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Beta-hydroxy-beta-methylbutyrate (HMB), a naturally occurring leucine metabolite, has been shown to attenuate plantar flexor
muscle loss and increase myogenic stem cell activation during reloading after a period of significant muscle wasting by disuse in
old rodents. However, it was less clear if HMB would alter dorsiflexor muscle response to unloading or reloading when there
was no significant atrophy that was induced by unloading. In this study, we tested if calcium HMB (Ca-HMB) would improve
muscle function and alter apoptotic signaling in the extensor digitorum longus (EDL) of aged animals that were unloaded but
did not undergo atrophy. The EDL muscle was unloaded for 14 days by hindlimb suspension (HS) in aged (34-36mo.) male
Fisher 344 × BrownNorway rats. The rats were removed from HS and allowed normal cage ambulation for 14 days of reloading
(R). Throughout the study, the rats were gavaged daily with 170mg of Ca-HMB or water 7 days prior to HS, then throughout
14 days of HS and 14 days of recovery after removing HS. The animals’ body weights were significantly reduced by ~18% after
14 days of HS and continued to decline by ~22% during R as compared to control conditions; however, despite unloading, EDL
did not atrophy by HS, nor did it increase in mass after R. No changes were observed in EDL twitch contraction time, force
production, fatigue resistance, fiber cross-sectional area, or markers of nuclear apoptosis (myonuclei + satellite cells) after HS or
R. While HS and R increased the proapoptotic Bax protein abundance, BCL-2 abundance was also increased as was the
frequency of TUNEL-positive myonuclei and satellite cells, yet muscle mass and fiber cross-sectional area did not change and
Ca-HMB treatment had no effect reducing apoptotic signaling. These data indicate that (i) increased apoptotic signaling
preceded muscle atrophy or occurred without significant EDL atrophy and (ii) that Ca-HMB treatment did not improve EDL
signaling, muscle mass, or muscle function in aged rats, when HS and R did not impact mass or function.
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1. Introduction

Prolonged immobilization or disuse causes a rapid loss of
muscle mass and force in aging populations. This is particu-
larly problematic in the elderly, where this loss of muscle
mass is already high (i.e., sarcopenia) [1–3] and further loss
of muscle can lead to a decline in strength and may increase
the risk of falls [4, 5]. Falls are clinically relevant to the elderly
population as they are a leading cause of morbidity and mor-
tality in older subject groups [6]. Furthermore, diminished
muscle mass and strength (i.e., sarcopenia) in itself is associ-
ated with an increased risk of mortality and cognitive decline
[7, 8]. For these reasons, it is important to develop novel
treatments to reduce muscular atrophy in the elderly.

Muscle loss with disuse or bedrest in aging is due in part
to the following: decreases in protein synthesis and increases
in proteolysis in various limb skeletal muscles [9–20] includ-
ing increases in collagen synthesis; and downregulation of
ribosomes, oxidative metabolism, and mitochondrial gene
transcripts in the vastus lateralis muscles of human [21].
Muscle loss is also associated with an increase in apoptotic
signaling in myonuclei and satellite cells in fast- and slow-
contracting limb muscles from older animals and humans
[15, 22–27]. This reduces the number of myonuclei and/or
myogenic stem cells (satellite cells) and thereby reduces the
potential for muscle growth or repair [19, 28, 29]. Hindlimb
suspension (HS) has been used widely as a preclinical model
of atrophy to study a variety of skeletal muscle adaptations
including reduced gravity, disuse, and reloading (R) follow-
ing disuse [30–35]. HS has been shown to rapidly decrease
muscle mass in plantar flexor muscles of rodents and this
appears to have a mitochondrial role in muscle loss [36].

We have studied unloading in plantar flexor muscles of
aged rats or mice for many years [29, 37–50]. This has
included two studies [43, 51] that found a beneficial effect
of beta-hydroxy-beta-methylbutyrate (HMB) for reducing
wasting in the fast-contracting plantaris and slow-
contracting soleus plantar flexor muscles with unloading.
HMB is a naturally occurring metabolite of the essential
branched-chain amino acid leucine with no known genotoxic
effects [52]. Furthermore, HMB appears to be particularly
beneficial for improving upper and lower body muscle mass
and strength in humans that exercise [53–55], although it is
less clear if HMB has an anabolic effect without an exercise
or loading stimulus [53]. In addition, HMB has been shown
to decrease proteolysis in muscles of persons with cancer
cachexia and attenuate decreased protein synthesis in murine
myotubes in culture in response to apoptotic stimuli [56, 57].
HMB appears to increase protein synthesis via the mTOR
pathway [58, 59]. Our previous studies have found beneficial
effects of the calcium form of HMB (Ca-HMB) to reverse HS-
induced muscle atrophy that was superimposed on aging-
associated sarcopenia [43, 51]. In these studies, Ca-HMB
proved very effective for reducing the strong catabolic effect
of HS in plantar flexor muscles and enhancing plantar flexor
muscle recovery after reloading [60].

We have not previously examined the effect of Ca-HMB
on the dorsiflexor muscle group in HS or R. The extensor
digitorum longus (EDL) muscle is composed primarily of

fast-twitch (type II) fibers [61] and like fast-contracting plan-
tar flexor muscles, it has a decrease in muscle function with
aging to a greater extent than postural slow-twitch (type I)
fiber types such as those in the soleus muscle [62–65]. How-
ever, unlike plantar flexors, EDL is primarily used to assist
the tibialis anterior muscle in lifting and positioning the foot
during locomotion. We expected that dorsiflexor muscles
would not be affected as negatively by unloading as plantar
flexors because the dorsiflexors would be able to continue
to contract and lift the weight of the foot during HS. This
contrasts to plantar flexors which would be unable to con-
tract against the body weight of the animal during HS. Con-
sistent with this idea, we have observed little or no atrophy in
response to HS in the EDL muscle (unpublished observa-
tions). Similarly, other studies have also reported that the
rat EDL does not undergo atrophy when subjected to HS
[66–72]; however, unlike HS, immobilization by casting has
been reported to induce marked atrophy in the EDL muscle
[73–75].

It was not known if Ca-HMB treatment would improve
EDL muscle mass or function in response to HS or R in aged
rats, if HS did not induce a significant loss of muscle mass,
and if R did not induce EDL hypertrophy. Therefore, in this
study, we were interested in evaluating the effects of Ca-HMB
treatment on the EDL muscle. We expected that this model
would not have acute atrophy during HS yet would have
reduced loading. However, we recognize that studying EDL
during HS was complex and this muscle could also undergo
atrophy during HS because some studies have reported a
modest atrophy in the EDL with limb unloading [36, 76–79].

2. Materials and Methods

2.1. Animal Care. In the current study, we used a research
design that was similar to our previous two studies using
Ca-HMB [43, 51] which had shown Ca-HMB-induced bene-
fits in plantar flexor muscles after unloading and reloading.
In this study, we also used sixty-four male Fisher 344 ×
BrownNorway rats (34-36 months of age) that were obtained
from Harlan Sprague Dawley (Indianapolis, IN) which
houses the National Institute on Aging colony. The animal
care standards followed the guidelines as published by the
U.S. Department of Health and Human Services and as
described in the Animal Welfare Act (PL89-544, PL91-979,
and PL94-279). These care standards were consistent with
the American Association for Accreditation of Laboratory
Animal Care (AAALAC) and the Guide for the Care and
Use of Laboratory Animals. All experimental procedures
were approved by the Institutional Animal Care and Use
Committee from West Virginia University and the Univer-
sity of Tennessee Health Science Center. The University of
Tennessee Health Science Center maintains an AAALAC-
certified animal care facility.

2.2. Hindlimb Suspension (HS) and Reloading (R) after HS.
We used the same research design as our previous two stud-
ies using Ca-HMB [43, 51]. All of the control and experimen-
tal animals were singly housed in custom-made cages with a
front door as an entry point for easy access to the animals for
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care and gavage. The aged rats were randomly placed into a
control group (C, n = 32) that maintained normal cage activ-
ity; a bilateral hindlimb-suspended group (HS, n = 16), where
both hindlimbs were raised from the cage floor for 14 days; or
a reloaded group (R, n = 16), which received 14 days of
unloading; then, the animals were returned to normal cage
activity for 14 days. Hindlimb suspension was performed as
previously described in multiple studies [24, 37, 40, 42, 43,
45, 51, 60]. Briefly, the wire tail harness was attached to the
proximal one-third of the tail then attached to a swivel that
permitted 360° of movement of the rat around the cage while
raising the hindlimbs from the floor. The foot was not immo-
bilized, and it was free to move but remained in the HS posi-
tion unloaded. The rats were able to eat and drink ad libitum
over the course of the study. The tail harness was removed
after 14 days of HS for rats in the R group, and the animals
were returned to their cages to resume their normal loading
of their hindlimbs, ambulation, and movement around the
cage. All animals were singly housed.

2.3. Ca-HMB Treatment. HMB is available in both calcium
(Ca-HMB) salt or free acid (FA-HMB) forms, and both Ca-
HMB [59, 60] and FA-HMB [80] have been reported to
improve the anabolic nature of muscle in older humans.
We chose to use Ca-HMB because we and others have previ-
ously found that this form of HMB improved muscle remod-
eling in the plantar flexors of old rats after HS [43, 51]. The
animals received either 170mg of Ca-HMB or distilled water
by gavage feeding. To ensure that HMB was systemically
available to the animals prior to limb unloading, we began
the Ca-HMB or water placebo gavages seven days prior to
HS. To do this, the animals were held in a head-up position,
while the neck and head were supported. This mimicked the
same position that we would use to gavage the animals for the
HS loading period. This pre-HS period also provided a con-
ditioning experience for the animals so they would be accus-
tomed to the gavage approach prior to the animals being
placed in HS [43, 51]. We continued daily gavages with the
animals kept in the tail suspension harness. To do this and
to prevent the hindlimbs being loaded during gavage, the
cage door of the custom HS cages was opened to gain access
to the rat. The back and shoulders of the rat were supported
by the investigator, then the animal was raised from the
head-down to the head-up position, with the head and neck
supported in one hand. The tail harness was intact but rather
than supporting the animal’s body weight, the investigator
supported the animal during the gavage. The feet of the rat
never touched the cage floor during the gavage. The blunt
gavage needle was then inserted into the mouth and pharynx
of the rat. The contents were given to the rat and after a full
volume of water or Ca-HMB, the rat was returned to the
head-down position (with the tail resuming support of the
hind limbs) and the cage door closed.

2.4. Research Design.Muscle data was obtained from both the
Ca-HMB and water-gavaged animals. The research design
for the study is shown in Figure 1. It was similar to our other
studies with HMB and other nutraceuticals [40, 41, 43, 51].
Two groups of ambulatory nonsuspended control animals

were used. Eight control animals for the HS group (HS
Con) and a second control group of eight were used as con-
trols for the animals that received HS for 14 days, followed
by 14 days of reloading (R Con). Eight animals were exam-
ined in each group after 14 days of HS, and eight animals
were examined after 14 days of HS, followed by 14 days of
recovery.

2.5. Ex Vitro EDL Contractile Responses. Ex vitro isometric
muscle contractile properties were examined in the extensor
digitorum longus (EDL) muscles of control and Ca-HMB-
treated rats. The muscles were placed in an oxygenated
Ringer’s solution at 20°C. The muscles were stimulated with
a constant current stimulator (Aurora Scientific Aurora
Ontario, Canada) with a 200μs pulse width, and muscle force
was measured with a 300C dynamometer (Aurora Scientific,
Aurora Ontario, Canada) [81, 82]. Muscles were adjusted to
the optimal muscle length (Lo), then peak isometric tetanic
force (Po) was obtained at 10, 20, 40, 50, 75, and 100Hz, with
3 minutes of rest between each contraction. EDL twitch
responses were obtained for peak isometric twitch force
(PT), peak twitch contraction tension (CT), and 1/2 relaxa-
tion time of twitch contraction (ð1/2ÞRT) as previously
described [37, 38, 40, 81–84]. After resting, muscle fatigue
was assessed by stimulating the muscle at 40Hz for 3 minutes
with 666ms of rest between each contraction that lasted
333ms [37, 82, 85, 86]. The fatigue index was calculated as
the difference in force from the initial three contractions to
the mean of the final three contractions [38, 82].

2.6. EDL Weight and Tissue Preparation. At the end of the
experimental period, and with the animals deeply anesthe-
tized, the EDL muscles were removed from both limbs, blot-
ted, and then weighed. Once complete, the animals were
immediately euthanized by removing the heart. A block
obtained from the midbelly of the EDL muscle was frozen
in liquid nitrogen-cooled isopentane and stored at -80°C
until subsequent analyses.

2.7. Identification of EDL TUNEL-Positive Apoptotic Nuclei.
EDLmuscle tissue cross sections were labeled with a terminal
dUTP nick-end (TUNEL) labeling assay according to the
manufacturer’s recommendations (11684795910; Roche
Applied Science, Indianapolis, IN). Thereafter, the EDL tis-
sue sections were fixed with cold 4% paraformaldehyde in
phosphate-buffered saline (PBS) and incubated overnight at
4°C in a rat anti-lamina monoclonal antibody (MAB 1914,
Millipore, Billerica, MA). The tissue sections were incubated
with the appropriate secondary antibody (712-025-150, Jack-
son ImmunoResearch Laboratories, West Grove, PA) to
visualize the boundaries of the fiber (lamina), along with
the TUNEL-positive nuclei. The sections were mounted with
4′,6-diamidino-2-phenylindole (DAPI; ProLong™ Gold
Antifade Mountant, Fisher Scientific). The sections were
viewed, and the images captured with a Zeiss LSM 510 Meta
confocal microscope (Carl Zeiss Microimaging Inc., Thorn-
wood, NY) in the institutional imaging core facility. The
number of TUNEL- and DAPI-positive nuclei (satellite cells
+ myonuclei) that were beneath the basal lamina were

3Oxidative Medicine and Cellular Longevity



quantified from ~1000 fibers/EDL muscle section. Data were
expressed as an apoptotic index, which was calculated by
counting the number of TUNEL-positive nuclei divided by
the total number of nuclei (i.e., DAPI-positive nuclei). No
distinction was made between satellite cell and myonuclei,
and all muscle nuclei were pooled for analysis. These
approaches are similar to previous published methods that
are established in our lab [43, 47, 87, 88].

2.8. Fiber Morphology. The average muscle fiber cross-
sectional area (CSA) was obtained by tracing 750-1200 fibers
in each EDL tissue section using approaches established in
our laboratory [38, 40, 41, 51, 84, 89]. EDL muscle fiber
CSA was calculated by the ImageJ software (NIH).

2.9. Western Blots from EDL Lysates. Approximately 75-
100μg of muscle was homogenized in RIPA buffer contain-
ing protease inhibitors (P8340; Sigma-Aldrich, St. Louis,
MO) and phosphatase inhibitors (P2850 and P5726; Sigma-
Aldrich) using approaches published in our lab [39, 82, 85,
90]. The protein content of the muscle lysates was measured
using the DC Protein Assay kit (500-0116; Bio-Rad, Hercu-
les, CA). Forty micrograms of protein was separated by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) on a 4-12% gradient polyacrylamide gel
(NP0335BOX; Invitrogen, Carlsbad, CA) using previously
published protocols from our laboratory [38, 39, 82, 85, 90].
Western blots were incubated at 4°C for 12 h with primary
antibodies directed against Bax (#2772, Cell Signaling
Technology), cleaved caspase-3 (#9664, Cell Signaling

Technology), cleaved caspase-9 (#9509, Cell Signaling Tech-
nology), and Bcl-2 (#2876, Cell Signaling Technology, Bos-
ton, MA). The signals were developed using a
chemiluminescent substrate (Lumigen TMA-6; Lumigen,
Southfield, MI), and the protein bands were assessed as
optical density × band area and expressed in arbitrary units
using ImageJ (NIH).

2.10. Statistical Analysis. The results are reported as means
± SD. Differences in means between groups were determined
by multiple analysis of variance (MANOVA) Hotelling’s T
-square test. Bonferroni’s post hoc analyses were performed
between significant means. A p ≤ 0:05 was considered to rep-
resent statistically significant mean differences.

3. Results

3.1. Body Weight. The body weights of all the experimental
animals did not differ at the beginning of the study. The
body weights of nonsuspended, water- and Ca-HMB-
treated animals were reduced by ~4% and ~5%, respec-
tively, over the course of the study, relative to the first
day of the experimental period. This likely represented a
general aging-associated loss of body weight. In general,
14 days of HS significantly lowered the animals’ body
weight by ~18% in water-gavaged and by ~17% in the
Ca-HMB- and water-gavaged groups (Figure 2(a)). The
body weights in both of these groups continued to decline
during the fourteen-day recovery period following the HS
protocol so that the animals’ body weights were ~21.6%

Research design
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Figure 1: Research design. Animals were divided randomly into two groups that received water or Ca-HMB by gavage for 7 days (day -7 to
day 0) prior to experimental intervention. This provided a 7-day conditioning period for the animals to accommodate the gavage. Animals
then remained as controls in their cage or were placed in hindlimb suspension (HS) to unload their hindlimbs for 14 days. Some animals
were euthanized after 14 days of HS. Other animals were released from the HS and allowed to ambulate normally for 14 days of recovery
(R). Control animals for the R group remained fully ambulated throughout the entire 35-day experimental period.
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and ~22.1% lower in water-gavaged and Ca-HMB-gavaged
animals following the R period, relative to the starting
body weight. This suggests that Ca-HMB did not slow
the loss of body weight due to aging or HS.

3.2. Muscle Wet Weight. EDL muscle wet weight was not dif-
ferent in control muscles from water-treated and Ca-HMB-
treated animals. As expected from our pilot studies, HS did

not significantly reduce EDL muscle wet weight in either
group, nor did reloading significantly alter muscle weight in
water-treated or Ca-HMB-treated animals (Figure 2(b)). The
ratio of EDL muscle wet weight to the animals’ body weight
was not significantly different at any time point (Figure 2(c)).

3.3. EDL Ex Vitro Physiology. Isometric contractile properties
of EDL from Ca-HMB-gavaged and water-gavaged HS and R

HS Con R Con

Body weight

HS R
0

200

400

600

800

Bo
dy

 w
ei

gh
t (

g)

Water
Ca-HMB

⁎⁎

⁎⁎

(a)

EDL muscle weight

HS Con HS R
0

50

100

150

200

ED
L 

m
us

cle
 w

ei
gh

t (
m

g)

Water
Ca-HMB

R Con

(b)

EDL weight/body weight

HS Con
0.0

0.1

0.2

0.3

0.4

ED
L/

BW
 (m

g/
g)

0.5

HS R

Water
Ca-HMB

R Con

(c)

Figure 2: Muscle and bodyweight. (a) The body weight of water-gavaged and Ca-HMB-gavaged animals are shown after 14 days of hindlimb
suspension (HS) or 14 days of HS followed by 14 days of reloading (R). The animals received Ca-HMB or the vehicle (water) daily by gavage,
for a total of 21 days (HS Con and HS) or for 32 days (R Con and R). (b) EDL muscle wet weight was obtained in cage control animals for the
hindlimb suspension group (HS Con), cage control animals for the recovery group (R Con), and water-treated and Ca-HMB-treated animals
after 14 days of hindlimb suspension (HS) or after 14 days of hindlimb suspension followed by 14 days of reloading (R). (c) The ratio of EDL
muscle wet weight to body weight was reported. AMANOVA followed by Bonferroni’s post hoc analyses were used to evaluate the differences
between the group means. The data are expressed as mean ± SD. ∗P < 0:05; HS or R vs. control animals for that experimental condition.
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animals were measured and compared to the contractile
responses from a cage control group [81, 84, 91]. The force-
frequency curve of the HS group was neither shifted to the
right nor left, but absolute force from EDL muscles of the
Ca-HMB-treated and water-treated animals had significantly
lower forces at 10, 20, and 50Hz as compared to the cage
control animals after HS. The relative forces were depressed
only at 50 and 75Hz in both Ca-HMB-treated and water-

treated rats of the R group as compared to control animals
(Figure 3). This suggests that Ca-HMB did not prevent the
depression in force production from either HS or reloading.

Consistent with the data from the force-frequency curve,
the twitch contraction time (CT) time was similar between
the Ca-HMB-treated and water-treated animals, in both the
HS and R groups. However, the Ca-HMB-treated animals
had a similar lower ð1/2ÞRT as compared to the water-
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Figure 3: Muscle function. The force-frequency response of the EDL was obtained ex vivo (a) after 14 days of hindlimb suspension (HS) and
(b) after 14 days of hindlimb suspension followed by 14 days of reloading. The animals received either Ca-HMB or water daily for 7 days
before and throughout the experimental period and compared to cage control animals (CC) that were gavaged with the vehicle. A
MANOVA followed by Bonferroni’s post hoc analyses were used to evaluate the differences between the group means. †p < 0:05; water
and Ca-HMB vs. CC (cage control). (c) Twitch contraction time (CT) and one-half relaxation time (ð1/2ÞRT) were analyzed in cage
control animals gavaged with water or Ca-HMB rats after 14 days of HS or (d) after 14 days of hindlimb suspension followed by 14 days
of reloading. Data are presented as mean ± SD. (e) A modified Burke protocol was implemented to assess muscle fatigue in the EDL. The
data are presented as mean ± SD as a measure of the fatigue index, calculated as a percent change from the first to the last contraction
(120th). The groups were cage control animals gavaged with water or Ca-HMB after 14 days of HS or after 14 days of hindlimb
suspension followed by 14 days of R.
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treated animals (61:6 ± 15:1ms vs. 79:7 ± 17:6ms) after HS.
In the R group, Ca-HMB did not affect either CT or ð1/2Þ
RT compared to the respective water-treated or cage control
animals (Figures 3(c) and 3(d)). Finally, Ca-HMB did not
alter the fatigue index in either the HS or R groups as com-
pared to the water-treated HS animals, and there were no dif-
ferences between HS or R groups for either Ca-HMB or water
placebo treatment (Figure 3(e)).

3.4. Apoptotic Signaling Proteins in the EDL. We have previ-
ously found an increase in apoptotic proteins and signaling
in plantar flexor muscles subjected to HS or R [29, 37, 40,
43, 46, 92], although the apoptotic signaling response of the
dorsiflexor EDL muscle was not known. We found that the
protein abundance of the proapoptotic Bax protein was ele-
vated in the EDL muscle after HS and R conditions, but there
was no difference between water-treated and Ca-HMB-
treated EDL muscles (Figure 4).

The antiapoptotic BCL-2 protein was elevated after HS in
both vehicle- and Ca-HMB-treated EDL muscles. In the
reloaded muscles, BCL-2 had returned to control levels in

the water-gavaged animals, but it was still elevated in the
EDL muscles of animals treated with Ca-HMB (Figure 5).

Despite HS-induced increases in Bax in the EDL, neither
cleaved caspase-9 protein abundance (Figure 6) or cleaved
caspase-3 (Figure 7) were elevated in the EDL muscle after
HS or R, and there were no differences between EDL muscles
in the Ca-HMB-gavaged and water-gavaged animals.

3.5. TUNEL Labeling in EDL Muscles. Nuclear DNA breaks
in the pool of satellite cells and myonuclei in the EDL mus-
cles were measured by TUNEL labeling and reported as an
apoptotic index (the percent of TUNEL-positive myonuclei
to the total number of myonuclei). There was very little evi-
dence of nuclear apoptosis (in all myonuclei and satellite
cells) in EDL muscles from the control animals. However,
TUNEL-positive nuclei as determined from the total nuclei
pool of myonuclei and satellite cell nuclei, increased in EDL
muscles from HS (Figure 8) and R (Figure 9) animals.

While there was no significant difference between the
Ca-HMB-treated or water-treated HS animals, HS signifi-
cantly increased the percentage of TUNEL-positive nuclei
as compared to their respective control group (1:61 ± 0:8%
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hindlimb suspension, or reloading conditions. The groups include
controls for the hindlimb suspension group (HS Con), controls for
the recovery group (R Con), and in experimental animals after 14
days of hindlimb suspension (HS) or after 14 days of hindlimb
suspension followed by 14 days of reloading (R). The animals
received Ca-HMB or water daily by gavage, for a total of 21 days
(HS Con and HS) or for 32 days (R Con and R). Eight animals
were in each diet and experimental group. GAPDH was used as a
loading control. The data were normalized to GAPDH and were
expressed as mean ± SD. A MANOVA followed by Bonferroni’s
post hoc analyses were used to evaluate the differences between
the group means. †p < 0:05, HS or R vs. control animals for that
experimental condition. ∗P < 0:05, water vs. Ca-HMB within the
same condition;
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vs. 0:17 ± 0:2%), but there was no significant difference
between water-treated and Ca-HMB-treated EDL muscles
(Figure 10(a)). The apoptotic index which included myonu-
clei and satellite cells was similar in EDL muscles from con-
trol and R groups, and there was no difference between the
Ca-HMB-treated and water-treated EDL muscles.

3.6. EDL Fiber Cross-Sectional Area (CSA). The cross-
sectional area (CSA) of the EDL muscle fibers were measured
in the HS and R groups after water- or Ca-HMB treatment.
Neither HS nor R in either water-treated nor Ca-HMB-
treated animals had no significant changes in EDL fiber
CSA as compared to the EDL muscles from control animals
in response to HS or R. These data suggest that Ca-HMB
had no effect on hypertrophy or atrophy in EDL under con-
ditions of HS or R (Figure 10(b)).

4. Discussion

HMB has been shown to reduce protein degradation [93],
prevent muscle atrophy, or restore lost appendicular muscle
mass in older people with reduced lean body mass [59, 60,
80, 94–96]. HMB has also been reported to improve muscle
mass and function and increase muscle mitochondria bio-
genesis [93] in response to muscle wasting and acute unload-
ing and reloading in aging [43, 51, 60]. However, the benefits
of HMB have not been universally found in humans [80] and

the benefits of HMB-induced increased lipid storage in the
vastus lateralis fibers of older persons after bedrest are
unclear [97].

The Ca-HMB form of HMB has been proposed to affect
muscle function and size via various mechanisms, including
decreasing protein degradation [98, 99], reducing signaling
via the proteasome-ubiquitin degradation pathway [99,
100], increasing muscle protein synthesis [7, 100], reducing
apoptosis [43, 51, 62], and promoting the proliferation and
differentiation of myoblasts [2]. Ca-HMB is also thought to
be metabolized into HMB-CoA, which would provide a car-
bon source for cholesterol synthesis and improve muscle cell
growth [95, 101–104]. When combined with a hypertrophic
stimulus such as exercise or loading, Ca-HMB has also been
shown to reduce muscle damage, as evaluated by lower crea-
tine kinase (CK) and lactate dehydrogenase [101, 105, 106],
and this should help muscle recover from reloading-
induced damage after a period of unloading or disuse.

In this study, we sought to determine if Ca-HMB supple-
mentation would improve muscle mass or function in dorsi-
flexor muscles from old rats, where the limb was unloaded
but the EDL muscle did not become severely atrophic. We
chose to evaluate the EDL muscle because our lab and others
(although not all labs) have failed to find a loss of EDLmuscle
mass after HS. In our model of HS, EDL is unloaded but the
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Figure 6: Cleaved caspase-9. Cleaved caspase-9 protein abundance
was determined by western blots in the EDL muscles of rats under
control, HS, or R conditions. The groups include controls for the
hindlimb suspension group (HS Con), controls for the reloading
group (R Con), and in experimental animals after 14 days of
hindlimb suspension (HS) or after 14 days of hindlimb suspension
followed by 14 days of reloading (R). The animals received Ca-
HMB or water daily by gavage. Eight animals were in each group.
The data were normalized to GAPDH and were expressed as mean
± SD. A MANOVA followed by Bonferroni’s post hoc analyses
were used to evaluate the differences between the group means.
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Figure 7: Cleaved caspase-3. Cleaved caspase-3 protein abundance
was determined by western blot analysis in the EDL muscles of rats
under control, hindlimb suspension, or reloading conditions. The
groups include controls for the hindlimb suspension group (HS
Con), controls for the recovery group (R Con), and in
experimental animals after 14 days of hindlimb suspension (HS)
or after 14 days of hindlimb suspension followed by 14 days of
reloading (R). The animals received Ca-HMB or water daily by
gavage. Eight animals were in each group. The data were
normalized to GAPDH and were expressed as mean ± SD. A
MANOVA followed by Bonferroni’s post hoc analyses were used
to evaluate the differences between the group means. CCS-3:
cleaved caspase-3.
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foot is not restrained. Therefore, the dorsiflexors are able to
contract and lift the foot in the suspended position. In our
hands, EDL was not significantly atrophied by HS or R
because muscle mass and function were not lower in old rats

after HS or R as compared to old cage control rats. Unlike the
plantar flexors which have significant losses of muscle mass
with HS [29, 37, 40, 41, 43, 46] that can be partially prevented
by Ca-HMB treatment [43, 51, 62], in this study as compared

Hindlimb suspension
Water control Ca-HMB control Water HS Ca-HMB HS

Figure 8: Apoptotic nuclei after hindlimb suspension. Top row: representative tissue sections from the EDLmuscle, with fluorescent staining
for TUNEL (green) to identify apoptotic nuclei in control and hindlimb-suspended muscles. DAPI identified all nuclei (blue). The basal
lamina (red) was identified to confirm that the TUNEL-positive nuclei were myonuclei. The conditions were water control (Water
control), Ca-HMB control (Ca-HMB control) of HS (Water HS), and Ca-HMB after 14 days of HS (Ca-HMB HS). The arrows show
TUNEL-positive nuclei lying below or immediately adjacent to the basal lamina of the muscle fibers. Bottom row: a higher magnification
showing the individual markers for TUNEL, laminin, DAPI, and the combined images. The arrows show TUNEL-positive nuclei lying
below or immediately adjacent to the basal lamina of the muscle fibers.

Reloaded after HS

Water R control Ca-HMB R control Water reloaded Ca-HMB reloaded

Figure 9: Apoptotic nuclei after recovery. Top row: representative tissue sections from the soleus muscle, with fluorescent staining for
TUNEL (green) to identify apoptotic nuclei in control muscles and muscles after 14 days of hindlimb suspension followed by 14 days of
reloading (R). DAPI identified all nuclei (blue). The basal lamina (red) was identified to confirm that the TUNEL-positive nuclei were
myonuclei. The conditions were vehicle control for reloaded animals (Water R control), Ca-HMB control for reloaded animals (Ca-HMB
con), vehicle reloaded after 14 days of HS and 14 days of reloading (Vehicle reloaded), and Ca-HMB after 14 days of HS followed by 14
days of reloading (Ca-HMB reloaded). The arrows show TUNEL-positive nuclei lying below or immediately adjacent to the basal lamina
of the muscle fibers. Bottom row: a higher magnification showing the individual markers for TUNEL, laminin, DAPI, and the combined
images. The arrows show TUNEL-positive nuclei lying below or immediately adjacent to the basal lamina of the muscle fibers.
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to water treatment, Ca-HMB had no effect on muscle mass or
function in either HS or R conditions. Although HS and R
increased Bax and BCL-2 apoptotic signaling proteins in
the EDL muscle, Ca-HMB treatment did not suppress apo-
ptotic signaling in EDL muscles of old rats as compared to
water treatment.

4.1. Body Weight and EDL Muscle Mass after HS. HS causes
significant systemic and muscle-specific changes including
altered hypodynamic cardiovascular control [23], reduced
bone metabolism [5, 42], delayed wound healing [107],
increased oxidative stress [24, 58, 108, 109], and elevated sig-
naling for apoptosis [10, 37, 40, 41, 43, 56, 62, 110]. However,
in the current study, while the body weights of all the animals
subjected to HS were reduced, Ca-HMB introduced by
gavage was unable to significantly attenuate these losses as
compared to water treatment by gavage.

We chose to study the EDL muscle in this study, because
in our hands we had previously observed that the EDL mus-
cle did not lose appreciable weight during HS (unpublished
results) and this was confirmed in the current study. Further-
more, when the EDL muscle weights were normalized to
body weight, there were no significant differences in these
normalized muscle weights either between or within any of
the groups of animals as all animals lost body weight
(Figure 1). This is unlike the well-documented loss of muscle
mass by HS that we and others have found in both fast gas-
trocnemius and plantaris and slow-contracting soleus plantar
flexor muscles of old rodents [37–43, 45, 46, 48–50, 92].

The data in our study are consistent with other studies
that also found that the rat EDL does not undergo atrophy
when subjected to HS [66–72]. However, this is not a univer-
sal observation because other studies have reported a modest
but significant atrophy in EDL but not as much as the loss
found in the soleus in response to HS [36, 76–79]. In contrast
to HS, immobilization-induced disuse such as casting has
shown a more marked atrophy in the EDL muscle [73–75].
Likely, this lack of extensive EDL muscle loss in our HS
model occurred because the dorsiflexor muscles maintain
high EMG activity during HS [72]. In addition, HS does
not immobilize the foot so that the dorsiflexors can still con-
tract and dorsiflex the foot during HS with a load that is sim-
ilar to normal ambulation. Another important point is that
the body position in HS and in all non-weight-bearing states
is a plantar flexor posture with the toes generally pointing
towards the bottom of the cage. However, this plantarflexion
position would provide some mild stretch of the EDL during
HS which would be expected to offset muscle loss from dis-
use. In support of this idea, it is known that stretching will
attenuate muscle loss with limb immobilization [111, 112].
Furthermore, large degrees of muscle stretching and length-
ening ~10-20% beyond a resting length provides a very pow-
erful anabolic stimulus to prevent atrophy and induce growth
[113–118] even under conditions of denervation where EMG
activity is eliminated [119, 120]. EDL stretching may have
been sufficient to minimize catabolic signaling that would
have occurred as a result of muscle disuse in our model of
HS, although the degree of stretching of EDL was not
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Figure 10: Apoptotic index and muscle fiber size. (a) The apoptotic index was calculated from tissue cross sections of the EDL muscle by
determining the number ratio of TUNEL-positive nuclei to total nuclei in EDL cross sections from muscles of control animals for the
hindlimb suspension group (HS Con), the recovery group (R Con), and in experimental animals after 14 days of hindlimb suspension
(HS) or after 14 days of hindlimb suspension followed by 14 days of reloading (R). Only nuclei that were directly below or touching the
basal lamina were counted. Therefore, this evaluation included both satellite cell and myonuclear cell populations. The animals received
either Ca-HMB or water daily by gavage. A MANOVA followed by Bonferroni’s post hoc analyses were used to evaluate the differences
between the group means; †p < 0:05, HS or R vs. control animals for that experimental condition. (b) Fiber cross-sectional area (CSA) was
obtained by planimetry in the EDL muscles of control animals for the hindlimb suspension group (HS Con), the recovery group (R Con),
and in experimental animals after 14 days of hindlimb suspension (HS), or after 14 days of hindlimb suspension followed by 14 days of
reloading (R). The animals received Ca-HMB or water daily by gavage. A MANOVA followed by Bonferroni’s post hoc analyses were
used to evaluate the differences between the group means. The data are presented as mean ± SD.
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sufficient to induce hypertrophy beyond its basal level. Thus,
the maintenance of EMG activity, the ability to lift the foot
during HS, and the mild stretching of EDL during HS, prob-
ably together prevented a significant loss of EDL muscle
mass. This is very different from the plantar flexor muscles
that do not lift the animal’s body weight like normal locomo-
tion during HS. Furthermore, the soleus muscle, for example,
has a rapid and marked decrease in EMG activity to near zero
levels during HS and resumes lifting the animal’s body
weight during R [112, 121, 122]. In the posture that is
assumed during HS, the ankle of the rat moves into plantar-
flexion which shortens and unloads the triceps surae muscles
and results in high degrees of muscle loss, especially in the
slow-contracting soleus muscle [49, 123]. Thus, unlike
EDL, muscles in the plantar flexor group experience atro-
phy during HS, as they would both have reduced EMG
activity, no ability to contract by lifting the animal’s body
weight, and be primarily in a shortened position during
HS [37, 38, 40, 41, 51, 124].

It is not that EDL is unable to atrophy because there was
some mild decrease in fiber size in EDL as compared to con-
trol muscles after HS or R, but this was insufficient to impact
total EDL muscle wet weight. Thus, a different model such as
immobilization would have been expected to induce a signif-
icant loss of muscle mass in EDL. In support of this idea, Du
et al. [125] have found that fixing the ankle in dorsiflexion,
which shortens the EDL muscle during HS, results in signif-
icant atrophy of EDL in rats in a similar fashion as seen in the
gastrocnemius, soleus, and plantaris of the rat during HS,
which also shortens and atrophies these muscles. Although
speculative, we hypothesize that Ca-HMB may have slowed
atrophy in EDL like it does in the plantar flexors during
unloading, if a different model such as immobilization
restraint was used to induce significant atrophy in the EDL
muscle, rather than HS which does not induce significant
EDL muscle atrophy in aged rats, at least in our hands.

4.2. EDL Muscle Force and Fatigue. HMB has been shown to
improve strength and fatigue resistance in quadriceps
muscles of humans including the elderly in multiple studies
especially when HMB treatment was combined with exercise
[53, 95, 103, 126–130]. However, we did not observe an
increase in muscle force or fatigue resistance in the EDLmus-
cles of Ca-HMB-treated rats after unloading by HS or during
reloading as compared to rats that received water.

Although unloading or reloading after HS did not make a
marked change in the maximal force production of EDL,
there was a depression of force production at several points
along the force-frequency curve in EDL muscles after both
HS and R. Furthermore, Ca-HMB had no effect on the
force-frequency relationship of EDL in either HS or R condi-
tions (Figures 3(a) and 3(b)). In addition, Ca-HMB showed
no improvements in CT, ð1/2ÞRT (Figures 3(c) and 3(d)),
or the fatigue index (Figure 3(e)) of EDL muscles in either
the HS or the R groups. This may be explained, at least in
part, by the fact that this HS protocol did not cause extensive
muscle wasting in the EDL muscle so there was no large dec-
rement to overcome, and reloading had an insufficient hyper-
trophic stimulus to enhance protein synthesis. In a study by

Hoffman et al. [107], it was suggested that Ca-HMB supple-
mentation may produce the greatest benefits when muscle
damage is increased, which has been shown to be higher in
untrained individuals than in trained persons [131, 132].
Furthermore, HMB has been shown to improve EDL and
soleus muscle protein synthesis in muscle wasting that was
induced by partial hepatectomy in rats [133]. In addition,
adding Ca-HMB to a hypertrophic stimulus (e.g., exercise
or loading) and/or other anabolic nutraceuticals has been
shown to improve the hypertrophic response of plantar
flexor muscles in rodents [80, 134, 135] or quadriceps mus-
cles in humans [53]. However, Ca-HMB treatment to aged
rats without an exercise intervention did not improve gas-
trocnemius mass or function [136]. While studies that
showed improvements in strength in humans were con-
ducted in individuals with varied training experiences, those
that have been performed solely on trained individuals have
produced mixed results, with the majority [100, 137–140]
showing Ca-HMB to be ineffective at improving strength.
This is likely because trained muscles had adapted to the
increased loading and therefore did not have a large anabolic
stimulus to grow further. However, Ca-HMB has been shown
to improve quadriceps muscle strength when combined with
the anabolic stimulus of exercise in older humans [59, 80,
141]. These published studies and our current data support
the idea that Ca-HMB supplementation has the greatest ana-
bolic benefits to increase mass and strength or reduce muscle
wasting when the muscle has a major insult (e.g., damage or
loading to induce repair and/or muscle growth after severe
atrophy). It is likely that in our model of reloading after
HS, EDL did not have a strong anabolic stimulus for improv-
ing muscle mass and muscle force capacity because EMG
activity was likely not decreased during HS, and during
reloading, EDL likely had a similar contractile effort to raise
the foot during cage ambulation, as when the foot was lifted
during HS. Nevertheless, it is not clear if an anabolic signal
combined with HMB in old EDL muscles would have
enhanced protein synthesis beyond the increase that would
be expected from exercise or loading alone in this muscle.
This is suggested by recent data that show that HMB supple-
mentation in the quadriceps of free-living healthy older men
did not enhance muscle strength or mass greater than that of
resistance training alone [80]. Furthermore, other data indi-
cate that no additional benefit for improving rat gastrocne-
mius and soleus plantar muscle mass or function was
obtained by Ca-HMB treatment as compared to resistance
exercise alone [142].

4.3. Death Signaling in the EDL. Nuclear apoptosis and
increased apoptotic signaling have been shown to be
increased in atrophied plantar flexor muscles of old rats after
hindlimb unweighting [1, 10, 11, 22, 37, 62, 110, 143–148].
However, it was not known if apoptosis or apoptotic signal-
ing precedes atrophy or was in response to it. Ca-HMB has
been shown to exert positive effects in suppressing the abun-
dance of apoptotic proteins in plantar flexor muscles during
HS or R [43, 98, 149]. However, in the present study, Ca-
HMB had no effect on changing the abundance of proapop-
totic cleaved caspase-3 or cleaved caspase-9 proteins in
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EDL after HS or R. Interestingly, the amounts of the proa-
poptotic Bax protein was significantly higher in the EDL
muscles from the Ca-HMB-treated R group as compared
to the vehicle-treated animals, yet this was counterbalanced
by the increase in the antiapoptotic protein BCL-2 in the
Ca-HMB-treated R animals as compared to the respective
control animals.

We were not interested in separating apoptosis signaling
in postmitotic myonuclei which carry the primary responsi-
bility of maintaining cell homeostasis and in satellite cell
nuclei which can divide and contribute to or maintain the
myonuclear pool for growth and recovery postinjury or after
loading. Therefore, we quantified apoptotic signaling in all
muscle nuclei (including satellite cells + myonuclei) by west-
ern blot analysis and all nuclei that were TUNEL positive that
resided below the basal lamina. In this study, we show that
unloading by HS increased some elements of nuclear apopto-
tic signaling in the EDL because the increase in Bax protein
abundance preceded any significant loss in muscle mass.
Rather, in our hands, HS only had a modest decrease in
EDL fiber area and there was no improvement in the recov-
ery of fiber atrophy by Ca-HMB treatment in EDL after
removing HS and reloading with the animal’s body weight.
The frequency of TUNEL-positive nuclei (myonuclei + satel-
lite cells) increased in EDL after HS-mediated unloading,
suggesting that other non-caspase-dependent apoptotic
pathways may have been accelerated in EDL, although the
increase in apoptosis signaling did not result in a loss of mus-
cle mass during unloading. However, Ca-HMB has no net
effect on reducing proapoptotic signaling or the frequency
of TUNEL-positive nuclei in the EDL muscle for either HS
or R conditions. Nevertheless, together, these data are sup-
portive of the idea that apoptotic signaling precedes muscle
loss in the EDL muscle mass and function during unloading.
Future studies are needed to identify if Ca-HMB would have
had a more important role in reducing apoptotic loss of
myonuclei and/or satellite cells if apoptosis had been more
severe and if the presumed threshold of lost nuclei had been
reached so that muscle size could not be maintained in the
EDL muscle.

4.4. Other HMB-Related Interventions.HS is a powerful atro-
phic stimulus for plantar flexors and particularly for the
soleus muscle in rodents. Attempts to counter this loss of
muscle mass and function in plantar flexor muscles by com-
pounds related to HMB have included leucine and branch
chain amino acids [150, 151] and taurine [152] which have
been only partially effective as compared to HMB which
has been more effective [43, 51]. For example, Ca-HMB
appeared better than high levels of leucine in offsetting can-
cer cachexia and lowered protein degradation by reducing
the activity of the ubiquitin-proteasome signaling [99]. How-
ever, this might be model dependent because another study
has reported that Ca-HMB was unable to prevent the
increased expression of E3 ubiquitin ligases Mafbx/Atrogin
or improve tetanic peak force in the immobilized soleus
muscles from dexamethasone-treated rats [153]. This suggests
that Ca-HMB may be effective to attenuate the extent of atro-

phy in some models of muscle loss (plantaris, gastrocnemius
unloading) but not all conditions that invoke muscle wasting.

5. Summary and Conclusion

In this study, we found that Ca-HMB was unable to change
EDL mass or function or decrease apoptotic signaling in
response to HS or R in aged rats. While multiple studies have
shown that Ca-HMB was beneficial by suppressing pathways
associated with muscle wasting and aging in the plantar
flexor muscles (gastrocnemius, plantaris, and soleus muscles)
of rodents [43, 51, 60, 62] and in the limb muscles of humans
[53, 59, 80, 95, 103, 126–130, 141], other studies suggest that
Ca-HMB could not reverse a decline in muscle function,
mitochondria protein synthesis, or anabolic signaling in limb
muscles with aging [136, 153, 154]. However, it is also possi-
ble that even though HMB might not improve muscle mass
or function in aging, other benefits such as improved cogni-
tive function which were not measured in the current study
could be achieved [154]. We cannot exclude the possibility
that if we had used a different model of disuse which caused
greater muscle atrophy in the EDL (e.g., immobilizing the
EDL in a dorsiflexed position [125]), we might have found
a greater effectiveness for Ca-HMB to suppress EDL muscle
atrophy in old rats. This assumes that EDL is not resistant
to the effects of Ca-HMB. Alternatively, we cannot rule out
the possibility that if we provided a longer duration of sup-
plementation with Ca-HMB, or added a resistance exercise
to the reloading phase after HS, or provided higher therapeu-
tic doses of Ca-HMB throughout the study, we may have
improved the anabolic environment of EDL muscles of old
rats in this study. This direction is consistent with a report
that a long duration of HMB treatment slowed the progres-
sion of sarcopenia in limb muscles of humans [155] and
long-term treatment with HMB has been proposed as a ther-
apeutic to offset sarcopenia in elderly humans [80, 156].
Future studies should be conducted to compare models that
have different severities of muscle loss in aging to establish
if there is a therapeutic dose and/or duration threshold that
is required to maximize Ca-HMB’s benefit to prevent muscle
loss or to recover frommuscle wasting that is caused by aging
and disuse.
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