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Abstract: Recording human gestures from a wearable sensor produces valuable information to
implement control gestures or in healthcare services. The wearable sensor is required to be small and
easily worn. Advances in miniaturized sensor and materials research produces patchable inertial
measurement units (IMUs). In this paper, a hand gesture recognition system using a single patchable
six-axis IMU attached at the wrist via recurrent neural networks (RNN) is presented. The IMU
comprises IC-based electronic components on a stretchable, adhesive substrate with serpentine-
structured interconnections. The proposed patchable IMU with soft form-factors can be worn in close
contact with the human body, comfortably adapting to skin deformations. Thus, signal distortion (i.e.,
motion artifacts) produced for vibration during the motion is minimized. Also, our patchable IMU
has a wireless communication (i.e., Bluetooth) module to continuously send the sensed signals to
any processing device. Our hand gesture recognition system was evaluated, attaching the proposed
patchable six-axis IMU on the right wrist of five people to recognize three hand gestures using
two models based on recurrent neural nets. The RNN-based models are trained and validated
using a public database. The preliminary results show that our proposed patchable IMU have
potential to continuously monitor people’s motions in remote settings for applications in mobile
health, human–computer interaction, and control gestures recognition.

Keywords: patchable IMU; six-axis inertial sensor; hand gesture recognition; recurrent neural
network; control gestures

1. Introduction

Human motion recognition is a context-aware technology to classify actions or body
gestures into labels based on the motion patterns in the data collected from wearable
sensors, such as accelerometers and gyroscopes [1]. Technological advances in wireless
communication, micro sensor modules, and low power electronic devices make it possible
to build highly reliable wearable systems. [2]. The biometric information provided from
the wearable devices can be used for activity recognition applications such as health
monitoring [3–7], dependency care [8,9], or sports training analysis [10–16]. Recognizing
various hand gestures using inertial measurement units (IMUs) can provide essential
contextual information for user control interfaces [17–19] or rehabilitation applications [8,9].
Two issues had been raised regarding advanced human motion analysis. First, the sensor
and its composition. An IMU built from flexible or stretchable materials allows the sensor
to be attached directly to the skin, reducing motion artifact [20]. Second, the human
motion recognition algorithm. Recently deep learning has been adopted to create motion
recognition systems because it does not need feature extraction and selection [21,22].
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Recently, wearable and patchable sensors using flexible/stretchable substrates have
been implemented [1,7]. The patchable sensors (i.e., bioelectronics sensors) can adapt to
the human body to measure human motions with high fidelity. Typically, commercial
wearable IMUs are used with tight straps to avoid mechanical sliding during motion or
breathing. However, the bioelectronics sensor with soft form-factors can be in close contact
with the human body to minimize the motion artifact [23]. Recent research has focused on
implementing highly-scalable and modularized epidermal electronic sensors [24,25], which
used rigid integrated circuit (IC) components with robust stretchable interconnections. The
patchable sensor enables continuous data logging for ambulatory monitoring through the
integration of wireless communication.

Deep learning (DL) is becoming a new trend in the fields of pattern recognition
and machine learning, because of its performance in human motion (i.e., gesture and
activity) recognition [21,22]. The DL algorithms extract and learn hidden representation
(i.e., features) directly from the raw data. In contrast, a careful feature extraction and
selection is needed by traditional machine learning algorithms such as naïve Bayes (NB),
K-nearest neighbors (KNN), decision tree (DT), and support vector machines (SVM) [26,27].
Among DL algorithms, recurrent neural networks (RNN) are actively used for activity and
hand gesture recognition with IMUs because the recurrent connections favorable process
sequential data [28,29]. For instance, Ordoñez et al. [30] proposed a hand gesture and
activity recognition system based on RNN with long short term memory (LSTM) from a
full set of body-worn IMUs. Their results showed that RNN performs better classification
between similar gestures than KNN, DT, and SVM. Vu et al. [31] compared the activity
recognition performance of LSTM and gate recurrent unit (GRU) from wearable sensors,
i.e., accelerometer and gyroscope signals. Their results showed that GRU performs similar
to LSTM in activity recognition, despite GRU having a structure less complex than LSTM.

In this paper, a stretchable and patchable six-axis IMU for human motion recognition
via RNN is presented. The proposed patchable IMU is implemented using IC components
soldered on bonding pads. To resolve the limitations of conventional sensors, the proposed
patchable IMU was implemented on the stretchable adhesive material with serpentine-
structured interconnections [32–34], which can be comfortably attached to any part of
human body. The proposed patchable IMU was implemented using a commercialized,
low-cost six-axis inertial sensor, a Bluetooth low energy (BLE) microprotocol system-on-a-
chip (SoC), a chip antenna, and several electronic components for real-time biometric data
acquisition. Our proposed patchable six-axis IMU was tested for hand gesture recognition
using two RNN-based models because of the RNN performance in activity recognition
with multiple IMUs reported in previous works [21–31]. First, an RNN model based on
LSTM units and a second RNN model based on GRU units were devised. The RNN-based
models were validated using a public database. Then, the trained models recognize hand
gestures from our patchable IMU attached at the right wrist of five subjects. The results
show the RNN-based models achieving similar classification accuracy with the public
dataset and our sensed dataset.

The related works, hardware design, and system implementation process will be
represented in detail by following sections. In addition, the methodology for data training
and data processing strategies using neural networks will be described in detail for user’s
hand gesture recognition. Through the experimental results of this paper, it will be shown
that the proposed patchable IMU and deep learning algorithm enable real-time recognition
of a user’s hand gestures. We believe that expansion of the preliminary results will
enable the development and application of a high-performance multi-parameter sensor
microsystem.

2. Related Works

Recently, IMUs are turned into a common sensor used in smartphones, smartwatch,
and smart bands because it reduces the cost and physical dimensions [35–37]. The popular-
ity of smart and wearable devices generated a growing interest in the research community
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to use IMUs for motion recognition. Chen et al. [38] proposed a bendable sensing system
for motion detection. Their system housed an IMU built on a hard printed-circuit board
(PCB) into a rubber band to be attached to human limbs. The rubber-case worked for shock-
absorption, avoiding sensor damage. Also, the band can easily attach or detach to collect
data from more than one location, i.e., wrists or legs. However, motion artifact (i.e., noise)
affected the sensed signals because vibrations are produced in the rubber band during the
motion. Hand gestures are especially susceptible to motion artifacts because of the force
and speed involved in the motions. Attaching the IMU directly to the skin might reduce
the sensed motion artifact, but the general methodology to produce a patchable sensor is
complex and expensive. Using our methodology, an inexpensive patchable six-axis IMU
can be produced.

Hand gesture recognition via DL is actively investigated because of its potential in
applications such as healthcare and human–computer interaction (HCI). Cole et al. [39]
proposed a system to recognize smoking gestures from a tri-axis accelerometer built into
an apple watch via an artificial neural network. Their system recognized smoking, eating,
drinking, and scratching nose gestures, achieving an accuracy of 70%. Valarezo et al. [40]
performed smoking recognition using a six-axis IMU housed on a wrist band via RNN
with LSTM units. Valarezo’s system used a two steps classification scheme. First, the IMU
signals were classified as activities of daily living or hand gestures. Second, the hand
gestures were classified as smoking, eating, and drinking gestures, reporting a smoking
accuracy of 91.38%. Nasri et al. [41] used hand gesture recognition for an HCI-based system.
In their system, a GRU-based algorithm recognized seven hand gestures to control a 3D
game, achieving an accuracy of 82.15% with a new user. Rivera et al. [42] presented a
gesture recognition system using an IMU placed at dominant wrists and a RNN based on
GRU units. Their GRU-based system learned the underlying temporal dependencies within
the time series to recognize seven gestures, achieving an average classification accuracy
of 84.94%.

These previous works show that a hand gesture recognition system must focus on the
following components. First, a patchable six-axis IMU can reduce the noise in the sensed
activity signals by reducing the vibration comparing to sensors attached using rubber
bands. Second, artificial intelligence should be based on high-performance algorithms,
such as DL.

3. Methods
3.1. Design and Implementation of Patchable IMU
3.1.1. System Design

In Figure 1, the schematic and system block diagram of the six-axis patchable IMU is
shown. The proposed patchable system consists of an inexpensive, micro six-axis sensor
(MPU6050; Invensense, San Jose, CA, USA), low-power BLE SoC (nRF52832; Nordic
Semiconductor ASA, Trondheim, Norway), 2.4 GHz chip Blutooth antenna, 32 MHz
crystal, and multiple electronic components. All elements used in system configuration
are mounted on the bonding footprints, and the bonding footprints are connected by
the serpentine-structured interconnections to allow the device to be elongated under
various types of mechanical strains. In general, it has been known that human skin
can withstand strain of approximately 27% [43]. The top and bottom layers are covered
with stretchable adhesive films (Tegaderm; 3M, Saint Paul, MN, USA) to encapsulate the
functional components. As is well known, Tegaderm is not a highly-stretchable material
and can be permanently deformed when subjected to high levels of stress. However, the
reason we used Tegaderm in this system is that the system adheres well to the skin, so
it can follow the deformation of the skin precisely. If the material elasticity is too strong,
there is a problem that slipping may occur when stretching when attached to the skin,
and the Young’s modulus must be similar to that of the skin in order to adapt well to
the deformation of the skin. The device is designed with a modular concept that allows
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components to be reconfigured as needed, enabling the implementation of compact systems
optimized for a variety of applications.

Figure 1. Design of patchable inertial measurement unit (IMU). (a) Reconfigurable system concept
and schematic; (b) system block diagram.

The micro six-axis sensor and the SoC transmit inertial signals according to the
movement of the attached skin using the two-wired serial interface. In the micro six-
axis sensor, three-axes accelerations and three-axes rotational velocities are digitized by
the built-in 16-bit analog-to-digital converter (ADC). These converted inertial signals are
passed through the bus interface unit of SoC via 400 kHz I2C communication. After the
data are processed in the control unit, they are spread by the universal asynchronous
receiver/transmitter (UART) structure, and via Bluetooth communication the inertial
data are gathered. To reduce noise, especially overshoot in the raw data, a low pass
filter is implemented using a damping resistor (33 ohms), and the sampling rate is about
120 Hz. In the case of the MPU-6050, the full-scale of accelerometer and gyroscope can
be modified between ±2 g, ±4 g, ±8 g, ±16 g, and ±250 ◦/s, ±500 ◦/s, ±1000 ◦/s,
±2000 ◦/s, respectively, by converting the code value. When the system is started, the
offset is initialized by taking the average of the first 200 input values and subtracting it
from the raw data. The offset value is updated every time when the system is started. In
this paper, an NFC antenna for BLE pairing is used in addition to the previously reported
IMU [23]. The reason for using NFC BLE pairing lies in the convenience of BLE pairing. The
pairing proceeds simply by bringing the mobile device for data collection close to the device
implemented in this paper, and the transmission of raw data also starts simultaneously.
This makes it easier for the user to determine the time the sensor operates when measuring
by attaching the device to the human body. In this paper, in order to utilize the NFC A-tag
provided by the nRF52832, when designing the footprint, we tried to reduce interference
as much as possible by excluding the placement of other elements near the pins of the NFC
BLE pairing antenna.

3.1.2. System Implementation Process

The implementation procedure of the patchable six-axis IMU on a stretchable adhesive
film is described in Figure 2. The footprint of the proposed system is defined by a computer-
aided design (CAD) program and programmable cutter (Silhouette Cameo®, Silhouette
America, Lindon, Utah, USA). This method allows miniaturized devices to be implemented
on substrates of various form-factors without the need for expensive cleanroom fabrication
processes. The serpentine structure of the metal interconnection is designed to have a line
width of 200 µm, and is designed to ensure stable operation even with a tensile strain of
up to 30%. The detailed implementation process is as follow. At first, a copper (Cu) foil
(Copper 110 Annealed; Online Metals, Seattle, WA, USA) having thickness of 18 µm is
laminated on the thermal release tape (TRT). The cutter patterns the TRT-laminated Cu
foil according to the pre-programmed CAD footprints. Then, the remaining region, except
the designed patterns on TRT-laminated Cu foil, is removed (Figure 2a). Subsequently,
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a water-soluble tape (WST) and polyimide film are adhered in sequence to the opposite
side of the patterned TRT-laminated Cu foil. After bonding on a glass substrate, the whole
substrate is heated on a hot plate to peel off the TRT layer as shown in Figure 2b. After the
bonding footprint for circuit assembly is revealed, all the components, such as the micro
six-axis sensor, signal processing unit, Bluetooth chip antenna, BLE paring antenna, passive
elements, and bridge interconnections, are soldered. The whole device is released from the
glass substrate after the polyimide film removal. Then, the stretchable adhesive film covers
the upper layer of the circuit, as illustrated in Figure 2c, and water drops are used to peel off
the WST (Figure 2d). Afterwards, the patchable six-axis IMU is implemented by covering
the Tegaderm to the lower part of the electronic components and the serpentine-structured
Cu interconnections on a stretchable substrate, as shown in Figure 2e. Finally, alignment of
the reconfigurable modules and coin cell battery is performed (Figure 2f).

Figure 2. Implementation process patchable IMU. (a) Design and formulation of layout footprint;
(b) water-soluble tape (WST)/polyimide film attachment and thermal release tape (TRT) removal;
(c) Soldering and top-layer encapsulation; (d) Detachment of WST/polyimide film; (e) Bottom-layer
encapsulation; (f) Battery and module alignment.

3.2. Hand Gesture Recognition via Recurrent Neural Networks

RNN is an artificial neural network with recurrent connections. The recurrent connec-
tions generate a temporal memory, in which the previous state of the network is stored.
Then, RNN infers the activity label based on the previous state of the network and the cur-
rent input data [44]. Unfortunately, RNN might suffer from a vanishing gradient problem
with long data sequences [45]. The gradient carries information to update the trainable
parameters. In the vanishing gradient problem, the gradient becomes smaller and smaller
during the error-backpropagation in training. Then, RNN does not learn because the
gradient becomes insignificant. LSTM and GRU units have been developed to overcome
learning problems such as the vanishing gradient [46]. An LSTM uses internal paths
regulated by gates, where the gradient can flow for long durations [44]. These regulated
paths allow error propagation in deep networks.

Figure 3a shows the structure of the internal gates of an LSTM unit. Equations (1) to
(6) describes mathematically the LSTM units, where W is the weights and b the bias.

ft = σ(W·[ht−1, xt] + b) (1)

it = σ(W·[ht−1, xt ] + b) (2)
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C̃t = tanh(W·[ht−1, xt] + b) (3)

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

ot = σ(W·[ht−1, xt ] + b) (5)

ht = ot ∗ tanh(Ct), (6)

Figure 3. Recurrent units. (a) Long short-term memory; (b) gate recurrent unit.

GRU is a variant of the LSTM with fewer operations and gates [46]. Figure 3b shows
the internal structure of a GRU and Equations (7) to (10) describe the GRU units mathemat-
ically.

zt = σ(Wz·[ht−1, xt]) (7)

rt = σ(Wr·[ht−1, xt]) (8)

h̃t = tanh(W[rt ∗ ht−1, xt]) (9)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t, (10)

3.2.1. RNN with Bidirectional LSTM

Bidirectional LSTM (BiLSTM) is a neural network based on LSTM with two kinds
of connections [47]. One connection goes forward in time helping to learn from previous
representations, as in classic LSTM. The other connection goes backward in time, which
helps to learn from future representations.

Figure 4 shows the hand gestures classifier based on RNN with BiLSTM (i.e., RNN-
BiLSTM). From the left, hand gesture signals are sensed using our patchable six-axis IMU.
Then, RNN-BiLSTM processes the data using one BiLSTM layer composed of 110 hidden
nodes with hyperbolic tangent activation function to extract features. At the output of
the network, a dense layer with three nodes and SoftMax activation function provides the
classification probability of each class. The dense layer is defined as a fully connected layer.

Figure 4. Hand gestures classifier based on a recurrent neural network (RNN) with bidirectional
long short term memory (BiLSTM).

Multiclass cross-entropy is the loss function and stochastic gradient descent (SGD) is
used to optimize the network parameters. The SGD is described by Equations (11) and
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(12) where α is learning rate, Wt weight matrix, L the loss function, and β the momentum
factor set to 0.9.

Wt+1 = Wt + vt+1 (11)

vt+1 = β× vt − α×∇L(Wt) (12)

3.2.2. RNN with GRU

The GRU is a variant of LSTM, proposed to improve RNN memory with fewer
connections than LSTM [46]. GRU only has a reset gate and update gate, while LSTM has
cell state, input, forget, and output gates.

Figure 5 shows the hand gesture classifier based on RNN with GRU (i.e., RNN-GRU).
The patchable six-axis IMU senses the acceleration and gyroscope signal described during
the hand motion. Then, RNN-GRU extracts features from the row IMU signals using
three GRU layers with 256, 128, and 64 units, respectively. The output of the last GRU
layer goes into a dense layer with three neurons representing each of the hand gestures.
Cross-entropy is the loss function and Adam optimizer updates the parameters of the
network for training.

Figure 5. Hand gestures classifier based on RNN with GRU.

3.3. RNN-Based Models Implementation

The RNN-BiLSTM was implemented using Deeplearning4J library [48]. The mini-
batch approach with a mini-batch size of 100 was used for training. The backpropagation
through time (BPTT) backpropagated the gradient. Weight initialization used a random
number generator. The learning rate was set as 3 × 10−2 and the number of training
iterations to 200. The learning rate and the number of training iterations were chosen to
avoid overfitting the neural networks to the training dataset.

The RNN-GRU was implemented using PyTorch library [49]. The GRU-based model
trained using mini-batches of 64. Weights were initialized randomly, the learning rate was
set to 3 × 10−4, and the number of training iterations to 100 steps.

The RNN-BiLSTM and RNN-GRU classified the data as many-to-one, i.e., after a
window of data (3 s) the model infers a single class label. The RNN-based models were
trained on a PC with a processor Intel(R) Core(tm) i5-7500 CPU@ 3.40 GHz, 8 GB RAM,
and GPU NVIDIA GeForce GTX 1050 Ti.

3.4. Database and Data Preparation

The 6DMG public database was used to train the hand gesture recognition models
based on RNN. The 6DMG provided information of WorldViz PPT-X4 and Wii Remote Plus
(Wiimote) from 21 right-handed and seven left-handed participants, developing 20 hand
gestures [50]. The gestures were swipe motions in eight directions, poke motions in four
directions, horizontal circles in two directions, vertical circles in two directions, twist roll
motion in two directions, and V and X shapes. In our experiment, the four circle motions
were merged into a unique circle class. Our training dataset included circle, V, and X shapes
because the RNN-based models have an input with fixed time-length. The time-length
of the circle, V, and X shapes were similar between them and widely different from the
remaining gestures in the 6DMG database.
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The database was preprocessed as follows: the gesture data was down sampled to
50 Hz [51]. The gravity was removed using a fourth order high-pass Butterworth filter
with a cutoff frequency of 0.2 Hz [52]. The gestures activity was normalized between 1 to
−1 using the maximum and minimum of each channel value. Finally, we put all channels
together to create a matrix of 6 by 150. Each matrix corresponds to a single training or
testing window.

3.5. Evaluation Methodologies

Two evaluation methodologies were used. First, a five-fold test used the data from
the 6DMG database. For this test, the data was divided into 80% as a training dataset and
the remaining 20% as a testing dataset. Second, we sensed and recognized hand gestures
using the proposed patchable six-axis IMU and the RNN-based models. For this second
test, a testing dataset was created attaching our patchable IMU at the right wrist of five
subjects to perform circle, X, and V shapes, as Figures 4 and 5 show. Each subject performed
50 repetitions of each gesture with a resting time of three minutes after ten repetitions.
Our patchable six-axis IMU collected the hand gestures data with a sampling frequency of
50 Hz as is suggested in [51] for gesture and activity recognition. The accelerometer and
gyroscope resolution were set to ±16 g and ±2000 ◦/s, respectively. The collected testing
data was preprocessed as the data from the 6DMG public database.

The classification performance was reported using the accuracy, precision, and recall,
which have been widely used for multi-class classification [53]. The performance metrics
were computed as,

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

where TP is the true positive value, TN the true negative, FP the false positive, FN the
false negative.

4. Results
4.1. Implementation Results of Patchable IMU

In Figure 6, the implementation results and characteristic evaluations of the patchable
six-axis IMU are presented. As shown in Figure 6a, the overall dimension of the system
is 25 mm × 60 mm including the NFC BLE paring antenna, and the thickness is less than
100 µm excluding the ICs and battery. The current consumption is less than 46 mA for full-
function operation. In Figure 6b,c, the mechanical evaluation including the stretchability
during elongation and waterproof experiment are presented, respectively. Our patchable
IMU has a 20 mm× 25 mm, 3-turned conductive coil-type near-field communication (NFC)
antenna for BLE paring (line width: 400 µm, line space: 1 mm, half-circle radius: 200 µm
and 400 µm, half-circle and half-circle distance: 1 mm). An NFC A-tag is supported on
the nRF52832 BLE SoC. An NFC A-tag supports short-range wireless communication that
can be used in simplified pairing and payment solutions. Therefore, BLE paring can be
performed through an NFC antenna. Figure 6d shows the result after repeated bending
after attaching the patchable IMU to the wrist. The left image of Figure 6d shows the
bending motion of the wrist used in the experiment in the left, right, upper, and lower
directions, and each case has a rotation angle of approximately 30◦, 64◦, 30◦, and 22◦,
respectively. For each motion case, a total of 10 repeated experiments were conducted for
single measurement, and after four different motions, each motion was repeated again
to perform a total of 100 measurements. The result on the right in Figure 6d shows the
raw signal of the 3-axes gyroscope acquired in the first, 50th and 100th experiments. The
experimental results show similar results except for the time axis mismatch over a total of
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100 iterations, which shows that the system implemented in this paper is robust against
deformation that may occur in repetitive motions.

Figure 6. Implementation results. (a) Wireless epidermal six-axis IMU; (b) waterproof experimental results; (c) stretchability
test results with 30% tensile strain; (d) wrist bending experimental results after first, 50th and 100th repetitions; (e) Bluetooth
low energy (BLE) paring antenna measurement result in free space.

The verification of NFC BLE paring antenna was conducted by referring to the
NRF52832 NFC antenna tuning protocol [32] provided by Nordic Semiconductor with
using reference board antenna (NRF52-DK, Nordic semiconductor, Trondheim, Norway)
and network analyzer (TTR503A, Tektronix, Beaverton, OR, USA). The result is shown in
Figure 6e. The network analyzer uses a custom antenna connected to one port. When the
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reference board antenna is close (less than 1 cm), the S11 resonant frequency of the network
analyzer is close to 13.56 MHz and is adjusted through the capacitor [32].

4.2. Hand Gesture Classification with Public Database

Table 1 shows the performance of RNN-BiLSTM and RNN-GRU with the public
database as a confusion matrix, where the values in the main diagonal are the recall values
of each class. The row gestures are the predicted labels and the columns the actual hand
gestures. Table 1a shows the classification results of RNN-BiLSTM. Using the public
database, RNN-BiLSTM misclassifies 5.15% of the V shape as X shape, 5% of the X shape
as circle, and 1.67% of the X shape as V shape gestures. RNN-GRU shows less confusion
than RNN-BiLSTM, 0.84% of the V shape as X shape gestures and 1.67% of the X shape
is recognized as V shape, as Table 1b shows. The average classification accuracy using
RNN-BiLSTM is 96.06% and RNN-GRU 99.16%.

Table 1. Hand gestures classification performance with public data. (a) RNN-BiLSTM; (b) RNN-GRU.

(a)

(%) Circle V Shape X Shape

Circle 100 0 0

V Shape 0 94.85 5.15

X Shape 5 1.67 93.33

(b)

(%) Circle V Shape X Shape

Circle 100 0 0

V Shape 0 99.16 0.84

X Shape 0 1.67 98.33

Figure 7 shows the precision and recall values of the RNN-based models with the
public database. RNN-BiLSTM has a precision of 95.89%, 97.87%, and 95.73% for circle, V
shape, and X shape, respectively. The recall values are 100%, 94.85%, and 93.33% for circle,
V shape, and X shape, as Figure 7b shows. Figure 7b shows the classification results of
RNN-GRU as a precision of 100% for circle, 98.33% for V shape, and 99.16% for X shape;
the recall values are 100% for circle, 99.16% for V shape, and 98.30% for X shape.

Figure 7. Precision and recall with the public database. (a) RNN-BiLSTM; (b) RNN-gate recurrent
unit (GRU).

4.3. Hand Gesture Classification with Collected Dataset

Table 2 shows the classification results of RNN-based models with the collected data
as the confusion matrix. Table 2a shows the results of RNN-BiLSTM. With the collected
data, RNN-BiLSTM showed most of the misclassification between V and X shapes. Table 2b
shows the results of RNN-GRU. With the collected data, RNN-GRU misclassified 2.50% of
the circles as X shapes, 3.28% of the V shape as X shape gestures, and 8.20% of the X shape
as V shape gestures. The average classification accuracy is 94.12% with RNN-BiLSTM and
95.34% with RNN-GRU.
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Table 2. Hand gestures classification performance with collected data. (a) RNN-BiLSTM; (b) RNN-
GRU.

(a)

(%) Circle V Shape X Shape

Circle 98.14 0.93 0.93

V Shape 0 92.66 7.34

X Shape 0 8.43 91.57

(b)

(%) Circle V Shape X Shape

Circle 97.50 0 2.50

V Shape 0 96.72 3.28

X Shape 0 8.20 91.80

Figure 8a,b show the precision and recall values achieved by RNN-BiLSTM and RNN-
GRU with the collected data. RNN-BiLSTM shows precision values of 100% for circles,
92.66% for V shapes, and 89.41% for X shapes. The recall values are 98.15% for circles,
92.66% for V shapes, and 91.57% for X shapes. RNN-GRU has precision values of 100%,
92.19%, and 94.92% for circles, V shapes, and X shapes, respectively. The recall values are
97.50%, 96.72%, and 91.80% for circles, V shapes, and X shapes.

Figure 8. Precision and recall with the collected data. (a) RNN-BiLSTM; (b) RNN-GRU.

5. Discussion

Our patchable IMU was implemented using the serpentine-structured metal intercon-
nections to connect the internal elements. Then, the IMU can stretch and recover according
to the motion or rotation of the joint, i.e., right wrist. Also, the inner circuitry can be
protected from dust and moisture because of the semipermeable characteristics of the
Tegaderm. The BLE continuously transmitted despite water reaching the device.

Tables 1 and 2 show a slight change in the classification results of the RNN-based
models if the testing dataset uses the public or our collected data. The average classification
accuracy of RNN-BiLSTM changes from 96.06% to 94.12% using the public and our collected
data, respectively. Likewise, using RNN-GRU, the average classification accuracy changed
from 99.16% with the public data to 95.34% with our collected data. Then, the hand gesture
signals sensed with our patchable six-axis IMU had similar features compared to the signals
sensed with a commercial IMU in the Wiimote (i.e., public database).

Analyzing each gesture independently, the circle shape had the highest precision and
recall values in all tests with RNN-BiLSTM and RNN-GRU. V and X shapes generated most
of the confusion because of the similarity between them. Using RNN-BiLSTM, there was a
confusion rate about 5% between V and X shapes with the public database and 8% with
the collected data. Using RNN-GRU, about 1% of the V and X shapes we gate recurrent
unit (GRU) re misclassified with the public data and 3% to 8% with the collected data. To
increase the performance metrics (i.e., accuracy, precision, and recall) with our patchable
IMU, the RNN-based models can be fine-tuned with our collected data [21,54].
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Future works will focus on extending the experiments of our patchable six-axis IMU
to activity monitoring because our patchable IMU can be easily and comfortably attached
to all body areas, such as chest or waist. Furthermore, additional experiments should
be conducted to analyze the effect of the noise reduction on the classification accuracy,
considering our patchable IMU is attached directly to the skin and IMUs are prone to
motion artifacts if they are attached to clothes or bands [20,22]. In addition, we are focusing
on wireless power charging based on NFC. This study shows preliminary results for BLE
pairing by NFC, and we are conducting research to extend the usage time of devices
through NFC-based wireless charging in the near future.

6. Conclusions

This paper presented a hand gesture recognition system using our designed patchable
six-axis IMU via recurrent neural networks. For the patchable IMU, the characteristic
evaluations of mechanical properties were performed for applications in ambulatory envi-
ronment use. The device proposed in this paper was implemented through rigid IC-based
circuit elements on a stretchable adhesive film with serpentine-structure interconnections.
The size of the implemented system has a length of 25 mm, width of 60 mm, and total
thickness of less than 100 µm, excluding the battery and ICs. The results showed the
feasibility of using our proposed patchable six-axis IMU for continuously monitoring hand
gestures in remote settings via recurrent neural nets. Due to the fact that our six-axis
IMU had similar sensing sensitivity to other commonly used IMUs such as the IMU in
the Wiimote, a public database could be used to train an RNN-based model for gesture
recognition and our six-axis IMU to continuously infer hand gestures labels. The patchable
system with soft form-factor introduced in this paper is considered to be low-cost and
fully-reconfigurable, enabling its implementation in compact systems for applications in
human computer interaction and control gesture recognition in remote settings.
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