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Abstract 

Breast cancer (BC) is one of the most commonly diagnosed cancers worldwide. As key regulatory molecules in several biological processes, 
microRNA s (miRNA s) are potential biomark ers f or cancer. Understanding the miRNA mark ers that can detect BC ma y impro v e surviv al rates and 
de v elop ne w targeted therapeutic strategies. To identify a circulating miRNA signature f or diagnostic prediction in patients with BC, w e de v eloped 
an e v olutionary learning-based method called BSig . BSig est ablished a compact set of miRNAs as potential markers from 1280 patients with BC 

and 2686 healthy controls retrieved from the serum miRNA expression profiles for the diagnostic prediction. BSig demonstrated outstanding 
prediction performance, with an independent test accuracy and area under the receiver operating characteristic curv e w ere 99.90% and 0.99, 
respectively. We identified 12 miRNAs, including hsa-miR-3185, hsa-miR-3648, hsa-miR-4530, hsa-miR-4763-5p, hsa-miR-5100, hsa-miR-5698, 
hsa-miR-6124, hsa-miR-6768-5p, hsa-miR-6800-5p, hsa-miR-6807-5p, hsa-miR-642a-3p, and hsa-miR-6836-3p, which significantly contributed 
to w ards diagnostic prediction in BC. Moreo v er, through bioinf ormatics analy sis, this study identified 65 miRNA-target genes specific to BC cell 
lines. A comprehensive gene-set enrichment analysis was also performed to understand the underlying mechanisms of these target genes. 
BSig, a tool capable of BC detection and facilitating therapeutic selection, is publicly a v ailable at https:// github.com/ mingjutsai/ BSig . 
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reast cancer (BC) is one of the most commonly diagnosed
ancer worldwide with 2.26 million cases according to World
ealth Organization ( 1 ). The Surveillance, Epidemiology and
nd Result program (SEER 2020) estimates ∼281, 550 new
ases and 43, 600 cancer deaths for US women in 2021 ( 2 ).
mongst females with BC, the highest death rate occurs be-

ween ages 65–74 ( 1 ). BC is a multifactorial disease with risk
actors that include age; sex; family history; reproductive fac-
ors such as early menarche, late menopause and low par-
ty; exposure to sex hormones; and genetic, lifestyle and en-
ironmental factors ( 3–7 ). The stage of BC is strongly pre-
ictive of a patient’s survival. For Stages I-III the survival
ates are between 99% and 72% but this drops to 22%
or Stage IV ( 2 ). The current standard treatment modali-
ies of BC include a combination of surgery, drug therapy
nd radiation therapy. In recent years, significant improve-
eceived: November 21, 2023. Revised: January 11, 2024. Editorial Decision: Fe
The Author(s) 2024. Published by Oxford University Press on behalf of NAR G

his is an Open Access article distributed under the terms of the Creative Comm
http: // creativecommons.org / licenses / by-nc / 4.0 / ), which permits non-commerci
riginal work is properly cited. For commercial re-use, please contact journals.pe
ments have been made in the diagnosis ( 8 ,9 ), treatment and
prognosis of BC ( 10 ,11 ). However, understanding of recur-
rence and metastasis remains elusive for curing the tumors.
Most tumors are curable if detected early before it has ad-
vanced and metastasized ( 12 ). Therefore, early diagnosis im-
proves chance of survival by providing appropriate treat-
ment options at the earlier stages to effective management
of BC. 

The ideal biomarker for any disease should be reliably
indicative of the disease prior to symptomatic presentation,
minimally- or non-invasive in its testing, and inexpensive
to deploy ( 13 ,14 ). Researchers have traditionally relied on
protein-based biomarkers, but developing new biomarkers
based on proteins faces several challenges. These include the
complexity of protein compositions in biological samples, low
abundance of proteins of interest in blood samples, and the
disease’s heterogeneity ( 15 ). In addition, the development of
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diagnostic specific protein-based biomarkers is also an expen-
sive and a time-consuming task. 

Recently, nucleic acid marker-based targeted therapies, par-
ticularly microRNA (miRNA) based therapies that are in
development, have shown potential for prognosticating and
early diagnosis of various diseases ( 16 ). MiRNAs are a novel
class of endogenous, non-coding, single-stranded RNAs ( 17 )
approximately 22 nucleotides in length. They play a crucial
role in post-transcriptional regulation of gene expression by
blocking translation of messenger RNA (mRNA) targets ( 18 ).
Several studies have demonstrated that these small regulatory
RNA molecules can be released into extracellular fluids, mak-
ing them suitable biomarkers for a range of diseases, includ-
ing various human cancers, such as BC ( 19 ,20 ). These circu-
lating miRNAs are increasingly recognized as potential min-
imally invasive biomarkers associated with relapse-free sur-
vival, overall survival, and response to therapy in various
cancers ( 21–25 ). The stability of circulating miRNAs in the
bloodstream, combined with their altered expression reflect-
ing the physiological conditions ( 26 ), enhance their reliabil-
ity as cancer biomarkers. For instance, circulating miRNAs
such as miR -195, miR -214, miR -127, miR -15a and miR -18a
have been identified as diagnostic and prognostic biomark-
ers for BC ( 22 ). The recent literature indicates that circulat-
ing miRNAs, particularly miR-21-5p and miR-155-5p, have
been identified as predictive biomarkers in the neoadjuvant
treatment of BC patients ( 27 ). A combination of serum miR-
NAs, including hsa-miR-145, hsa-miR-382, and hsa-miR-21,
along with glutamic acid levels and circulating HER2 con-
centrations, shows potential as non-invasive diagnostic tool
for the early prediction of BC in Egyptian patients ( 28 ). Ad-
ditionally, increased expression of miR-145 has been associ-
ated with improved recurrence-free survival in a study of 124
BC patients ( 29 ). Mishra et al. ( 30 ) identified five aberrantly
expressed circulating miRNAs (miR -195-5p, miR -495, miR -
34a-5p, miR -106a-5p, and miR -454-3p) in BC patients com-
pared to healthy individuals. Additionally, Matsuzaki et al.
aimed to non-invasively detect early-stage cancers and predict
tumor tissue-of-origin ( 31 ). The study utilized serum miRNA
profiles and machine learning techniques to develop a classi-
fier, demonstrating optimal diagnostic performance using 100
miRNAs across various cancers. This research underscores
the potential of combining serum miRNomics with machine
learning to establish a blood-based cancer classification sys-
tem, with implications for clinical applications of circulating
miRNA diagnostics. 

Advances in machine learning methods continue to im-
prove in handling larger biomedical datasets and are well-
adapted to addressing numerous biological problems ( 32 ).
However, one of the major challenges of biomedical data anal-
ysis includes how higher dimensionality impedes identifica-
tion of potential biomarkers from many candidate features
( 33 ). New methods for handling large datasets will expe-
dite the application of miRNA signatures to BC detection.
To cope with the dimensionality issues in miRNA expres-
sion data, we previously developed multiple machine learning-
based cancer prediction models that contributed to survival
predictions in glioblastoma, lung adenocarcinoma, bladder
urothelial carcinoma, and stomach and esophageal carcino-
mas ( 34–37 ), as well as early-stage detection in BC and hepa-
tocellular carcinoma ( 38 ,39 ). This study proposes a machine
learning method using an optimal feature selection algorithm
and support vector machines (SVM) to identify a circulating
miRNA signature that could aid in predicting the diagnosis 
of BC. 

Materials and methods 

Data availability 

A total of 1280 serum samples of BC patients and 2686 serum 

samples were obtained from healthy controls with non-coding 
RNA profiling by array. The data are in the GEO under acces- 
sion number GSE73002 ( 40 ). This dataset contains BC serum 

samples collected prior to therapy. The criteria used to define 
the healthy control population are consistent with the spec- 
ifications provided in the study ( 40 ). For more comprehen- 
sive information regarding both the healthy and BC cohorts,
please refer to this study. In our study, we chose to utilize sam- 
ples from the GSE73002 dataset as part of a strategic effort 
to improve clarity and precision. This approach was adopted 

to eliminate any potential sources of ambiguity. The dataset 
was divided into distinct training and test subsets, maintain- 
ing a balanced 70:30 ratio. The training subset included 1793 

samples, comprising both BC and healthy cases. In contrast,
the test subset comprised 768 samples, encompassing both BC 

and healthy instances. Additionally, to validate the robustness 
of our approach, we employed the remaining 1464 healthy 
samples as an independent cohort. 

Detailed steps involved in the study are explained in the 
following sub sections. 

MiRNA signature selection 

We developed BSig to identify the miRNA signature asso- 
ciated with BC and to distinguish between BC and healthy 
groups. During the machine learning process, we used BC in- 
dividuals as a standard for positive and healthy individuals 
as a standard for negative. BSig was developed using a SVM 

classifier and an optimal feature selection algorithm, inheri- 
table bi-objective combinatorial genetic algorithm (IBCGA),
which effectively solves bi-objective combinatorial problems.
These objectives include selecting a small set of informative 
features and optimizing the fitness function in terms of ac- 
curacy. IBCGA has been successfully applied in several can- 
cer biomarker discoveries ( 34 , 36–39 , 41 ). SVM has several ap- 
plications which were successfully implemented and apply- 
ing in various biomedical fields ( 42 ,43 ). SVM uses non-linear 
transformation to map data from an input space to a higher- 
dimensional space to establish an accurate prediction model.
The flowchart of BSig method is shown in Supplementary 
Figure S3 . 

BSig used an intelligent evolutionary algorithm (IGA) ( 44 ) 
to solve the large-scale parameter optimization problem. IGA 

has been successfully applied in our previous work in recon- 
structing gene regulatory networks ( 45 ) and also been used 

to successfully predict the regulatory role of CRP ( 46 ). In the 
optimization process, IBCGA was used to identify a miRNA 

signature while maximizing the mean accuracy as its fitness 
function. All the candidate features were encoded into bi- 
nary variables, including the parameters C , and γ of the SVM.
We used 354 miRNA expression profiles ( n = 354) from pa- 
tients with BC as candidate features. The detailed steps in- 
volved in IBCGA, including initialization, evaluation, selec- 
tion, crossover, mutation, termination, and inheritance, can 

be found in the following lines. Additionally, both the miRNA 

signature and prediction model files have been made available 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae022#supplementary-data
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n the GitHub page. After identifying the miRNA signature,
ermutation-based analysis was used to prioritize the miR-
As in the signature. The parameter setting of BSig was I start

 10 and I end = 30, meaning that the search for the n value
anged from 10 to 30. The fitness function was to maximize
rediction accuracy of 10-CV. The main steps of feature selec-
ion algorithm for identifying a signature of m miRNAs are as
ollows. 

• Step 1: Randomly generate a population of N pop indi-
viduals. In this work, N pop = 50, G max = 60, r start = 10,
r end = 30, r = r start . 

• Step 2: Evaluate the fitness value of all individuals using
the fitness function mean of accuracies. 

• Step 3: Use a tournament selection method that selects
the winner from two randomly selected individuals to
generate a mating pool. 

• Step 4: Select two parents from the mating pool to per-
form an orthogonal array crossover operation. 

• Step 5: Apply a conventional mutation operator to the
randomly selected individuals in the new population. To
prevent the highest fitness value from deteriorating, mu-
tation is not applied to the best individuals. 

• Step 6: If the stopping condition of G max generation is
satisfied, the best individual is the solution Sr . Otherwise,
go to Step 2. 

• Step 7: If r < r end , randomly change one bit in the bi-
nary genes for each individual from 0 to 1; increase the
number r by one, and go to Step 2. Otherwise, output the
solution Sj with j miRNAs as a signature where Sj is the
most accurate solution among the Sr solutions and stop
the algorithm. 

eature appearance score 

e selected a robust miRNA signature ( RMS ) from a nonde-
erministic feature set sections using the feature appearance
core (FAS). A feature set with a more significant appearance
core suggests that the higher FAS contributed significantly to-
ards BC diagnosis prediction. The robust signature among
 = 30 solutions was selected using the following procedure. 

• Step 1: Perform S independent runs of IBCGA to ob-
tain RMS . There are K t miRNAs in the t-th signatures,
t = 1, …, K . 

• Step 2: The appearance score of a signature is calculated
as follows: 

Calculate the feature frequency score f (k ) for each miRNA
hat ever appears in the K signatures. 

Calculate the score Mt , t = 1, …, K where R ti is the i th
iRNA in the t th signature: 

M t = 

K t ∑ 

i =1 

f ( R ti ) /K t (1)

• Step 3: Output the t th signature with the largest appear-
ance score M t as the RMS . 

sing various machine learning methods to build 

reast cancer prediction model 

his study utilized the stepwise feature forward selection
ethod, a feature selection algorithm, to select informative

eatures for predicting the diagnosis of BC. Subsequently, we
used six machine learning methods to build prediction mod-
els with the same training dataset, and their performance was
evaluated by the same test dataset. We utilized the scikit-
learn Python package ( 47 ) to employ three methods: Neural
Network classification used Multi-layer Perceptron algorithm,
Random Forest classification, and Extree Tree classification.
Additionally, three boosting algorithms were utilized, includ-
ing XGBoost ( 48 ), LightGBM ( 49 ) and CatBoost ( 50 ). The
Optuna framework ( 51 ) with 10-fold cross-validation opti-
mized all parameters for the six methods. 

Performance measures 

This work used the following equations to measure the per-
formance evaluation. 

Accuracy = 

T P + T N 

T P + T N + F P + F N 

(2)

Sensit ivit y = 

T P 
T P + F N 

(3)

Speci f icity = 

T N 

T N + F P 
(4)

Where TP is true positive; TN is true negative; FP is false
positive and FN is false negative. 

Identification of miRNA-targets in breast lineage 

To identify the target genes from the selected miRNAs, we
use the miRTarBase (9.0 beta) database ( 52 ) to extract the
experimentally verified microRNA-target interactions by var-
ious techniques, including CLASH, CLIP-seq, HITS-CLIP, Im-
munofluorescence, Luciferase reporter assay, qRT-PCR, west-
ern blotting, and PAR-CLIP. In addition, we utilized the
Chronos Gene Effect Scores from Cancer Cell Line Encyclo-
pedia ( 53 ) to assess the functional significance of the identi-
fied genes in BC cell lines. Chronos assigns a gene effect score
based on its effect on cell growth and survival in CRISPR-
based knockout screens. 

miRNA-target enrichment analysis 

Gene-set libraries are utilized to organize and categorize accu-
mulated knowledge about the functions of groups of genes. In
this study, we employed Enrichr ( 54 ), a web-based application
that features the latest gene-set libraries, to perform gene-set
enrichment analysis. We evaluated the performance of Enrichr
in ranking terms from gene-set libraries by combining the P -
value obtained through Fisher’s exact test with the z -score of
deviation from the expected rank, as computed by the follow-
ing formula: 

c = log ( p ) · z (5)

This study used six Gene-set libraries to perform gene-set
enrichment analysis, including Wikipathways ( 55 ), Elsevier
collection ( 56 ), Gene Ontology ( 57 ), ChEA ( 58 ), Achilles ( 59 )
and Cancer Cell Line Encyclopedia ( 60 ). 

Results 

Identification of a robust miRNA signature to 

accurately predict breast cancer 

We utilized miRNA expression profile data from 1280 pa-
tients with BC and 2686 healthy controls retrieved from the
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Gene Expression Omnibus database (GSE73002) ( 40 ) to de-
velop a machine learning-based diagnosis prediction method
named BSig ( B reast cancer Sig nature). This method identi-
fies a miRNA signature and distinguishes individuals with
BC from healthy individuals. The BSig method selects a ro-
bust set of miRNAs as a biomarker signature that can accu-
rately predict the BC diagnosis and combines this identifica-
tion with the prioritization of those signature miRNAs which
contribute most to diagnostic prediction. The overview of this
study is shown in Figure 1 . BSig selected 12 of these miRNAs
as a robust signature and achieved 10-fold cross-validation
(10-CV) accuracy , sensitivity , specificity , area under the curve
of receiver characteristic operator (AUROC), and area under
the precision-recall curve (AUPRC) of 100%, 1.0, 1.0, 1.0,
and 1.0, respectively . Additionally , BSig achieved a test accu-
racy , sensitivity , specificity , A UROC, and A UPRC of 99.36%,
0.99, 0.99, 1.0, and 1.0, respectively, in distinguishing BC and
healthy individuals. 

Next, we validated the BSig on an independent test dataset
(GSE211692) ( 31 ), which encompasses serum samples from
598 BC patients and 5643 healthy controls. For additional
clinical and expression details, please refer to the original
study ( 31 ). Notably, the BSig demonstrated remarkable per-
formance on this independent test cohort, achieving a sensi-
tivity of 0.89 (537 out of 598), specificity of 0.74 (4224 out
of 5643), and an AUC value of 0.94, effectively distinguish-
ing between BC and healthy controls. The evaluation of BSig’s
predictive performance on this test cohort was assessed using
an ROC curve, as illustrated in Supplementary Figure S1 . 

Performance comparison of breast cancer 
prediction 

We tested the efficacy of the BSig method by comparing with
six other machine learning methods, including Random For-
est, Extra Trees, Neural Network, XG Boost ( 48 ), Light GBM
( 61 ), and CatBoost ( 50 ). The prediction comparison results
are shown in Table 1 & 2 . To make the comparison feasible,
we employed feature selection algorithm, stepwise feature for-
ward selection method and selected 16 features to predict the
BC diagnosis. The Random Forest method achieved a train-
ing accuracy , sensitivity , specificity , A UROC, A UPRC, and test
accuracies of 95.02%, 0.90, 0.97, 0.98, 0.97, and 93.31%,
respectively. Meanwhile, XGBoost achieved a training accu-
racy , sensitivity , specificity , A UROC, A UPRC, and test accu-
racies of 96.24%, 0.92, 0.98, 0.99, 0.98, and 95.96%, re-
spectively. Light GBM achieved a training accuracy, sensitivity,
specificity, A UROC, A UPRC, and test accuracies of 96.24%,
0.92, 0.98, 0.96, 0.99, and 95.71%, respectively. Extra tree
achieved a training accuracy , sensitivity , specificity , AUROC,
AUPRC, and test accuracies of 96.53%, 0.93, 0.98, 0.99, 0.98,
and 94.45%, respectively. Catboost achieved a training ac-
curacy , sensitivity , specificity , A UROC, A UPRC, and test ac-
curacies of 96.53%, 0.93, 0.98, 0.99, 0.98, and 95.96%, re-
spectively. Neural network achieved a training accuracy, sen-
sitivity , specificity , A UROC, A UPRC, and test accuracies of
95.96%, 0.92, 0.97, 0.99, 0.97, and 96.21%, respectively. The
comparison of prediction results for the training cohort is
presented in Table 1 , while the corresponding results for the
test cohort are displayed in Table 2 . The prediction compari-
son results showed that BSig prediction performance is better
than these standard machine learning methods. The perfor-
mance evaluation of prediction methods using AUROCs and
AUPRCs are shown in Figure 2 and Supplementary Figure S2 ,
respectively. 

To assess the predictive capabilities of BSig, a comparative 
analysis was conducted with the previous study ( 40 ). In or- 
der to mitigate concerns related to overtraining and poten- 
tial biases, a strategic data partitioning was employed, segre- 
gating data sets for distinct scenarios: BC vs. benign BC and 

BC vs. prostate cancer. We included 54 benign samples and 

93 prostate cancer samples in our analysis. Notably, the SVM 

parameters for these prediction models differ, reflecting sepa- 
rate training for the BC vs. benign and BC vs. prostate cancer 
classifications. As a result, the signatures derived from these 
models differed from the established BC signature consisting 
of 12 miRNAs. The implementation of BSig yielded consistent 
outcomes. Specifically, after conducting 50 independent runs,
BSig achieved a mean 10-CV accuracy of 100 ± 0% and a test 
accuracy of 91.23 ± 5% ( Supplementary Table S1 ). 

Expanding the scope, BSig’s predictive capabilities extended 

to differentiating between BC and prostate cancer samples.
Across the 50 independent runs, BSig consistently exhibited 

a mean 10-CV accuracy and test accuracy of 100 ± 0% and 

99.57 ± 1.17%, respectively ( Supplementary Table S2 ). This 
substantiates the BSig’s robustness in accurately distinguishing 
between these two sample categories. 

Robust feature set selection and feature 

prioritization 

We conducted 30 independent runs of BSig to select a ro- 
bust feature set. The average number of features obtained 

across the 30 runs was 15 ± 4. We then calculated the fre- 
quency appearance score (FAS) for each independent run.
The FAS reflects the frequency of each feature in the opti- 
mization process, with higher FAS indicating a robust fea- 
ture set in the optimization modeling process and vice versa.
The results of the FAS for the independent runs are pre- 
sented in Supplementary Table S3 . The highest FAS (13.83) 
was obtained in run 22 with 12 features, and the low- 
est FAS (5.84) was obtained in run 29 with 25 features.
We used the feature set with the highest FAS to build the 
BSig prediction model, which included hsa-miR-3185, hsa- 
miR -3648, hsa-miR -4530, hsa-miR -4763-5p, hsa-miR -642a- 
3p, hsa-miR-5100, hsa-miR-5698, hsa-miR-6124, hsa-miR- 
6768-5p, hsa-miR -6800-5p, hsa-miR -6807-5, and hsa-miR - 
6836-3p. 

Permutation-based miRNA signature prioritization 

The miRNAs in the identified miRNA signature were ranked 

based on the accuracy difference obtained from the permu- 
tation feature importance analysis. The miRNAs with the 
greatest AUROC difference indicate a higher contribution to 

the model’s predictive power. According to the permutation 

feature analysis, the top five ranked miRNAs are hsa-miR- 
5100, hsa-miR -6836-3p, hsa-miR -3185, hsa-miR -4530, and 

hsa-miR-6800-5p (Figure 3 ). 
We measured the miRNA signature expression difference 

across BC and healthy using the non-parametric t-test. Among 
the 12 miRNAs of signature, 11 miRNAs, including hsa- 
miR -3185, hsa-miR -3648, hsa-miR -4530, hsa-miR -4763-5p,
hsa-miR -5100, hsa-miR -5698, hsa-miR -6124, hsa-miR -6768- 
5p, hsa-miR-6800-5p, hsa-miR-6807-5p, and hsa-miR-6836- 
3p were significantly ( P ≤ 0.005) expressed between BC and 

healthy samples. However, the remaining miRNA, hsa-miR- 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae022#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae022#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae022#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae022#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae022#supplementary-data
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Figure 1. The system overview of the study. ( A ) Extraction of miRNA expression profiles data of patients with breast cancer and healthy individuals from 

Gene Expression Omnibus database, ( B ) o v ervie w of the BSig method for miRNA signature identification, and ( C ) analysis of the identified miRNA 

signature. 

Table 1. The comparison of training prediction performance 

Method Accuracy (%) A UR OC AUPRC Sensitivity Specificity 

BSig 100 100 100 1.00 1.00 
Neural Network 95.97 99.10 97.20 0.92 0.97 
Random Forest 95.02 98.84 97.80 0.90 0.97 
XGBoost 96.25 99.36 98.80 0.92 0.98 
Light GBM 96.25 99.36 98.80 0.92 0.98 
Extra tree 96.53 99.24 98.60 0.93 0.98 
Catboost 96.53 99.35 98.80 0.93 0.98 

Table 2. The comparison of test prediction performance 

Method Accuracy (%) A UR OC (%) AUPRC Sensitivity Specificity 

BSig 99.37 100 100 0.99 0.99 
Neural Network 96.21 99.10 98.70 0.93 0.97 
Random Forest 93.31 98.70 97.50 0.89 0.95 
XGBoost 95.96 99.40 98.80 0.92 0.97 
Light GBM 95.71 99.40 98.80 0.92 0.97 
Extra tree 94.45 99.00 98.20 0.89 0.96 
Catboost 95.96 99.40 98.70 0.92 0.97 
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42a-3p showed no significance difference between the two
roups. Box-plot analysis of the miRNA signature between
C and healthy samples is conducted in Figure 4 . 

dentification of miRNA-target genes 

his study used the miRTarBase database to identify 1968
arget genes from 5355 miRNA-target interactions involv-
ing 12 selected miRNAs ( Supplementary Table S4 ). To iden-
tify BC cell line-specific target genes, the Chronos Gene Ef-
fect Scores from Cancer Cell Line Encyclopedia were utilized
to assess the functional significance of the identified genes in
BC cell lines. Using Chronos Gene Effect Score in BC cell
lines, 65 target genes were identified from 189 miRNA-target
interactions (see Supplementary Table S5 for details). The

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae022#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae022#supplementary-data
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Figure 2. The comparison of BSig prediction performance. Evaluation of 
the prediction performance using AUROC between BSig and standard 
machine learning methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

miRNA signature and its BC-specific target genes are shown in
Figure 5 A, B. 

Additionally, we identified miRNA signature targeted BC-
associated known genes using miRDB ( 62 ), miRWalk ( 63 ),
and miRDIP ( 64 ). The miRNA signature targeted 41 BC-
associated known genes, including, BRAP , BCCIP , BARD1,
PTEN, TP53INP1, CFLAR, RAD50, MAP3K19, FGFR2, and
CDH11, to name a few. The highest number of genes were tar-
geted by the miRNAs, hsa-miR-6124 and hsa-miR-6768-5p,
which targeted more than ten genes. The miRNA signature
and BC-associated target genes are shown in Figure 5 C, D. 

Biological relevance of the miRNA-targeted genes 

To validate the biological pathways and mechanisms of the
identified miRNA-target genes, we performed pathway en-
richment analyses, including Wikipathways, Elsevier collec-
tion, and GO biological process. The top three highly enriched
pathways in each pathway analysis are listed as follows. In the
Wikipathways, the targeted genes were enriched in glycolysis
in senescence (WP5049), aerobic glycolysis (WP4629), and in-
sulin signaling (WP481). Elsevier enrichment pathways also
included glycolysis in addition to MTHFR activity regulation,
and SIRT2 signaling in aging. GO biological analysis showed
glucose catabolic process to pyruvate (GO: 0061718), canon-
ical glycolysis (GO: 0061621), and glycolytic process through
glucose-6-phosphate (GO: 61620). All the pathway enrich-
ments are shown in Figure 6 A–C. The enriched Wiki path-
ways, Elsevier pathway collection, and biological processes
are listed in Supplementary Tables S6 –S8 , with their corre-
sponding P -values. 

We also conducted three gene-set enrichment analysis to
validate the mechanism of the miRNA-target genes in BC cell
lines, including ChEA ( 58 ), Project Achilles ( 59 ) and Can-
cer Cell Line Encyclopedia ( 60 ). The ChEA database con-
tained comprehensive target genes of transcription factors
from CHIP-chip, ChIP-seq, and other transcription factor
binding site profiling studies. The results showed that MYC
and MYCN were enriched from several studies, including
the human breast adenocarcinoma cell line: MYC 28411283
ChIP-Seq MDA231-LM2-4175 Human BC ( P -value: 2.78e-7,
odds ratio: 4.24). Project Achilles is a systematic effort aimed
at identifying and cataloging gene essentiality across hundreds 
of genomically characterized cancer cell lines ( 59 ). To infer 
gene fitness effects from CRISPR knockout screens computa- 
tionally, researchers developed CERES ( 65 ), a test in which a 
more negative CERES score indicates that the gene is essen- 
tial for cell viability in the certain cell line. In our study, the 
Achilles Fitness Decrease results showed that the knockout 
gene-set decreased cell viability in certain cell lines, with two 

breast-relevant cell lines appearing in the top three results, in- 
cluding HCC2218-breast ( P -value: 3.38e-4, odds ratio: 9.15) 
and HCC70-breast ( P -value: 6.29e-4, odds ratio: 7.94). The 
Cancer Cell Line Encyclopedia ( 60 ) results indicated the up- 
regulated genes across certain cancer cell lines, with only three 
cell lines meeting the enriched criteria ( P -value < 0.05), and 

two of them being BC cell line, including BT483-breast ( P - 
value: 0.028, odds ratio: 4.77), and CAL51-breast ( P -value: 
0.049, odds ratio: 5.88). The miRNA signature targeted gene 
set enrichment in ChEA cell lines, Achilles fitness, and cancer 
cell line encyclopedia are depicted in Figure 6 D–F, and corre- 
sponding statistics are listed in Supplementary Tables S9 - S11 ,
respectively. 

In addition, to comprehensively investigate the circulating 
miRNAs that have been previously identified in serum, we 
conducted an in-depth review of the existing literature. Nu- 
merous studies have investigated the roles of serum miRNAs 
in BC ( 66–68 ). This review encompassed an assessment of 
circulating miRNAs specifically associated with BC, consider- 
ing both their identification and their corresponding expres- 
sion levels in BC samples. The detailed compilation of these 
BC-associated circulating miRNAs, along with their corre- 
sponding expression profiles, is presented in Supplementary 
Table S12 . 

Discussion 

Recently, circulating tumor miRNA in blood become a 
promising biomarker to detect cancer. The stability of circu- 
lating miRNAs has been demonstrated to have utility for the 
minimally-invasive detection of various cancers ( 69–71 ). The 
identification of cancer-specific non-invasive miRNA signa- 
ture leads to more accurate assessments to improve therapeu- 
tic strategies and early-stage detection of cancer. 

In this study, we utilized miRNA expression profile data 
from serum samples of patients with BC and healthy indi- 
viduals to develop a diagnosis prediction method BSig. BSig 
is an advanced evolutionary learning method designed to se- 
lect a compact set of features (miRNAs) from a vast pool of 
features (miRNA expression profiles) specific to BC. BSig em- 
ploys an integration of feature selection and machine learning 
techniques to select a distinctive miRNA signature capable of 
accurately predicting BC diagnosis. Through the utilization of 
BSig, we have successfully identified a miRNA signature com- 
posed of 12 BC-specific miRNAs, collectively demonstrating a 
robust ability to precisely predict BC diagnosis. This platform 

merges miRNA expression profile data with BC diagnosis in- 
formation, generating outcomes that indicate whether input 
samples belong to the category of BC or not, employing an op- 
timization approach. Although, there has been a growing in- 
terest in applying machine learning techniques to predict can- 
cer diagnosis and prognosis, there is still a need for more ac- 
curate and customizable models to improve clinical decision- 
making. One key aspect we emphasize is the generalizability 
of the BSig method for cancer diagnosis predictions. Through 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae022#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae022#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae022#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae022#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae022#supplementary-data
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Figure 3. Permutation-based feature prioritization of the miRNA signature. 
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igorous testing and validation, we have demonstrated its
obustness and effectiveness in different datasets, diverse
atient populations, and cancer types, indicating its potential
o provide valuable insights across a wide range of clinical sce-
arios ( 34 , 36–39 , 41 ). By leveraging the power of evolution-
ry learning and optimization techniques, our approach leads
o improved and personalized cancer diagnostics, ultimately
ontributing to more efficient and accurate clinical decision-
aking processes. 
The identified miRNA signature accurately predicted BC

iagnosis in both training and validation datasets. The BSig
ethod prediction performance was better than the standard
achine learning methods. To evaluate the efficacy of the

ndividual miRNAs of the signature, we performed the per-
utation test and prioritize the miRNAs according to their
rediction capability. Among these 12 miRNAs, 11 miRNAs,

ncluding hsa-miR -3185, hsa-miR -3648, hsa-miR -4530, hsa-
iR -4763-5p, hsa-miR -5100, hsa-miR -5698, hsa-miR -6124,
sa-miR -6768-5p, hsa-miR -6800-5p, hsa-miR -6807-5p, and
sa-miR-6836-3p were significantly ( P ≤ 0.005) expressed be-
ween BC and healthy samples. 

We identified 1968 target genes of the miRNA signature us-
ng miRTarBase ( 52 ). In addition, the BC-specific gene targets
ere identified using Chronos Gene Effect Scores from Cancer
ell Line Encyclopedia ( 60 ). The analysis showed that miRNA

ignature targeted 65 BC-specific genes, in which seven genes,
ncluding ATXN3, PPP1R15B, MED16, FOXK1, RAB11B,
LG14, and IGF1R were targeted by more than one miRNA
f the signature. The pathway analysis of Wikipathways, El-
evier enrichment, and GO biological processes revealed that
argeted genes were commonly enriched in glycolysis pathway.

any cancer cells preferentially consume glucose and utilize
lycolysis to meet the demand for their survival, and particu-
arly aerobic glycolysis is considered a hallmark of cancer ( 72 ).
merging roles of aerobic glycolysis, known as the Warburg
ffect, in BC was well demonstrated in the studies ( 73 ,74 ).
ltered metabolism is often observed in BC progression and
etabolism indeed varied across subtypes of BC ( 75 ). Triple-
egative BC cells are characterized by high glucose intake and

ow mitochondrial respiration ( 76 ) and HER-positive BC tu-
or characteristics were manifested in these studies by higher
glutamine metabolic activity than other BC subtypes ( 77 ).
MiRNAs mediate glycolytic pathways associated with can-
cer progression either directly or indirectly via targeting onco-
genes. Furthermore, numerous studies have demonstrated the
miRNA regulated glycolysis pathways in cancers ( 78 ,79 ). In
BC patients, miR-16-1-3p regulates aerobic glycolysis which
is critical for modulating BC cell proliferation in vitro and in
vivo ( 80 ). Expression of miR-210-3p regulate aerobic glycol-
ysis through modulating the glycolytic genes of HIF-1 α and
p53 in triple negative BC ( 81 ). Additionally, there are some
miRNAs such as miR -27b, miR -31, miR -155, miR -340, miR -
30a-5p, and miR-342-3p that facilitate glycolysis by targeting
PDHX, DNMT3, PIK3R1, MCU, LDHA, and MCT1, respec-
tively, in BC ( 82–84 ). 

Gene-set enrichment analysis on the ChEA ( 58 ) database
revealed that the enrichment of MY C and MY CN from the
human breast adenocarcinoma cell lines. MYC amplification
or overexpression has been linked to more aggressive tumor
behavior such as a higher rate of tumor recurrence, tumor in-
vasion, and metastasis. Moreover, high levels of MYC expres-
sion have been associated with a worse prognosis in BC pa-
tients, and MYC expression may also contribute to the devel-
opment of resistance to some BC therapies. As a result, MYC
is considered a potential therapeutic target for BC treatment
( 85 ). 

We also explored the published roles of the 12 miRNAs
in other cancers besides BC. Two distinct roles of hsa-miR-
3185 were observed in hepatocellular carcinoma ( 86 ) and gas-
tric cancers ( 87 ). In hepatocellular carcinoma, higher expres-
sion of miR-3185 correlated with improved survival whereas
in gastric cancer, higher expression levels are associated with
the poorer survival ( 87 ). Correlative analysis of miRNA ex-
pression revealed that the expression of hsa-miR-3648 posi-
tively correlated with risk of recurrence of estrogen receptor
positive BC and lymph node-negative mammary carcinomas
( 88 ). The expression of hsa-miR-3648 was found to be asso-
ciated with bladder, prostate, lung, hepatocellular carcinoma,
and esophageal carcinoma. In these cancers, hsa-miR-3648
showed either positive correlation with cancer progression
or regulate oncogenic function via binding to TFC21, APC2,
VE-cadherin, Z0-1, SOCS, DLL4, PANX2, and NKAIN1
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Figure 4. Comparison of miRNA expression difference across breast cancer and healthy individuals (* indicates P -value < 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

( 89–92 ). Wang et al., identified that hsa-miR-4530 targets
RUNX2 and associated with breast chemosensitivity ( 93 ). Ex-
pression of hsa-miR-4530 negatively correlated with tumor
suppressive function resulting in tumor progression by target-
ing VASH1 and RTEL1 in different cancer types, including
pancreatic, glioma and liver cancers ( 94 , 95 ). Hsa-miR -642a-
3p encompassing tissue biomarkers and functional / target
identification studies in cancer cell lines. Evidences suggested
that expression of hsa-miR-642-3p targets FOXO4 and reg-
ulate oncogenic function in gastric, gallbladder, and cervical
cancers ( 96 , 97 ). Hsa-miR -5100 possesses diverse role in vari-
ous cancers, including BC. A BC study on xenografts reported
that release of hsa-miR-5100 via exosome from PGRN- / - 
TAM (macrophages) inhibited invasion, migration and EMT 

of BC cells ( 98 ). The oncogenic function of hsa-miR-5100 

was identified in lung cancer, oral squamous, esophageal, and 

melanoma ( 99–101 ), whereas it’s tumor suppressor activity 
identified in pancreatic, childhood leukemia, gastric, prostate,
multiple myeloma, gastrointestinal stromal, and BC ( 102–
104 ). Additionally, hsa-miR-5100 has also been used in in- 
tegrated panel as a prognostic biomarker for cancer detec- 
tion in colon, oral squamous, pancreatic, and prostate can- 
cers ( 105 ,106 ). The expression levels of hsa-miR-5698 was 
significantly associated with overall survival after the ini- 
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Figure 5. The miRNA and its breast cancer-specific target gene interaction. ( A ) 12 miRNAs and their 65 target genes in which se v en genes, ATXN3, 
PPP1R1 5B, MED1 6, FOXK1, RAB11B, ALG1 4, and IGF1R w ere targeted b y more than one miRNA and ( B ) the number of genes targeted b y the 
individual miRNAs. ( C ) 12 miRNAs and their 41 breast cancer-associated known genes, and ( D ) the number of breast cancer known genes targeted by 
the individual miRNAs. 
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Figure 6. Gene enrichment analysis. The miRNA signature targeted gene set enrichment analysis in ( A ) Wiki pathways, ( B ) Elsevier pathways, ( C ) 
biological processes, ( D ) ChEA, ( E ) Achilles fitness decrease and ( F ) cancer cell line encyclopedia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tiation of eribulin treatment in metastatic BC ( 107 ). Ex-
pression levels of hsa-miR-6124 and hsa-miR6807-5p were
detected in urine, and their higher expression levels are as-
sociated with bladder cancer ( 108 ) and hepatocellular carci-
noma ( 109 ). Bioinformatics analysis on pan cancer revealed
that hsa-miR-6124 promotes tumor progression by binding
3 

′ untranslated regions (3 

′ -UTRs) of ALYREF and eIF4A3
in hepatocellular carcinoma ( 109 ). Studies on hsa-miR-6836-
3p indicated that its expression level increases upon Api-
genin treatment. Apigenin significantly inhibited Huh7 cell
proliferation, cell cycle, colony formation, and cell inva-
sion in a concentration-dependent manner in hepatocellular
carcinoma ( 110 ). 

Taken together, our findings show that miRNA signa-
ture consisting of 12 miRNAs could be potentially useful to
BC cancer screening and help in developing the minimally-
invasive methods in BC. The fact that several of the miRNAs
identified in this study has shown to have a role in other can-
cers suggests a shared signaling pathways across several can-
cers. The enrichment of glycolysis pathways in our study fur- 
ther validates a role of it cancers in general. 

Utilizing miRNAs for diagnostic predictions presents cer- 
tain limitations, including variability in miRNA regulation 

and functions, as well as technological and methodological 
challenges in detecting and quantifying miRNAs. It is impor- 
tant to consider the influence of various physiological and 

pathological conditions on miRNA profiles and the conse- 
quent implications for their reliability and specificity in di- 
agnostics. This comprehensive examination highlights the po- 
tential of miRNA-based diagnostics while emphasizing critical 
aspects that require attention for their effective implementa- 
tion in clinical practice. Though the prediction ability of the 
BSig is accurate, the prediction models are currently limited 

to the GEO datasets: GSE73002 and GSE211692. This is due 
to the lack of standardization strategies for isolation, quan- 
tification and normalization of miRNA expression profiles.
A larger sample sets including prospective clinical data are 
required for validating the models to applicable for clinical 



NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 1 11 

r  

b  

m  

d  

p  

c
 

a  

g  

s  

c  

a  

c  

t  

p  

p  

D

T  

l  

B  

(  

o

S

S

A

T  

M
 

v  

S  

a  

a

F

T  

f  

M  

d  

y

C

N

R

 

 

 

outine. However, the miRNA signature identified here is ro-
ust with higher specificity and parameter tuning of the BSig
ethod could improve the prediction performances on larger
atasets. Additionally, BSig can be customized for diagnosis
rediction in other cancer types, and would have potential in
linical applications. 

In conclusion, the identified miRNA signature could serve
s a valuable adjunct to the existing diagnostic methodolo-
ies, particularly in scenarios where imaging and biopsy re-
ults may be inconclusive or require further validation. In this
ontext, the miRNA signature could enhance the diagnostic
ccuracy and help refine the diagnostic process. While our fo-
us primarily centers on diagnostic support, we acknowledge
hat the signature’s accuracy and sensitivity could potentially
osition it as a candidate for future studies in BC screening,
articularly in asymptomatic individuals who might be at risk.
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