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Simple Summary: Histological subtype and grading are essential for the planning of soft tissue
sarcoma. Pretherapeutic grading based on core needle biopsies is frequently not reliable due to
intratumoral heterogeneity. This pilot study assessed the ability of functional radiological imaging
to improve histopathological grading. Multiple biopsies were taken from the sarcoma specimens
during tumor resection and radiopaque markers were placed. Subsequently, fusion of preoperative
magnetic resonance imaging and postoperative computed tomography of the specimen allowed for
comparison of histopathological grading and diffusion-weighted imaging. The apparent diffusion
coefficient appears to correlate with FNCLCC criteria and may supplement pretreatment assessment
and multimodal treatment allocation in soft tissue sarcoma.

Abstract: Histological subtype and grading are cornerstones of treatment decisions in soft tissue
sarcoma (STS). Due to intratumoral heterogeneity, pretreatment grading assessment is frequently
unreliable and may be improved through functional imaging. In this pilot study, 12 patients with
histologically confirmed STS were included. Preoperative functional magnetic resonance imaging was
fused with a computed tomography scan of the resected specimen after collecting core needle biopsies
and placing radiopaque markers at distinct tumor sites. The Fédération Nationale des Centres de
Lutte Contre le Cancer (FNCLCC) grading criteria of the biopsies and apparent diffusion coefficients
(ADCs) of the biopsy sites were correlated. Concordance in grading between the specimen and at
least one biopsy was achieved in 9 of 11 cases (81.8%). In 7 of 12 cases, fusion imaging was feasible
without relevant contour deviation. Functional analysis revealed a tendency for high-grade regions
(Grade 2/3 (G2/G3)) (median (range) ± standard deviation: 1.13 (0.78–1.70) ± 0.23 × 10−3 mm2/s)
to have lower ADC values than low-grade regions (G1; 1.43 (0.64–2.03) ± 0.46 × 10−3 mm2/s). In
addition, FNCLCC scoring of multiple tumor biopsies proved intratumoral heterogeneity as expected.
The ADC appears to correlate with the FNCLCC grading criteria. Further studies are needed to
determine whether functional imaging may supplement histopathological grading.
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1. Introduction

Treating of soft tissue sarcoma (STS) is a complex interdisciplinary task, as STS com-
prises more than 80 different subtypes and can occur at various sites in the entire body [1].
Treatment of low-grade sarcoma in localized stages is based on surgical resection, whereas
neoadjuvant therapy concepts, such as chemotherapy, radiation, or both, must be consid-
ered for locally advanced high-grade tumors [2,3]. Therefore, the pretherapeutic assessment
of tumor size, grade, and histological subtype is crucial for shared decision making and
treatment allocation in STS [4].

The Fédération Nationale des Centres de Lutte Contre le Cancer (FNCLCC) established
the most commonly used histopathological grading system based on three criteria: tumor
differentiation, tumor necrosis, and mitotic count [5]. However, determining the FNCLCC
score from pretreatment biopsies is not always reliable. Cohort studies demonstrate a
concordance in grading of only 32% and 92.5% between pretreatment biopsies and resected
specimens [6,7]. The significant differences in the accuracy of biopsies may be explained by
the retrospective nature of the reports, missing standardization of tissue retrieval, choice of
core needle size, and differences in biopsy guidance (none vs. ultrasound vs. computed
tomography (CT)). Furthermore, tumor heterogeneity and failure to identify the most
representative tumor site may also account for low accuracy [8]. The histopathological
analysis from biopsies is based on a small tissue sample [6,9], although STS exhibits a
distinct inter- and intratumoral heterogeneity and the mean tumor size ranges between 8
and 9.9 cm [10,11].

Some authors have suggested including functional imaging such as diffusion-weighted
magnetic resonance imaging (DWI) to establish a radiological grading [12]. The apparent
diffusion coefficient (ADC) assessment in DWI is based on Brownian molecular motion.
Higher cellularity and restriction of molecular motion result in ADC decreases. Retrospec-
tive cohort studies have implied that differentiating malignant and benign soft tissue tumors
may be feasible based on of the ADC [13]. Likewise, the correct differentiation into three
stages of grading based on functional ADC imaging has previously been attempted [14].
Nevertheless, these and other cohort studies of functional imaging have not yet led to a
reliable radiological grading system.

This pilot study aimed to learn more about the relation of radiological and histopatho-
logical grading by correlating functional imaging features with characteristics of histopatho-
logical assessment of distinct tumor sites. We used preoperative functional magnetic res-
onance imaging (MRI), intraoperative tumor biopsy and placement of radiopaque tissue
markers, postoperative specimen CT, and fusion imaging to correlate ADC and FNCLCC
criteria for distinct tumor sites.

2. Materials and Methods
2.1. Patient Population

The University Medical Center Goettingen ethics committee approved this prospective,
open-label, single-center pilot study (application number: 2/9/19). All patients were
treated at the Sarcoma Center Goettingen and selected based on the following inclusion
criteria: age > 18 years, histologically confirmed STS, and scheduled tumor resection. All
patients signed their informed consent.

2.2. Magnetic Resonance Imaging

Preoperative MRI was performed using 1.5 T and 3 T systems (MAGNETOM Sym-
phony, MAGNETOM Vida, MAGNETOM Skyra) from Siemens Healthcare GmbH, Er-
langen, Germany. The following sequences were included in the MRI protocol: axial
T1-weighted sequence prior to contrast media application without fat suppression, sagittal
T2-weighted half-Fourier acquisition single-shot turbo spin-echo imaging (HASTE) se-
quence with fat suppression, axial T2-weighted BLADE sequence with fat suppression,
and axial and sagittal T1-weighted sequence with fat suppression after contrast media
application. In addition, DWI, including the ADC sequence, was performed by an axial
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echo-planar imaging sequence with the b values 0, 50, and 800 s/mm2. Section thickness
was set at 5 mm.

2.3. Intraoperative Core Needle Biopsies

Immediately after wide tumor resection, we collected core needle biopsies (CNBs)
using the coaxial technique from two to four distinct non-necrotic tumor regions. Tumor
areas with low ADC values were identified by an expert radiologist (A.S.) to identify
suitable regions for intraoperative biopsies. These regions of interest (ROIs) served as target
areas for intraoperative CNBs performed by the sarcoma surgeon (J.J.) (Figure 1). The CNBs
were performed with a 12- to 14-gauge needle. Directly after the biopsy, a radiopaque
marker was placed through the coaxial needle at each site. The samples were fixed in
4% formaldehyde. For all resected tumors in total and each CNB, grading according to
FNCLCC criteria (tumor differentiation, tumor necrosis, and mitotic count) was determined
by an expert pathologist (P.S.).
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Figure 1. Study workflow. CT: computed tomography; ADC: apparent diffusion coefficient; FNCLCC:
Fédération Nationale des Centres de Lutte Contre Le Cancer.

2.4. Computed Tomography Imaging

A native 128-slice fine-slice spiral CT (SOMATOM Definition Flash and SOMATOM
Force from Siemens Healthcare GmbH, Erlangen, Germany) with multiplanar reconstruc-
tion was performed to visualize the biopsy markers from all resected specimens, each with
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a soft tissue and bone algorithm in the axial and sagittal layering (Figure 1). The section
thickness ranged from 1 to 3 mm.

2.5. Fusion Imaging

Fusion imaging using the preoperative in situ MRI and postoperative CT of the
specimens were performed with Eclipse software (v. 15.5 from Varian Medical Systems,
Palo Alto, CA, USA). First, both the MRI and CT data sets were transferred into the software.
The introduced biopsy markers were identified and color-coded in the CT of the specimens.
An undirected fusion of the data sets was created automatically by the software. The
orientation and localization of the CT image within the in situ MRI were visually adjusted
and complemented by the software-assisted matching. The result is presented in Figure 2
and in Video S1 (in the Supplementary Material).

Cancers 2022, 14, x FOR PEER REVIEW 4 of 14 
 

 

Figure 1. Study workflow. CT: computed tomography; ADC: apparent diffusion coefficient; 
FNCLCC: Fédération Nationale des Centres de Lutte Contre Le Cancer. 

2.4. Computed Tomography Imaging 
A native 128-slice fine-slice spiral CT (SOMATOM Definition Flash and SOMATOM 

Force from Siemens Healthcare GmbH, Erlangen, Germany) with multiplanar reconstruc-
tion was performed to visualize the biopsy markers from all resected specimens, each with 
a soft tissue and bone algorithm in the axial and sagittal layering (Figure 1). The section 
thickness ranged from 1 to 3 mm. 

2.5. Fusion Imaging 
Fusion imaging using the preoperative in situ MRI and postoperative CT of the spec-

imens were performed with Eclipse software (v. 15.5 from Varian Medical Systems, Palo 
Alto, CA, USA). First, both the MRI and CT data sets were transferred into the software. 
The introduced biopsy markers were identified and color-coded in the CT of the speci-
mens. An undirected fusion of the data sets was created automatically by the software. 
The orientation and localization of the CT image within the in situ MRI were visually 
adjusted and complemented by the software-assisted matching. The result is presented in 
Figure 2 and in Video S1 (in the Supplementary Material). 

 
Figure 2. Fusion imaging of a leiomyosarcoma of the vena cava. (a) Postoperative CT of the speci-
men. One inserted biopsy marker is highlighted in pink (arrow). (b) Fusion sequence of postopera-
tive CT and ADC sequence of the preoperative magnetic resonance imaging (MRI). (c) Complete 
fusion imaging with high tumor contour accuracy between CT and MRI. The biopsy marker visual-
izes the precise biopsy location within the preoperative in situ MRI. Please also consider the dy-
namic fusion in Video S1 in the Supplementary Material. 

2.6. Image Analysis 
The Centricity Universal Viewer (v. 6.0, GE Healthcare, Chicago, IL, USA) was used 

for the image analysis and calculation of the ADC values. In the in situ MRI, the ADCmean, 
ADCmin, and ADCmax of the whole tumor were determined using an ellipsoidal measuring 
tool placed to capture as much of the tumor as possible. Fusion imaging allowed us to 
acquire the coordinates of all inserted biopsy markers on the in situ MRI scan. Conse-
quently, we also determined the ADC values for all biopsy sites. For the measurement, a 
circular area with a diameter of 2 cm was defined around the coordinate point. This area 
corresponds to the approximate size of the biopsy punch radius during biopsy collection. 

2.7. Statistical Analysis 
Data are presented descriptively and the categories, proportions, median, and range 

were given. In addition, box plots were displayed if appropriate. The analyses were per-
formed using IBM SPSS Statistics (v.28. IBM Corp., Armonk, NY, USA) and Microsoft Ex-
cel (v.16.53. Microsoft Corp., Redmond, WA, USA). 

  

Figure 2. Fusion imaging of a leiomyosarcoma of the vena cava. (a) Postoperative CT of the specimen.
One inserted biopsy marker is highlighted in pink (arrow). (b) Fusion sequence of postoperative
CT and ADC sequence of the preoperative magnetic resonance imaging (MRI). (c) Complete fusion
imaging with high tumor contour accuracy between CT and MRI. The biopsy marker visualizes the
precise biopsy location within the preoperative in situ MRI. Please also consider the dynamic fusion
in Video S1 in the Supplementary Material.

2.6. Image Analysis

The Centricity Universal Viewer (v. 6.0, GE Healthcare, Chicago, IL, USA) was used
for the image analysis and calculation of the ADC values. In the in situ MRI, the ADCmean,
ADCmin, and ADCmax of the whole tumor were determined using an ellipsoidal measuring
tool placed to capture as much of the tumor as possible. Fusion imaging allowed us to
acquire the coordinates of all inserted biopsy markers on the in situ MRI scan. Consequently,
we also determined the ADC values for all biopsy sites. For the measurement, a circular area
with a diameter of 2 cm was defined around the coordinate point. This area corresponds to
the approximate size of the biopsy punch radius during biopsy collection.

2.7. Statistical Analysis

Data are presented descriptively and the categories, proportions, median, and range
were given. In addition, box plots were displayed if appropriate. The analyses were
performed using IBM SPSS Statistics (v.28. IBM Corp., Armonk, NY, USA) and Microsoft
Excel (v.16.53. Microsoft Corp., Redmond, WA, USA).

3. Results
3.1. Patient and Tumor Characteristics

Fourteen patients were prospectively included between January 2020 and March 2021.
Of these, 12 patients were considered for the study evaluation. One case with a previous
biopsy pointing toward sarcoma was excluded due to a benign histopathological diagnosis,
and one case was excluded due to an inadequate MRI scan. Table 1 provides an overview
of the patient and tumor characteristics.
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Table 1. Patient and tumor characteristics.

Variable n or Median (Range)

Patient Number of patients 12
characteristics Age (years) 72 (45–79)

Sex: Female/Male 5/7
Ethnicity: Caucasian/Other 12/0

Tumor characteristics
Primary tumor 10
Recurrent tumor 2
Tumor size (cm) 11.25 (6.2–22)

Histologic subtype

Well-differentiated liposarcoma 1
Dedifferentiated liposarcoma 2
Leiomyosarcoma 1
Synovial sarcoma 1
Myofibroblastic sarcoma 2
MPNST 1
Myxofibrosarcoma 1
Solitary fibrous tumor 1
Undifferentiated Sarcoma, NOS 2

Tumor localization

Upper extremity 3
Lower extremity 5
Intraabdominal 2
Retroperitoneum 2

Grading total tumor Grade 1 (G1) 4
(FNCLCC) Grade 2 (G2) 6

Grade 3 (G3) 1
Grade x (Gx) 1

MPNST: Malignant peripheral nerve sheath tumor; NOS: not otherwise specified.

The included well-differentiated liposarcoma was located deep in the fascia, measured
20 × 14 × 10 cm, originated in the adductor muscles, and grew into the ischiocrural
muscles. In addition to these clinical criteria, imaging and histopathological analysis
revealed necrotic areas within the tumor. Postoperatively, the resection with sparing of
the sciatic nerve (R1) and a radiation therapy were performed. The solitary fibrous tumor
(SFT) was also located deep to the fascia, had a size of 6.2 cm and originated in the fossa
popliteal. It was classified to have a low risk of recurrence.

3.2. FNCLCC Score and Grading

The histopathological analysis of the entire specimens identified four Grade 1 (G1),
six Grade 2 (G2), and one Grade 3 (G3) tumors (Table 2). Due to extensive regressive
transformation after neoadjuvant treatment, in one case no grading could be determined
(Gx). We used the determined FNCLCC score for each biopsy to derive the corresponding
biopsy grade, as initially intended by the FNCLCC grading system for whole sarcoma
specimens. Again, in one case, grading of the collected biopsies was not possible because
of the extensive regressive transformation after neoadjuvant treatment of the entire tumor.
For the cases with successful grading, there was a concordance in grading between the
entire specimen and at least one biopsy (“best biopsy”) in 9 of 11 cases (81.8%). In the other
2 of 11 cases (18.2%), an “undergrading” (G1 instead of G2) occurred because the mitotic
count in both cases and the tumor necrosis in one case could not be adequately determined
based on the biopsies. Both cases were myofibroblastic sarcoma.
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Table 2. Histological subtype and grading according to FNCLCC criteria of all total tumors and
biopsies. The biopsies graded in concordance with the total tumor are highlighted in bold.

Histologic
Subtype Total Tumor Biopsies

TD TN MC FNCLCC
Score Grading TD TN MC FNCLCC

Score Grading

Dedifferentiated
liposarcoma 1 0 <10 2 G1

B1: x B1: 100% B1: x B1: x B1: x
B2: 1 B2: 0 B2: 0 B2: 2 B2: G1
B3: 1 B3: 0 B3: 0 B3: 2 B3: G1
B4: x B4: 100% B4: x B4: x B4: x

Synovial
sarcoma

2 0 <10 3 G1
B1: 2 B1: 0 B1: 0 B1: 3 B1: G1
B2: 2 B2: 0 B2: 0 B2: 3 B2: G1
B3: 2 B3: 0 B3: 0 B3: 3 B3: G1

Dedifferentiated
liposarcoma 3 0 <10 4 G2

B1: 3 B1: 0 B1: 0 B1: 4 B1: G2
B2: x B2: 100% B2: x B2: x B2: x

Well-
differentiated
liposarcoma

1 <50% <10 3 G1
B1: x B1: 100% B1: x B1: x B1: x
B2: 1 B2: 0 B2: 0 B2: 2 B2: G1
B3: 1 B3: 0 B3: 0 B3: 2 B3: G1

Myofibroblastic
sarcoma

2 <50% 9 4 G2
B1: 2 B1: 0 B1: 0 B1: 3 B1: G1
B2: 2 B2: 0 B2: 0 B2: 3 B2: G1
B3: 2 B3: 0 B3: 0 B3: 3 B3: G1

Leiomyosarcoma 2 <50% 4 4 G2
B1: 2 B1: 0 B1:10 B1: 4 B1: G2
B2: 2 B2: 0 B2: 2 B2: 3 B2: G1
B3: 2 B3: 0 B3: 7 B3: 3 B3: G1

Myxofibrosarcoma x x x x Gx
B1: x B1: x B1: x B1: x B1: Gx
B2: x B2: x B2: x B2: x B2: Gx

Undifferentiated
Sarcoma, NOS 3 <50% 1 5 G2

B1: 3 B1: 0 B1: 0 B1: 4 B1: G2
B2: 3 B2: 0 B2: 0 B2: 4 B2: G2

B3: 3 B3:
<50% B3: 0 B3: 5 B3: G2

MPNST 2 <50% 0 4 G2
B1: x B1: 100% B1: x B1: x B1: x
B2: x B2: 100% B2: x B2: x B2: x

B3: 2 B3:
<50% B3: 0 B3: 4 B3: G2

Undifferentiated
Sarcoma, NOS 3 <50% >20 7 G3

B1: 3 B1: 0 B1:16 B1: 5 B1: G2
B2: 3 B2: 0 B2: 6 B2: 4 B2: G2

B3: 3 B3:
<50% B3:15 B3: 6 B3: G3

Myofibroblastic
sarcoma

2 0 12 4 G2
B1: 2 B1: 0 B1: 1 B1: 3 B1: G1
B2: 2 B2: 0 B2: 0 B2: 3 B2: G1
B3: 2 B3: 0 B3: 2 B3: 3 B3: G1

Solitary fibrous
Tumor

1 0 2 2 G1
B1: 1 B1: 0 B1: 1 B1: 2 B1: G1
B2: 1 B2: 0 B2: 1 B2: 2 B2: G1

TD: tumor differentiation; TN: tumor necrosis, MC: mitotic count; B: biopsy; x: score cannot be assessed due to
extensive necrosis or regressive transformation of the tumor.

3.3. Fusion Imaging

In 7 of 12 cases (58.3%), fusion imaging was feasible without relevant contour devia-
tion (Figure 2 and Video S1 in the Supplementary Material), which allowed us to identify
the precise position of the postoperatively placed markers in the preoperative MRI. For this
purpose, the coordinates were recorded in the fusion software and later transferred to the
MRI image for further analysis. In the other 5 of 12 (41.7%) cases, postoperative deforma-
tion prevented image fusion of sufficient quality. This difficulty occurred particularly in
specimens with soft tumor consistency (4 of 5). Relevant contour deviations were observed
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in two cases of liposarcoma; one case of a myofibroblastic sarcoma; and one case of an
undifferentiated sarcoma, not otherwise specified (NOS). In another case of a multifocal
interjoint tumor (1 of 5), resection was performed through transfemoral amputation. The
deviated position of the knee joint on postoperative specimen CT compared with the in
situ MRI complicated a reliable fusion imaging.

3.4. Correlation of the ADC and FNCLCC Score

A total of 23 pairs of ADC and FNCLCC scores at distinct tumor sites were available
after fusion imaging. Figure 3 presents the correlation of ADCmean with the corresponding
grading. The mean ADC values (mean (range) ± standard deviation [×10−3 mm2/s]) were
1.43 (0.64–2.03) ± 0.46 for G1 and 1.13 (0.78–1.70) ± 0.23 for G2/G3. In addition, FNCLCC
scoring of multiple tumor biopsies proved intratumoral heterogeneity as expected. Further,
ADC appears to correlate with FNCLCC grading criteria. Due to the small study population,
no significance analysis was performed. However, Figure 3 demonstrates the tendency
of high-grade sarcoma regions (G2/G3) to have lower ADC values than low-grade (G1)
sarcoma regions. Figure 2 and Video S1 (in the Supplementary Material) present the fusion
imaging of a retroperitoneal leiomyosarcoma. In addition, Figure 4 displays the direct
correlation of ADCmean values and FNCLCC grading of the different biopsies from the
tumor. This example demonstrates the complexity of the histopathological detection of the
mitotic count based on CNBs and illustrates the potential benefit of functional imaging in
this context.
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Figure 4. Distribution of the ADC of the entire tumor and the three collected biopsies. The arrows
mark the distribution of ADC from the entire tumor and the biopsies. The ADC of biopsy III and
the entire tumor are very close to each other. However, the grading reveals a discrepancy: total
tumor: grade (G) 2, biopsy III: G1, because this is the lower mitotic count of biopsy III determined
by histopathological examination. Histopathological assessment of the whole tumor revealed an
FNCLCC grade of 2. The ADCmean of the entire tumor was 1.26 ± 0.28 ×10−3 mm2/s, which was
low and indicated a high grade. Biopsy I also revealed an FNCLCC score corresponding to G2 and
low ADC values. Biopsy II revealed an FNCLCC score corresponding to G1 and high ADC values.
At both intratumoral sites, the correlation of the ADC and FNCLCC score was consistent (high
grade—low ADC; low grade—high ADC). The difference in grade and ADC reflected intratumoral
heterogeneity. A discrepancy occurred between the histopathological and radiological findings at the
third biopsy site. The ADC of Biopsy III was 1.32 ± 0.21 × 10−3 mm2/s, which is low and indicates a
high grade. The FNCLCC score revealed a grade of 1. Comparing the single criteria of the FNCLCC
score of each biopsy, all three biopsies were identical in terms of histological subtype and tumor
necrosis but different in the number of mitoses, which was decisive for the grading determination.
Thus, the critical difference was the mitotic count, which was 2 (G1–ADC high), 7 (G1–ADC low),
and 10 (G2–ADC low; see Figure 3).

4. Discussion

Grading is one of the most important criteria for treatment allocation in patients with
sarcoma. However, grading is a rather unreliable parameter in the pretreatment assessment
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of STS. We conducted this pilot study to learn more about the correlation between functional
imaging and histopathological features of distinct tumor sites to improve the pretreatment
assessment of STS.

The FNCLCC scoring system is currently the most used method for assessing the
histopathological grading of STS. To calculate the FNCLCC score, tumor necrosis, tumor
differentiation, and mitotic rate are determined. The method itself was developed and
validated in the 1980s to 1990s based on cohort studies in France [15]. In these studies,
pathologists carefully examined entire specimens of unpretreated sarcomas to develop
a reliable and robust grading system to estimate the prognosis of STS. Today, however,
pretreatment grading is usually determined based on biopsies rather than specimens, and
perioperative treatment algorithms have become more sophisticated, e.g., grading is one of
the most important triggers of neoadjuvant chemotherapy. This situation leads to two major
clinical difficulties: First, the application of preoperative therapies may significantly alter
FNCLCC parameters, such as tumor necrosis and mitotic count. Thus, postoperative re-
evaluation and definitive determination of grading are frequently not possible at all. Second,
grading based on biopsy material is consistently unreliable. Cohort studies comparing
the grading of biopsies and specimens exhibit a variable overall concordance of 30% to
90% [6,7,9]. Some authors have argued that the unreliability of biopsies depends on the
biopsy technique, favoring incisional biopsies over CNBs. Nevertheless, such an advantage
of incisional biopsies has never been proven in head-to-head trials, and numerous tumors
(e.g., retroperitoneal sarcoma) are unsuitable for incisional biopsies [16]. Intratumoral
heterogeneity is the most crucial reason for the disappointing accuracy of pretreatment
interventional biopsies [6,9].

In this study, we deliberately biopsied vital tumor sites at different sites but did
not correctly estimate the grading in more roughly 10% of the cases. To our knowledge,
better results were achieved only in a single study in which tumor biopsies were taken
immediately during MRI [17]. With this method, Noebauer et al. achieved a reliable
grading in 90.5% of cases. In clinical practice, however, this procedure is neither common
nor practicable.

As cross-sectional imaging is an essential staging feature, assessing tumor characteris-
tics using radiological methods is a logical approach to improving pretreatment grading. In
particular, functional imaging may be suitable to describe tumor aggressiveness by estimat-
ing surrogate metabolism markers, blood flow, and tumor cellularity. Cohort studies have
described MRI, CT, and positron emission tomography (PET)-CT as applicable modalities
for this purpose [18–20].

The results of several cohort studies evaluating DWI suggest that ADC, as a parameter
of cellularity, has the potential to characterize dignity and grading in STS [13,21,22]. Tumor
necrosis as a surrogate marker of fast and ineffective tumor growth may be estimated using
CT [18]. Mcaddy et al. applied the grading system according to FNCLCC but replacing
histopathologic diagnosis of tumor necrosis with the CT imaging results. This method
improved the sensitivity of necrosis detection, and subsequently, the reliability of grad-
ing. Metabolic activity measured using 18F-fluorodeoxyglucose (FDG)-positron emission
tomography (PET)/CT also seems to be a potential functional parameter differentiating
between high- and low-grade sarcomas. Several studies have recently demonstrated sig-
nificant results for grading differentiation based on the standardized uptake value (SUV).
Additionally, a correlation between the mitotic count or tumor necrosis and the SUV could
be demonstrated here [20,23,24].

In the present work, DWI was chosen as a functional parameter for radiological tumor
characterization. In addition, DWI may be suitable for estimating the dignity of unclassified
soft tissue lesions and the grading of malignant STS. Chhabra et al. and Razek et al.
correlated grading and ADC in retrospective cohort studies and found significantly lower
ADC values for high-grade tumors than for low-grade tumors [14,25]. Similar results have
also been demonstrated for other tumor entities, such as breast cancer [26]. Moreover,
the DWI method provides advantages regarding clinical feasibility. It does not require
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additional radiation exposure, unlike CT or FDG-PET. Regarding cost-effectiveness, DWI
is a convenient approach because MRI imaging is part of the standard diagnostics in STS
and DWI is already established as a standard procedure in diagnosing for other indications
such as ischemic stroke [27]. Therefore, its comprehensive feasibility should be ensured.

This pilot study has limitations. The chosen method of fusion imaging, intraoperative
biopsy, and specific correlation of histology and functional imaging is complex and was
realized only in a few patients. The results regarding the assumed correlation of grading
and ADC must be validated in larger cohorts. In these large-scale validation studies, the
appropriate consideration of the already-existing, subtype-specific scoring systems for risk
assessment, such as the SARCULATOR or SFT prognosis tool, in addition to the general
FNCLCC grading system, will be a specific challenge [28,29].

Furthermore, the technique of fusion imaging itself was limited by tumor deformation
in this pilot study. Surgical manipulation leads to tumor deformation. This deformation
must be compensated for with the appropriate software during image fusion [30]. We
have chosen a commercially available software that was initially developed for image
fusion of different imaging modalities to facilitate necessary calculations for radiotherapy.
Due to the nature of the pilot study, in-house development of an appropriate program or
adaptation of software approaches using machine learning or artificial intelligence was
not reasonably possible. This development would have required a significantly higher
number of patients to form training and test cohorts. For example, Breininger et al. used
over 60 data sets to develop image fusion methods in the context of endovascular aortic
prosthesis implantation [31]. Sarcomas are rare, vary in localization, and are sometimes
mobile concerning neighboring structures. For more common cancers, which are frequently
fixed and almost always occur at the same site, fusion imaging has already been developed
for clinical practice, e.g., for MRI and ultrasound in the case of prostate cancer [32]. For
sarcoma, such an approach is probably much more challenging.

As described, other authors have also pursued functional imaging approaches to im-
prove the preoperative grading of sarcomas. Crombé et al. proposed a radiological grading
system based on three independent radiological MRI criteria: peritumoral enhancement,
heterogeneous signal intensity of 50% at T2-weighted imaging, and presence of necrotic
tumor areas were associated with high-grade STS [12]. Peeken et al. and Navarro et al.
also developed complex MRI-based artificial intelligence methods to differentiate low-
and high-grade sarcomas [33,34]. However, none of these approaches achieved a more
consistent quality than the current assessment of histological grading. The accuracy results
in predicting high-grade tumors were 70.2%, 64.0%, 78.0%, and 83.0% [12,33,34]. Retro-
spective trials correlating radiographic and histological tumor features with oncological
outcome are limited by patient selection, missing methodological standardization, and
missing site-specific correlation of histology and imaging features. A large proportion of
patients are referred to sarcoma centers with MRI of good quality but without functional
imaging. These patients would not be eligible for further analyses since their imaging is
usually sufficient for routine treatment planning. In the remaining cases, interventional
biopsies are usually taken in a fan-shaped manner, and the exact site of the single biopsy is
not documented. Other authors and guidelines recommend taking tumor heterogeneity
into account and choosing the tumor area with the highest grade for biopsy [2,3,17,35].
Yet, no validation study ever demonstrated a reliable correlation of radiographic and
histopathological tumor features. The rationale of this feasibility study was to establish
a method of fusion imaging and the correlation of radiographic and histopathological
parameters to prepare a prospective, large-scale validation study.

We considered two other methodological options for this prospective trial to enable a
site-specific correlation of radiological and pathological features. The first option was to
place a radiopaque marker at the biopsy site in situ, analogous to those used in biopsies
of breast cancer [36]. However, these markers are currently not licensed for soft tissue
lesions in Germany. Furthermore, additional postinterventional imaging for image fusion
would also have been required. The second option was to perform CT-guided biopsies in
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all patients. Subsequently, the biopsy tracts (or the position of the coaxial needle) could
have been correlated with preexisting functional imaging. Both alternatives require the
conduction of feasibility studies to calculate the size of the study population, the setting
of the trial, the number of study centers, etc., for a large-scale trial. Furthermore, for both
alternatives, the development of a fusion imaging method would have been necessary
to correlate biopsy sites and functional imaging. In addition, radiation exposure would
have been increased—at least in comparison to our own routine approach—in which
ultrasound-guided biopsies are preferred.

We believe that the most reasonable approach for a future grading system is a com-
bination of histopathological and radiological assessment. In some tumors, such as an-
giosarcoma, the histological subtype in itself determines the biological aggressiveness and
grading is not performed [1]. In the remaining cases, imaging can highly likely describe the
tumor necrosis parameter better than a single biopsy from the tumor. As another parameter
of the scoring system, the mitotic rate is a surrogate of tumor proliferation, which may be
described by hypervascularization or cellularity, which are parameters of functional imag-
ing (see Figure 4). Thus, the goal must be to develop a new scoring system incorporating a
histological and molecular biological examination of the biopsy and functional imaging
parameters (Figure 5).
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5. Conclusions

In conclusion, we demonstrated the feasibility of fusion imaging of preoperative in
situ MRI and postoperative CT of the specimen. Considering that the pretherapeutic
grading is fundamental for treatment planning of STS, we demonstrated in selected cases
that functional MRI could be a valuable complement to histopathological grading. In the
future, a combined grading system of histopathological and radiological features could be
developed to improve the reliability of pretherapeutic grading.
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