de-
termine the role of CNVs with cow fertility using genotyping
methods that are specifically designed to detect CNVs.

Correlation of loci associated with conception rate and
Milk production
The selection for primarily milk production in dairy cattle
in past decades has resulted in a decay of fertility until
selection for fertility traits was included in multiple trait
selection indexes in 2003 [12]. Whether this decay was due
to a lack of selection for fertility traits or direct negative
correlation with milk traits has been debated. To determine

if the loci identified in this study were negatively correlated,
the phenotypic and genetic correlations between 305MY,
CCR1 and TBRD were investigated and found to be small
and included zero within the bounds of their standard
errors. This indicated that selection for fertility in this
population would be unlikely to negatively impact milk
production. These results differ from some previous
studies where genetic correlations between fertility traits
and milk production were unfavorable [73–76]. Differing
management practices may have contributed to the
alternate conclusions between studies [4]. For example,
LeBlanc (2004) [77] reported that herds with milk produc-
tion > 10,000 kg per lactation achieved higher fertility than
lower producing herds, and the effect was largely due to
superior reproductive and nutritional management prac-
tices. The LeBlanc [77] study stressed the importance of
managing the nutritional requirements for high producing
cows to meet the energy demands required for high fertility.
Differences in nutritional and reproductive practices
between the current and previous studies might have con-
tributed to the correlation differences between the traits.

Comparison of loci and positional candidate genes
identified in previous studies as associated with fertility
Identifying loci that were associated with CCR1 and TBRD
with other cattle fertility studies provides support for
further investigation of these loci for genomic selection, to
identify causal mutations, and to further understand their
role in the complex processes that occur in the first month
of gestation. The loci associated with CCR1 and TBRD
were compared to 22 previous fertility studies in dairy and
beef cattle (Table 2). Thirty-six loci associated with CCR1
and/or TBRD were identified in other studies including
seven that have been identified in two or more studies
(Table 2). These loci validated in multiple breeds (Holstein
[21, 78–81], Jersey [80] and Angus [37]) and across life
stages (Table 2). Additionally, loci from this study were
compared to previously identified fertility haplotypes in
Holsteins [82]. One QTL (rs134964346) identified in the
current study, fell within Holstein haplotype HH5, which is
located on BTA9 between 93,232,651 and 93,370,998 bp.
This haplotype is associated with premature pregnancy
termination prior to day 60 of gestation and has a carrier
frequency of approximately 5% in North American
Holsteins [83]. The identification of loci across independent
populations, within and across breeds, suggests that the
associated SNPs are located in close proximity to the causal
variant and have large common effects on fertility.
Identifying causal variants associated with fertility traits
would allow the cattle industry to make significant genetic
improvement without the need to continuously assess the
usefulness of markers in LD with the causal variant.
In addition to comparing the loci identified in this

study with previous studies, positional candidate genes
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Table 2 Loci associated with cattle fertility across studies

BTA1 Region (Mb)2 Previous Study(s)3 Previous Phenotype(s)4 Previous Breeds5 Current Study Phenotype(s)6

1 16–17 78 AISC HolsteinN CCR1

1 25–26 81 DPR HolsteinU CCR1

1 62–30 78 AISC HolsteinN CCR1 & TBRD

1 83–84 78 AISH HolsteinN CCR1 & TBRD

1 86–87 78 AISC HolsteinN CCR1

2 53–54 78 AISC HolsteinN CCR1

2 123–124 21,78 HCR1 & TBRD[21]; AISH[78] HolsteinN,U CCR1

3 72–73 78 AISC HolsteinN CCR1 & TBRD

3 81–82 78 AISC HolsteinN TBRD

3 98–99 21 HCR1 & TBRD HolsteinU CCR1 & TBRD

4 37–38 21 HCR1 & TBRD HolsteinU CCR1 & TBRD

5 21–22 21 TBRD HolsteinU CCR1

5 36–37 21 HCR1 HolsteinU CCR1 & TBRD

6 38–39 37 P28 Angus crossesU CCR1 & TBRD

6 93–94 21,78 HCR1 & TBRD[21]; AISC[78] HolsteinN,U CCR1

8 20–21 78 AISC HolsteinN CCR1 & TBRD

8 24–25 78 AISC & AISH HolsteinN CCR1

9 87–88 78 AISC HolsteinN CCR1

11 16–17 21 HCR1 & TBRD HolsteinU CCR1 & TBRD

11 77–78 78 AISH HolsteinN CCR1 & TBRD

11 86–87 21 HCR1 & TBRD HolsteinU CCR1

13 29–30 78,79 AISH[78]; ICF[79] HolsteinC,N CCR1

15 26–27 21 HCR1 & TBRD HolsteinU CCR1 & TBRD

17 3–4 78, 80 FTI, IFLC[78]; CI[80] HolsteinA,I,N, JerseyA CCR1

17 74–75 21 HCR1 & TBRD HolsteinU CCR1

17 75–76 21 HCR1 & TBRD HolsteinU CCR1 & TBRD

18 8–9 78 AISC HolsteinN TBRD

18 21–22 21 HCR1 & TBRD HolsteinU CCR1

19 7–8 21 HCR1 & TBRD HolsteinU CCR1

20 27–28 21,78 TBRD[21]; AISC[78] HolsteinN,U CCR1 & TBRD

24 25–76 78 AISC HolsteinN CCR1

26 19–20 78 AISC HolsteinN CCR1

26 28–29 21,78 HCR1 & TBRD[21]; AISC[78] HolsteinN,U CCR1

26 40–41 81 DPR HolsteinU CCR1

27 21–22 21 HCR1 & TBRD HolsteinU CCR1 & TBRD

28 29–30 78, 80 NRRH[78]; CI[80] HolsteinA,I,N, JerseyA CCR1
1Bos taurus chromosome (BTA) location of the locus
2Region associated locus is located in (in Mb) as measured by numbered nucleotides in reference to the UMD 3.1 genome assembly (http://bovinegenome.org/
?q=node/61; accessed 15 September 2016)
3The citation number for each study a locus was previously associed in is listed
4Traits previously associated with loci abbreviated as follows: AISC - number of inseminations to conception in cows; AISC - number of inseminations to
conception in heifers; CI - calving interval; HCR1 - conception rate to first insemination in heifers; DFS - days to first service; DPR - daughter pregnancy rate; FTI -
fertility index; HCR - heifer conception rate; ICF - interval (in days) from calving to first insemination; IFLC - days from first to last insemination in cows; NRRC - 56
day non return rate in cows; NRRH - 56 day non return rate in heifers; P28- pregnancy success at day 28 post embryo transfer; P42 - pregnancy success within first
42 days of mating; TBRD - number of times bred to conception. If multiple traits are listed from different studies the citation number for study is listed in
superscript brackets
5Cattle breeds loci were previously identified are listed with the country or region the population was from indicated in superscript as follows: Australia - A;
Canada - C; Ireland - I; Nordic - N; United States - U
6Phenotype of the current study the loci was associated with: conception rate at first AI service - CCR1 and TBRD
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were investigated to identify if they have demonstrated
to be differentially expressed during pregnancy or in the
uterus of fertility classified cattle in previous studies.
Positional candidate genes identified in this study were
compared to two previous studies that investigated dif-
ferential expression of genes in fertility classified beef
heifers [84, 85]. There was no concordance in the pos-
itional candidate genes in the current study and the
genes differentially expressed in the Geary et al. (2016)
study [84]. However, 53 (of 291) positional candidates
identified in this study were identified as differentially
expressed in a study by Moraes and colleagues (2018)
[85]. Fifteen of the positional candidate genes associated
with CCR1 or TBRD were differentially expressed in mul-
tiple fertility comparisons (see Additional file 2: Table S5).
Many of these genes have been linked to fertility through
their roles in trophoblasts (GJB5 [86], NOD1 [87], ROBO1
[88]), decidulization (NDRG3 [89], and NOTCH2 [90]),
hormone regulation (PTGFRN [91]) and uterine pH (CA12
[92]). Mutations that alter the functions of these genes
have the potential to impair cellular communication,
implantation, and create an unfavorable uterine environ-
ment which could contribute to early pregnancy loss.

Conclusion
The loci and positional candidate genes associated with
CCR1 and TBRD identified in this study provide further
data for use in genomic selection of dairy cattle. Add-
itionally, the loci associated with favorable CCR1 and
TBRD were not found to be negatively correlated with
305MY, indicating that selection using these loci would
not impair milk production which is of particular im-
portance in the dairy industry.
Multiple loci identified in this study have positional

candidate genes with functional relevance to CCR and
have been previously tied to fertility in dairy and beef
cattle. The validation of the fertility loci in multiple
breeds indicates that these loci have large effects on fer-
tility and may be used to enhance fertility across breeds.
Further characterizations of regions associated with fer-
tility across populations is needed to identify the causal
mutations that are associated with fertility. The identifi-
cation of causal mutations will enhance the accuracy of
genomic selection for CCR1 and TBRD and will aid in
the understanding of the mechanisms responsible for
successful pregnancy in contrast to early embryonic loss.

Methods
Study population and phenotypes
This study was conducted with the approval of the Institu-
tional Animal Care and Use Committee at Washington
State University (4295). Holstein cows (n = 2015) from six
dairy operations (Cow Palace, DeRuyter Brothers Dairy, Five
D Dairy, George DeRuyter Dairy, J&K Dairy, and Sunnyside

Dairy) located in central Washington were followed to de-
termine CCR. Only primiparous cows were evaluated and
enrolled in this study. Cows received artificial insemination
(AI) upon observed estrus or at timed AI. Pregnancy status
was determined 35 days after AI by rectal palpation of the
uterus. DairyComp 305 (Valley Agricultural Software, Tu-
lare, CA) records were used to remove cows from the study
that suffered from any ailment that might have an effect on
fertility. These ailments included: abortions, dystocia, uterine
diseases, fever, foot disease, mastitis, metabolic issues, pink
eye, and respiratory disease. After censoring cows with
health issues, 1064 cows were selected for genotyping. The
cows that were genotyped included approximately equal
proportions of the tails of the phenotypic distribution
represented by highly fertile (n = 498) and subfertile or
infertile cows (n = 566). Highly fertile cows conceived at the
first AI, whereas subfertile cows conceived on or after the
fourth AI service and infertile cows were those that failed
to conceive after six or more AI attempts. Subfertile and
infertile cows were inseminated 4 to 20 times (see
Additional file 1: Figure S1). As infertile cows did not be-
come pregnant, they were excluded from the TBRD analysis.
The fertility phenotypes CCR1 and TBRD were based on
successful maintenance of a pregnancy to day 35 post-AI.
Artificial insemination was performed (depending on

individual dairy practices) by one of 34 technicians to one
or more sires. Conception rate of cows did not differ
between AI technicians (P > 0.05). Frozen-thawed semen
from 433 Holstein and 2 Angus sires was used for AI, with
a mean conception rate (CR) for all sires of 26.8%. No sexed
semen, which could have an impact on conception rate,
was utilized in the current study. The CR between sires was
not different (P = 0.99) within or between breeds, therefore
AI sire was not included as a covariate in the model. Cows
that did not conceive to the first AI service were usually
rebred to different AI sires at each additional service,
although this was dependent on individual dairy practices.
Breeding cows to different AI sires at each service reduced
the possibility that a cow’s failure to conceive was due to
her being bred to a subfertile or infertile bull. Health and
milk production data were collected through DairyComp
305 (Valley Ag Software, Tulare, CA) to determine if CCR1
and TBRD were correlated with milk production.

DNA extraction and genotyping
Whole blood (~ 16ml) was collected into EDTA tubes
from cows via venipuncture of the tail vein. The DNA was
extracted from white blood cell pellets using the Puregene
DNA extraction protocol as per manufacturer’s instruc-
tions (Gentra, Minneaplois, MN). After extraction, DNA
was quantified with a NanoDrop 1000 spectrophotometer
(ThermoFisher Scientific, Wilmington, DE) and genotyped
at Neogen Laboratories (Lincoln, NE) using the Illumina
(San Diego, CA) BovineHD BeadChip. The BovineHD
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BeadChip contains 778,962 SNPs with an average distance
between SNPs of 3.43 kb [93].

Quality control
Prior to the GWAA, 11 cows were removed for quality
control due to a low genotyping call rate (< 0.90), and 21
cows were removed for being turned out with a bull to re-
ceive a natural service rather than AI. SNPs underwent
quality control for a low genotyping call rate (< 0.90; 10,
421 SNPs removed), a low minor allele frequency (< 0.01;
142,539 SNPs removed), and a failure of SNPs to be in
Hardy-Weinberg equilibrium (P < 10− 100; 109 SNPs re-
moved). After quality control, 625,093 SNPs and 1032
cows (494 highly fertile and 538 subfertile or infertile)
remained for the CCR1 analysis. For the TBRD analysis,
966 cows (494 highly fertile and 472 subfertile) remained
after quality control (see Additional file 1: Figure S1).

Genome-wide association analysis
The GWAA were performed for CCR1 and TBRD using an
efficient mixed-model association eXpeditied (EMMAX)
model [94] in the SNP and Variation Suite (SVS) software
(version 9.1) (Golden Helix, Bozeman, MT; http://golden-
helix.com/products/SNP_Variation/index.html) [95]. The
general mixed model is described as y =Xβ+Zu + ϵ, where
y explains the n × 1 vector of observed phenotypes, X is an
n × f matrix of fixed effects (f), β is an f × 1 vector contain-
ing the fixed effect coefficients, and Z is an n × t matrix re-
lating the random effects (t) to the phenotype, and u is the
random effect of the mixed model [96]. The model assumes
residuals to be independent with an identical distribution
such that Var(u) = σg

2K and (ϵ) = σe
2I, and Var(y) =

σg
2ZKZ′ + σe

2I. For this study K is a matrix of pairwise gen-
omic relationships and Z is the identity matrix, I [96].
Since the exact mode of inheritance for CCR1 and

TBRD is unknown and may not be strictly additive, three
genotypic models (additive, dominant, and recessive) were
analyzed for each phenotype. In the additive model associ-
ations with fertility assumes two minor alleles (aa) resulted
in twice the effect on fertility as a single minor allele (Aa).
Association with fertility in the dominant model is deter-
mined by comparing the presence of at least one minor
allele (Aa or aa) to no minor alleles (AA), whereas the re-
cessive model compared the presence of two minor alleles
(aa) with at least one major allele (AA or Aa) as previously
described http://doc.goldenhelix.com/SVS/latest/svsman-
ual/genotype_association_tests.html.
EMMAX estimated pseudo-heritability using the equa-

tion h2 ¼ σ2g
σ2gþσ2e

in SVS, were σ2g is the additive genetic vari-

ance and σ2e is the environmental variance [96]. However,
pseudo- heritability can be over-inflated when estimated
with EMMAX in SVS with small sample sizes. Given this,
the heritability estimates for CCR1 and TBRD for this study

were instead calculated in SVS with a genomic best linear
unbiased predictor (GBLUP) analysis [97] using the average
information algorithm (AI-REML), which is a bivariate re-
stricted maximum likelihood analysis [98, 99]. The AI-
REML GBLUP method is commonly used for calculating
heritability, although it is done at the expense of increased
computational time. Further documentation of SVS
methods for EMMAX, pseudo-heritability and GBLUP with
AI-REML are available (http://doc.goldenhelix.com/SVS/
latest/svsmanual/mixedModelMethods/overview.html).
To determine if loci were associated with CCR1 or

TBRD, a genome-wide significance threshold for un-
adjusted P-values of P < 5.0 × 10− 08 was used based on rec-
ommendations by the International HapMap Consortium
[100, 101]. To identify boundaries of a locus, any SNP in
linkage disequilibrium (LD; D’ > 0.7) with a SNP associated
with fertility was considered to comprise the same locus.
The D’ threshold falls within previous thresholds reported
to characterize SNPs within a locus [102–105]. Positional
candidate genes were identified within a 34 kb region sur-
rounding significant SNPs (17 kb 5′ and 3′ of associated
SNPs) based on the average haplotype block size in Hol-
stein cattle estimated using the method previously de-
scribed by Gabriel et al. (2012) in SVS [106]. Additionally,
SNPs were investigated in the Ensembl database [107] to
determine if they were located within the defined boundar-
ies of copy number variants (CNV).

Transcription factor binding sites
Putative TFBS influenced by the allele present at loci asso-
ciated with CCR1 or TBRD were identified using
PROMO, a virtual laboratory used to query putative TFBS
[108, 109]. PROMO utilizes the TRANSFAC transcription
factor database [110] to identify TFBS and calculate the
probability of a TFBS within a specific DNA sequence by
generating a test statistic called a random expectation
(RE) query [108, 109]. The TRANSFAC databased was
searched for 31 bp sequence (15 bp before and after the
associated SNP) that included both SNP alleles to identify
TFBS. Significant TFBS were required to have a RE query
value < 0.05, span the SNP of interest, and only be present
with one of the two alleles of the associated SNP.

Genetic and phenotypic correlations to Milk yield
To understand the potential impact of genomic selection
for fertility traits on milk production, genetic and pheno-
typic correlations between CCR1, TBRD, and 305-day
milk yield (305MY) (kg) were computed. Records of
305MY were obtained for each cow’s first lactation using
DairyComp 305. Genetic correlations were computed in
SVS using a GBLUP analysis [95] with the AI-REML al-
gorithm [98, 99] and a genomic relationship matrix to
find the additive genetic variance for each trait and the
additive genetic covariance between either CCR1 and
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305MY or TBRD and 305MY. The resulting variances
and covariance were used to calculate a Pearson’s correl-
ation coefficient and standard error between the fertility
trait and 305MY. For these analyses, dairy was a covari-
ate. Phenotypic correlations were computed in R Studio
1.0.153 [111] using R version 3.0.2 [112] as partial corre-
lations to control for the effect of dairy on each trait.
In addition to calculating the genotypic and phenotypic

correlations between fertility and milk production, each
SNP associated with CCR1 or TBRD was investigated for
pleiotropic effects on milk production using a one-way
analysis of variance for milk production (305MY) between
genotypes. A Bonferroni multiple testing correction
threshold was used to identify pleiotropic effects of CCR1
(P < 0.0001) and TBRD (P < 0.0004) with 305MY.
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