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Background: The diagnosis of autism spectrum disorder (ASD) relies on behavioral
assessment. Efforts to define biomarkers of ASD have not resulted in an objective,
reliable test. Studies of RNA levels in ASD have demonstrated potential utility, but
have been limited by a focus on single RNA types, small sample sizes, and lack of
developmental delay controls. We hypothesized that a saliva-based poly-“omic” RNA
panel could objectively distinguish children with ASD from their neurotypical peers and
children with non-ASD developmental delay.

Methods: This multi-center cross-sectional study included 456 children, ages
19–83 months. Children were either neurotypical (n = 134) or had a diagnosis of
ASD (n = 238), or non-ASD developmental delay (n = 84). Comprehensive human and
microbial RNA abundance was measured in the saliva of all participants using unbiased
next generation sequencing. Prior to analysis, the sample was randomly divided into a
training set (82% of subjects) and an independent validation test set (18% of subjects).
The training set was used to develop an RNA-based algorithm that distinguished ASD
and non-ASD children. The validation set was not used in model development (feature
selection or training) but served only to validate empirical accuracy.

Results: In the training set (n = 372; mean age 51 months; 75% male; 51% ASD),
a set of 32 RNA features (controlled for demographic and medical characteristics),
identified ASD status with a cross-validated area under the curve (AUC) of 0.87 (95% CI:
0.86–0.88). In the completely separate validation test set (n = 84; mean age 50 months;
85% male; 60% ASD), the algorithm maintained an AUC of 0.88 (82% sensitivity and
88% specificity). Notably, the RNA features were implicated in physiologic processes
related to ASD (axon guidance, neurotrophic signaling).

Conclusion: Salivary poly-omic RNA measurement represents a novel, non-invasive
approach that can accurately identify children with ASD. This technology could improve
the specificity of referrals for ASD evaluation or provide objective support for ASD
diagnoses.
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INTRODUCTION

Children with autism spectrum disorder (ASD) are characterized
by social/communication deficits and restricted/repetitive
behaviors, but display marked variation at the genetic,
phenotypic, and functional levels (Geschwind, 2008). Screening
for ASD typically relies on the modified checklist for autism
in toddlers – revised (MCHAT-R), a parent-based survey with
a positive predictive value less than 20% (Siu et al., 2016). In
2017, the U.S. Preventive Services Task Force determined that
insufficient evidence existed to recommend continued ASD
screening. Non-specific screening tools may lead to over-referral,
contributing to wait times that exceed 12 months for diagnostic
evaluation using the Diagnostic and Statistics Manual (DSM)-5
criteria (Bisgaier et al., 2011). This wait can delay initiation
of critical intervention services at a time of marked brain
development. Addition of a rapid, accurate, objective adjunct
measure could improve care for children with ASD.

Efforts to identify ASD biomarkers have yielded much
information about the biologic basis of ASD. For instance,
children with ASD are typified by hyperserotonemia
(Chamberlain and Herman, 1990), elevated oxidative stress
markers (Chauhan and Chauhan, 2006), and alterations in
immune factors that can lead to neuroinflammation (Corbett
et al., 2006; Goines and Van de Water, 2010; Onore et al., 2012).
Such disturbances may facilitate disruptions in neuropeptides,
including glutamate, GABA (El-Ansary and Al-Ayadhi, 2014),
and brain derived neurotrophic factor (BDNF) (Connolly
et al., 2006). Evidence suggests that environmental risk factors
also play a role in ASD development (Hertz-Picciotto et al.,
2006). Microbial dysbiosis and altered metabolic substrates are
two examples of environmental features implicated in ASD
(MacFabe, 2013). At its core, however, ASD appears to be
driven by genetic traits that confer ∼50% heritability, with 90%
concordance in monozygotic twins (Tick et al., 2016).

Why has this biologic information failed to yield an
accurate biomarker? First, ASD heterogeneity makes it difficult
to generalize a single measure to all children. Second,
the evolving nature of brain function over the lifespan
necessitates that biomarker discovery is performed within a
narrow neurodevelopmental window. Third, ever-changing
diagnostic criteria create a challenging landscape for patient
characterization. Fourth, overlap between ASD and other
cognitive/behavioral phenotypes necessitates comparisons with
“control” participants exhibiting non-ASD developmental
delay (DD). Finally, nearly all studies rely on single molecule

Abbreviations: ADHD, attention deficit hyperactivity disorder; ADOS, Autism
Diagnostic Observation Schedule; ANOVA, analysis of variance; ASD, autism
spectrum disorder; AUC, area under the curve; BDNF, brain-derived neurotrophic
factor; BMI, body mass index; CNV, copy number variant; DD, developmental
delay; DSM, diagnostics and statistics manual; GABA, gamma-amino butyric acid;
linc RNA, long intergenic non-coding RNA; MCHAT-R, modified checklist for
autism in toddlers – revised; miRNA, microRNA; piRNA, piw-ineracting RNA;
ROC, receiver operating characteristics; rRNA, ribosomal RNA; SFARI, simons
foundation autism research initiative; snoRNA, small nucleolar RNA; SNP, single
nucleotide polymorphism; SUNY, State University of New York; SVM, support
vector machine; TD, typical development; UCI, University of California Irvine;
VABS, Vineland Adaptive Behavior Scales.

types. To date, most ASD biomarker studies fail to overcome
these challenges. Few employ sufficient sample sizes, focus on
multiple molecule types, or include separate training and test
sets, leading to poor generalizability and validity.

Experts have proposed that methods analyzing entire
networks of biomarkers may increase the specificity of ASD
testing (Walsh et al., 2011; Goldani et al., 2014; Anderson,
2015). Given the array of genetic and environmental risk
factors that typify ASD, “poly-omics” approaches that integrate
genetic, epigenetic, and metagenomic methods appear well-
suited. Indeed, initial studies of both coding (Kong et al., 2012)
and non-coding (Mundalil Vasu et al., 2014) transcriptional
elements in the peripheral blood of children with ASD have
demonstrated predictive potential for identifying ASD. Our pilot
study demonstrated that many of these same RNA elements could
be detected in saliva of children with ASD (Hicks and Middleton,
2016; Hicks et al., 2016). As a non-invasive approach, collecting
saliva boosts sample sizes through increased participation
rates, while facilitating interrogation of the microbiome (Frye
et al., 2015). Thus, a single high-throughput analysis can
interrogate genomic and environmental components implicated
in ASD.

Here, we interrogate levels of human and microbial saliva
RNAs to train and then test a biomarker classification tool in
456 children, age 19–83 months. This study tests the hypothesis
that oral transcriptome measurement provides a broad network
perspective that can accurately identify ASD status in children.

MATERIALS AND METHODS

Ethics Statement
This study was carried out in accordance with the
recommendations of the Institutional Review Boards (IRBs)
at the State University of New York (SUNY) Upstate Medical
University, Penn State College of Medicine, and University of
California, Irvine (UCI) with written informed consent from
all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. The protocol was
approved by the SUNY Upstate, Penn State, and UCI IRBs.

Study Population
The study included 456 children, 19–83 months of age. To
our knowledge this is the largest study of RNA expression
in children with ASD. Note that the sample is smaller than
some DNA-based studies of ASD because these studies rely
on measurements of rare-occurring CNVs or SNPs, while
the current study focuses on RNA transcripts present in the
majority of children (at varying concentrations). Participants
were recruited from Penn State (n = 250), SUNY Upstate
(n = 191), and UC Irvine (n = 15). 238 children had a clinical
diagnosis of ASD, based on DSM-5 criteria. This criterion was
chosen to accommodate the phenotypic heterogeneity observed
in clinical practice (Anderson, 2015), at an age when initial ASD
diagnoses typically occur (Mandell et al., 2005). ASD participants
were enrolled following developmental assessment by a trained
clinician (e.g., developmental pediatrician or developmental
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psychologist). ASD participants were compared with 218 control
participants: 134 children with typical development (TD) and
84 children with non-ASD DD. TD and DD participants
were enrolled following yearly well-child visits or specialist
developmental assessment, respectively. For DD participants,
absence of ASD was confirmed through negative MCHAT-R
and/or clinician assessment with DSM-5 criteria. The majority
of DD participants were characterized by expressive speech
delay. Exclusion criteria for all groups included feeding tube
dependence, active periodontal disease (e.g., unfilled cavities,
bottle-rot), active upper respiratory infection, or wards of the
state.

General guidelines for interpretation of binomial classification
analysis results using receiver operating characteristic (ROC)
curves have established that values of 0.5–0.6 reflect nearly
worthless classifiers, 0.6–0.7 reflect poor classifiers, 0.7–0.8 reflect
fair classifiers, and 0.8–0.9 represent good classifiers. Following
these criteria, the goals of our study were to distinguish good
classifiers from poor classifiers. Using Power Analysis and Sample
Size Software (v15; NCSS, LLC; Kaysville, UT, United States), we
thus set the null area under the curve (AUC) upper limit to 0.7,
and determined that the sample sizes used in our training set
provided 85% power to detect an AUC of the ROC curve = 0.77
(based on a one-sided z-test, with an alpha = 0.05), 99% power to
detect an AUC > 0.8, and 100% power to detect an AUC > 0.84.
Similarly, the validation cohort (n = 84) had 85% power to detect
an AUC = 0.85, 90% power to detect an AUC = 0.86, 94.5%
power to detect an AUC > 0.87, and 100% power to detect an
AUC = 0.90.

Data Collection
Medical and demographic characterization was performed as
follows: age (months), sex, race, gestational age at birth (weeks),
and family history of ASD (first- or second-degree relatives)
were collected through parent report. Sleep disorder (defined
as difficulty initiating sleep, difficulty maintaining sleep, or
use of melatonin), gastrointestinal diagnosis (defined as reflux,
constipation, chronic diarrhea, or chronic abdominal pain),
asthma, and attention deficit hyperactivity disorder (ADHD)
were screened through parent report and verified through chart
review. Body mass index (BMI; kg/m2) was measured at the time
of sample collection, or obtained through chart review. Adaptive
behavior was assessed with Vineland Adaptive Behavior Scales,
2nd edition (VABS-2) on most (77%) children (n = 349). For 128
ASD and 38 DD participants, assessment of autistic traits was
performed with the Autism Diagnostic Observation Schedule,
2nd edition (ADOS-2) by trained research staff or obtained from
medical records if performed in the past year.

RNA Collection, Processing, and
Quantification
At the time of enrollment, saliva was obtained in a non-fasting
state with an Oracollect RNA swab (DNA Genotek; Ottawa,
Canada) following water rinse. Pooled saliva was collected by
applying the highly absorbent swab at two sites: (1) the base
of the tongue (near the sublingual ducts); and (2) bilaterally

between the gums and buccal mucosa (proximal to the parotid
ducts). Saliva collection was completed in 5–10 s. Scraping of
the buccal mucosa and teeth was generally avoided. RNA was
extracted from whole saliva with a standard Trizol method
(Hicks and Middleton, 2016). Whole saliva was employed rather
than exclusive isolation of epithelial or exosomal RNA because
each fraction provided complementary information about host
and microbial transcription (Park et al., 2006; Michael et al.,
2010). For example, exosomal RNA may arise from cranial
nerve signaling (which could be disrupted in cases of speech
apraxia, or food texture sensitivity), while epithelial RNA may
reveal information about transcriptional control within cells.
RNA was sequenced at the SUNY Molecular Analysis Core
using an Illumina TruSeq Small RNA Prep protocol and a
NextSeq500 instrument (Illumina; San Diego, CA, United States)
at a targeted depth of ten million, 50 base, single-end reads
per sample. Human RNA reads were aligned to the hg38 build
of the human genome using Partek Flow (Partek; St. Louis,
MO, United States) and the SHRiMP2 aligner. Quantification of
aligned RNA reads was performed based on RefSeq annotation,
miRbase 21 mature and precursor annotation, and piRNAbase
annotation. Microbial transcripts were mapped to the NCBI
RefSeq genome database using k-SLAM (Ainsworth et al.,
2017). Microbial transcripts were employed in favor of a 16S
approach to simplify and streamline nucleic acid extraction
and analysis, and facilitate downstream clinical application. In
addition, previous studies have demonstrated the potential for
microbial RNA to differentiate children with ASD (Hicks et al.,
2018).

Samples were randomly divided into a training set (n = 372,
82% of samples; 188 ASD, 113 TD, 71 DD samples) in which
RNA levels were directly examined, and a test set (n = 84, 18%
of samples; 50 ASD, 21 TD, 13 DD samples) in which RNA levels
were not inspected (beyond read quality) until model features and
predictive performance were ascertained. Diagnosis composition
of the test and training set were comparable.

For each sample, five subtypes of RNA were quantified:
(1) mature/precursor microRNA (miRNA); (2) piwi-interacting
RNA (piRNA); (3) non-coding RNA, including small nucleolar
RNA (snoRNA) and long intergenic non-coding RNA (lincRNA);
(4) ribosomal RNA (rRNA); and (5) microbial RNA. Three
samples did not meet quality criteria for inclusion (Hicks et al.,
2016) and are not included in the 456 samples. Of the 19,128 RNA
features interrogated, 1,078 RNA features contained 99% of the
counts per category and were further investigated.

Data Normalization and Scaling
RNA abundance levels utilized in this study were subjected to a
systematic series of data transformations to improve sensitivity
for classifier detection and reduce the influence of batch effects.
Transformation steps and parameters were determined in the
training dataset, and later applied in identical fashion to the
hold-out test set (Supplementary Figure S1).

In order to develop robust multivariate classifier models
that could utilize RNAs in an unbiased manner across the full
expression range, we first employed an inverse hyperbolic sine
transformation of the read count data within each RNA category,
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according to the formula f (x) = ln
(

x+
√

x2 + 1
)

(Burbidge
et al., 1988; MacKinnon and Magee, 1990). The rationale for
this was based on the common observation that RNA-seq data
generally follow non-normal distributions, with some RNAs
often expressed at very high levels and others at close to zero
(Dimov et al., 2014).

Next, we employed global normalization in which the vector
of RNA abundance (within each category) was divided by the
norm of the vector (Serneels et al., 2006). This method also
imparted robustness to outliers. Together, these steps brought the
abundance data within a narrow range, while maintaining relative
rank, and served to enhance the likelihood of robust and stable
machine learning performance.

To account for subject variability and demographic influences
on the classifiers, continuous variables (age, birth age, and BMI)
were also subjected to spatial sign transformation to ensure they
were commensurate with other variables. Co-morbid medical
conditions, history, and race were set to binary factors of 1
(positive/present) or 0 (negative/absent) and reduced to principal
components that accounted for 80% of variance.

Machine Learning Approach
To select and rank the most predictive RNAs within each
category, generalized stochastic gradient-boosted logistic models
were fit to the training set data. In this method, multivariate
logistic models were first trained in an iterative process on subsets
of RNAs from subsets of training samples, and input features
were given relative ranking based on their prevalence in the
logistic models (Friedman, 2001).

Second, to create a joint ranking of all features, the top
ranked RNAs from each category were merged with the
transformed demographic data and fit to a joint stochastic
gradient-boosted model in the training set, as above. This
combined model similarly ranked the input features in order of
importance across all categories (RNA, biological, demographic,
etc.).

Third, to build a predictive model based on these ranked
features, radial kernel support vector machines (SVMs) (Cortes
and Vapnik, 1995; Chang and Lin, 2001) were trained on
increasing numbers of features until model performance on
the training set became asymptotic. Outputs from SVMs were
converted to probabilities using Platt calibration (Platt, 1999). To
reduce overfitting by including too many input features, the SVM
with the fewest features that reached the predictive performance
plateau was picked as the final model.

As an additional step to help prevent overfitting the training
data, 10-fold cross-validation was performed 10 times in each
step. Additionally, model parameters (including gradient step
size, minimum number of samples per iteration, maximum
number of features per logistic model, size of the radial
basis function, and cost budget) were carefully selected
from reasonable ranges. Confidence intervals for ROC curve
performance were determined with the Clopper and Pearson
(1934) method following 10-fold cross-validations.

Transformation parameters and loadings calculated on the
training set (n = 372) were subsequently applied to the completely

naïve holdout test set (n = 84) to determine ASD-status based on
poly-omic RNA concentrations. Misclassification analysis across
training and test sets compared the means of various patient
features between correctly- and incorrectly predicted participants
using analysis of variance (ANOVA).

Data transformation, machine learning implementation, and
statistical analyses were performed in R1 using RStudio2, the caret
package (Kuhn, 2008), and custom scripts on a HIPAA compliant
AWS server3.

Functional Analysis
Genomic loci for the predictive RNAs were determined using
the University of California Santa Cruz Genome Browser4. RNA
loci were cross-referenced against 2,223 CNV regions associated
with ASD on the SFARI database5. For predictive miRNAs,
high-confidence mRNA targets (microT-CDS scsore ≥ 0.95)
were determined in DIANA miRPath v3 software6 (Vlachos
et al., 2012) and over-represented Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways (FDR < 0.05) were reported.
Putative mRNA targets were also cross-referenced against 990
ASD candidate genes from the SFARI database known to contain
single nucleotide polymorphisms (SNPs) associated with ASD.
Previous reports of candidate miRNAs in human ASD studies
were interrogated through published literature review (Hicks
and Middleton, 2016). Associations between microbial RNA
and human RNA abundance were determined with Pearson
Correlation Analysis and hierarchical clustering with complete
linkages.

RESULTS

Participant Characteristics
The analysis included 456 children in the training and test
datasets (mean age 51 ± 16 months; 77% male; 66% Caucasian;
52% with ASD; Table 1). In the training set, the ASD
group (n = 188) was older, included more males and fewer
Caucasians, and had higher rates of disordered sleep, ADHD, and
gastrointestinal disturbance than the non-ASD group (n = 184).
There were no differences between the ASD and non-ASD groups
in BMI, asthma rates, or gestational age. In the naïve test set, the
ASD group had higher rates of ADHD but did not differ in other
medical/demographic factors.

In training and test sets the ASD group displayed lower
mean VABS-2 standard scores (p < 0.001) in Communication,
Socialization, and Adaptive Behavior domains compared with
the non-ASD group. For the subset of children evaluated with
ADOS-2 (n = 166), ASD participants received higher (p < 0.001)
mean Comparison Scores than DD participants (Table 1).

1r-project.org
2rstudio.com
3aws.amazon.com
4https://genome.ucsc.edu/
5https://gene.sfari.org/database/cnv/
6http://diana.imis.athena-innovation.gr/DianaTools/index.php
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TABLE 1 | Participant characteristics.

Clinical
characteristics

All
(n = 456)

Train set (n = 372) Test set (n = 84)

ASD (188) Non-ASD
(184)

ASD (50) Non-ASD
(34)

Demographic

Male sex, # (%) 337 (76) 156 (83)∗ 122 (66) 45 (90) 26 (76)

Mean age, mos
(SD)

51 (16) 54 (15)∗ 49 (16) 53 (15) 46 (16)

White race, #
(%)

296 (67) 122 (65)∗ 126 (69) 29 (58) 23 (68)

Medical

BMI, kg/m2 (SD) 16.7 (2.5) 16.6 (2.9) 16.8 (2.3) 16.6 (2.1) 16.7 (2.4)

Sleep disorder,
# (%)

141 (32) 85 (45)∗ 31 (17) 21 (42) 8 (24)

ADHD, # (%) 63 (14) 41 (22)∗ 18 (10) 4 (8)∗ 0 (0)

GI diagnosis, #
(%)

57 (13) 36 (19)∗ 16 (9) 7 (14) 1 (3)

Asthma, # (%) 43 (10) 16 (9) 18 (10) 6 (12) 2 (6)

Gestation, wks
(SD)

38.6 (2.6) 39 (3) 39 (3) 38 (2) 39 (2)

fam hx, # (%) 172 (39) 93 (50)∗ 51 (28) 29 (58) 10 (29)

Behavioral

VABS Comm
(SD)

82.7 (22.8) 72.2
(20.1)∗

93.5 (20.7) 73.5
(20.8)∗

93.4 (18.2)

VABS Social
(SD)

84.7 (22.7) 72.2
(16.4)∗

97.4 (22.6) 73.5
(18.0)∗

96.3 (15.0)

VABS Adaptive
(SD)

84.8 (20.0) 74.9
(15.2)∗

95.0 (20.0) 73.6
(18.9)∗

96.6 (11.8)

ADOS, mean
(SD)

6.1 (2.6) 6.7 (2.4)∗ 4.5 (2.9) 6.7 (1.6)∗ 3.2 (1.1)

Participant characteristics for children in the training and testing datasets. Presence
of disordered sleep was ascertained through parental endorsement of difficulty
with sleep initiation, sleep maintenance, or use of melatonin. Gastrointestinal (GI)
diagnosis denotes documentation of an ICD-10 code related to reflux, constipation,
chronic diarrhea, or chronic abdominal pain. Family history (fam hx) of psychological
disorders is based on parental report in a first degree relative. For vineland adaptive
behavior scales (VABS), standard scores are reported (n = 349). For Autism
Diagnostic Observation Schedule (ADOS) evaluation, mean comparison scores are
reported (n = 166; ASD and DD groups only). All p-values are based on a two-tailed
Student’s t-test, where ∗ denotes p < 0.05 for ASD vs. Non-ASD. # Indicates the
number of participants with a given clinical characteristic. ASD, autism spectrum
disorder; ADHD, attention deficit hyperactivity disorder; BMI, body mass index;
mos, months; wks, weeks; Comm, Communication.

RNA Selection and Performance
The feature selection algorithm resulted in a panel comprised
of 32 diagnostic RNA features, including 12 microbial taxa, 7
mature miRNAs, 4 precursor miRNAs, 8 piRNAs, and 1 snoRNA
(Figure 1). No rRNAs or lincRNAs were selected. In training
set cross-validation, the algorithm identified ASD status with
80% sensitivity and 78% specificity and an AUC of 0.87 (95%
CI: 0.86–0.88; Figure 2). When applied to the untrained, naïve
test set, the algorithm accurately predicted ASD status in 41/50
ASD children, 18/21 TD children, and 12/13 DD children. This
represented an AUC of 0.88, with 82% sensitivity, 88% specificity,
and a positive predictive value of 91%.

To ensure the classifier algorithm performance was
not systematically biased based on patient characteristics,

distributions of misclassification errors across patient features
were explored in the test set (Figure 3). There were no
differences between correctly and incorrectly classified children
in age (p = 0.67), sex (p = 0.10), race (all p > 0.05), or BMI
(p = 0.97). There were no differences between correctly and
incorrectly classified children in VABS social score (ASD
p = 0.92; non-ASD p = 0.34). Notably 1/4 of misclassified
children with ASD demonstrated above average social scores
(>100). Misclassification errors relative to co-morbid medical
conditions (Supplementary Table S1) revealed no discernable
pattern of confounding influence.

Functional Interrogation
Of the 20 human RNAs in the panel, 19 (95%) originated from
loci with at least one ASD-associated CNV (Supplementary
Table S2). The 11 miRNAs had 1,862 high-confidence
(microT-CDS score ≥ 0.95) gene targets, and 198 (11%) of
these were among the 909 ASD candidate genes in the SFARI
database (Supplementary Table S3). miR-106a-5p targeted the
largest number of ASD candidate genes (51, 12% of total targets).
Six miRNAs (6/11, 55%) were previously reported in human ASD
studies (Hicks and Middleton, 2016), and each were identified in
multiple tissues.

Evaluation of putative miRNA targets revealed
significant enrichment (FDR < 0.05) in 12 KEGG
pathways (Supplementary Table S4). Among the
pathways neurobiologically relevant to ASD were
axon guidance (FDR < 0.001; 26 genes, 8 miRNAs);
neurotrophin signaling (FDR = 0.028; 21 genes, 9
miRNAs), and circadian entrainment (FDR = 0.039,
17 genes, 9 miRNAs). Gene targets for the 11 miRNAs also
displayed 6 significant (FDR < 0.05) pathway interactions
(Supplementary Table S5). Notably, enrichment occurred in
metabolism of xenobiotics (FDR = < 0.001, 3 genes, 2 miRNAs)
and NF-kappa B signaling (FDR < 0.001, 2 genes, 2 miRNAs).

Hierarchical clustering analysis of the classifier features
revealed two distinct RNA clusters (Supplementary Figure S2).
One cluster included human RNA only. A second cluster
included eight microbes, two human miRNAs (miR-410, miR-
3916), and two human piRNAs (piR-6463, piR-29114). The
relationship between these features was further explored using
correlation analysis, which revealed moderate associations
between piR-6463 and Clostridiales (R = 0.46, p < 0.001),
Pasteurella multocida (R = 0.46, P < 0.001), and Leadbetterella
byssophilia (R = 0.42, p < 0.001). piR-29114 also displayed
associations with Clostridiales (R = 0.42, p < 0.001).

DISCUSSION

This investigation identified 32 salivary RNA features that
accurately distinguished ASD status in a training set of 372
children, and displayed 85% accuracy in a separate test set of
84 additional children. The RNA panel included human RNAs
and microbial RNAs with putative functions converging on ASD-
associated neurobiological pathways. It provides an accurate,
objective, systems-based method for identifying ASD status.
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FIGURE 1 | Abundances of 32 salivary RNAs selected for the diagnostic panel. Box and whisker plots show distributions (in the training set; n = 372) of the 32 RNAs
included in the panel. Color indicates RNA category. Box hinges indicate 25th, 50th, and 75th percentiles. Upper whiskers extend to the largest value up to 1.5∗ IQR,
where IQR is inter-quartile range between the 75th and 25th percentiles. Lower whiskers extend to the smallest value down to 1.5∗ IQR. Outliers beyond the
whiskers are plotted individually.

Clinical Implications
The ability to clinically discern children with autistic from peers
with non-ASD DD is more challenging than discriminating ASD
from TD children. Yet, children with DD have typically not
been included in ASD biomarker studies. In this study, the RNA
algorithm identified 41/50 ASD children while differentiating
30/34 non-ASD children in a naïve hold-out sample set. Notably,
test performance was similar for TD (18/21) and DD (12/13)
children. The potential to accurately discriminate between ASD
and DD lies at the crux of ASD diagnoses, and represents
a significant potential contribution for this objective, biologic
assay.

This study employed ASD and non-ASD groups of equal size,
and the total non-ASD cohort included 39% DD participants
(84/218). Thus, this algorithm is not designed as a screening tool
(where ∼1/50 children might have ASD). Instead, our results are
best viewed as an adjunct to positive MCHAT-R screening, or as

an aid in ASD diagnosis. In these settings (e.g., after a positive
MCHAT-R), nearly 50% of children would be expected to have
ASD, and a significant proportion of the others would likely
have DD.

Although our test differentiates ASD and non-ASD
participants from multiple geographic regions, whether the
algorithm performs accurately in populations with increasing
geographic diversity remains to be determined. This is
particularly important to consider given that our algorithm
includes microbial RNAs, which could be influenced by dietary
and environmental factors. The present algorithm was developed
from saliva of children residing in New York and Pennsylvania.
When applied to a test set that contained children from
New York, Pennsylvania, and California, the test maintained
diagnostic accuracy. Future investigations will need to validate
these findings across broader geographic cohorts. Refinement
of the model may improve performance further as we continue
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FIGURE 2 | Algorithm Performance. In a training set (n = 372), a radial kernel support vector machine model used 32 salivary RNA features (comprising 11 miRNAs,
8 piRNAs, 1 snoRNA, and 12 microbial taxons) to differentiate 188 children with autism spectrum disorder (ASD) from 184 non-ASD peers with typical development
(TD) or non-ASD developmental delay (DD), while controlling for participant medical and demographic features. Performance is displayed on the green receiver
operator characteristic curve (area under the curve: 0.87; 95% CI: 0.86–0.88) as a function of varying the threshold of probability of ASD prediction. Green boxes
indicate rectangular confidence regions with cross-validation. In a naïve test set (n = 84), the algorithm correctly identified 41/50 ASD, 18/21 TD, and 12/13 DD
children [area under the curve (AUC): 0.88, blue/bold].

to sample increasingly diverse populations at high volumes and
incorporate data into the training steps.

The potential to employ this test in younger toddlers and
infants has yet to be assessed. While it is possible that the
modest difference in age between the ASD and non-ASD groups
may have confounded the analyses, the children incorrectly
classified displayed similar age, sex, and race as those who were
correctly classified. Thus, the algorithm showed no bias toward
demographic or medical factors within the study cohort. It also
suggests the test may be broadly applicable without exclusion
of medical or demographic subgroups. Conditions that might

impact salivary RNA (e.g., asthma, gastrointestinal disturbance,
BMI) and conditions that are more common in children with
ASD (sleep difficulties, ADHD) also did not appear to bias ASD
prediction.

This study recruited a cohort generally representative of
children receiving developmental referral, favoring robust
statistical power over extensive phenotypic analyses. Group
assignments were based on clinical assessments. Participant
characterization was driven by a combination of parent
report, chart review, and standardized VABS-2 and ADOS-
2 assessments. Future studies employing extensive behavioral
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FIGURE 3 | Correctly and incorrectly classified children display similar medical and demographic features. Histograms display distributions of (A) age, (B) sex, (C)
body mass index (BMI), (D) ethnicity, and (E) VABS social for children correctly (blue) and incorrectly (green) classified by autism status in the validation set. There
were no differences between correctly and incorrectly classified children in age (p = 0.67), sex (p = 0.10), race (all p > 0.05), BMI (p = 0.97), or VABS social (ASD
p = 0.93, non-ASD p = 0.34) for the test set. Histograms combine totals of correctly and incorrectly classified participants from both sets. Note that parents were
able to indicate multiple races and the model had access to all races indicated. For this plot, children included as “Caucasian” may include bi-racial participants.

assessment alongside longitudinal RNA sampling and therapeutic
interventions may identify nuances in salivary RNA profiles that
correlate with ASD endophenotypes, respond to intervention, or
prove useful for guiding personalized therapies.

Physiologic Implications
This tool employs poly-omic RNA measures that link both
physiologic and environmental factors implicated in ASD
(Figure 4). The transcript dysregulation that is apparent in ASD
children may arise in response to genetic alterations and cause
down-stream changes in neurobiological pathways. Such changes
could form the basis for ASD behavior, and some of these
behaviors (e.g., restricted diet, difficulty with dental hygiene) may
lead to dysbiosis. Thus, transcriptional measurements provide
a broad network perspective with the potential to unify the
heterogeneity of ASD.

Three RNAs in the current panel (miR-378a, miR-3916,
piR-12423) arise from loci associated with ASD copy number

variants (CNVs) (Figure 4). The results do not imply that these
genomic regions are commonly altered in children with ASD
(and the lack of genomic sequencing in our cohort prevents
identification of common CNVs or syndromic cases). Instead,
variations in non-coding RNA abundance may arise in response
to dysregulation of several neurobiologic systems that have been
previously reported in ASD literature. For instance, several
miRNAs in the panel target mRNAs from ASD-candidate genes,
including miR-410/FMR1, miR-10a/PTEN, miR-92a/TSC1, and
miR-106a/SCN2A. An additional member of the RNA panel,
SNORD118, may play a critical role in ribosomal function
and protein translation (Jenkinson et al., 2016): a study of 40
patients having leukoencephalopathy with calcifications and cysts
identified bi-allelic mutations in SNORD118.

The miRNAs in this panel target transcripts that code for
critical elements of neurotransmitter (miR-10a/BDNF; miR-
92a/GABA), neurohormonal (miR-106a/serotonin), immune
(miR-106a/TGF-beta; miR-106a/TNF-alpha) and xenobiotic
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FIGURE 4 | The poly-omic diagnostic panel integrates genetic, neurobiologic, phenotypic, and environmental factors implicated in ASD. This concept diagram
displays the putative function of human RNAs at the intersection between genetic/environmental risk factors and the neuro-behavioral traits associated with ASD.
Factors, such as microRNA (miRNA) and piwi-interacting RNA (piRNA) interact with genes involved in chromatin organization, transcriptional regulation, synaptic
function, and other critical neuronal pathways. Disruption of these pathways in children with ASD may lead to alterations in the levels of peripheral miRNAs and
piRNAs. In addition, neuro-behavioral characteristics of ASD, which can lead to restricted diets and gastrointestinal (GI) disturbance, may be related to the microbial
disruptions upon which the current algorithm is based.

(miR-361/GSTO2; miR-125a/GSTM2) pathways (Figure 4).
Individual miRNA targets also demonstrate pathway interactions
for critical immune components (NF Kappa B and Toll-like
receptor signaling; Supplementary Table S5). Given this
immune enrichment, host transcripts may be directly linked
to ASD dysbiosis. This is supported by the finding that four
human RNAs and eight microbes cluster based on salivary
abundance (Supplementary Figure S2). Some microbes in the
panel may contribute to ASD neurobiology through effects on
host metabolism [Oenococcus oeni/pyruvate (Wagner et al.,
2005); Pasteurella multocida/ammonia (Hamilton et al., 1996)]
and gastrointestinal inflammation [Clostridiales (Frank et al.,
2007)]. Alternatively, alterations in oral microbe transcription
may result from host dietary restrictions [e.g., Lactobacillus
(Mikelsaar and Zilmer, 2009)].

Limitations
Reliance on microbial measures for ASD identification will
require accounting for features influenced by diet and geography.
The current study enrolled children from multiple sites and
relied on several microbes found in humans throughout the
world (e.g., Lactobacillus). However, validation of RNA from
less common bacteria (e.g., Oenococcus oeni) will require sample
collection from diverse sites. In our prior study of the salivary
micro-transcriptome, the majority of RNA transcripts “altered”
in children with ASD showed no relationship with dietary

restrictions (Hicks et al., 2018). Thus, we expect that geographic
variations in diet will have minimal impact on most microbial
biomarkers.

Numerous medical and demographic factors may influence
RNA expression in the oropharynx. We have attempted to
control for these factors (e.g., BMI, asthma) through matched
recruitment and a statistical modeling approach controlling
for medical/demographic factors. Inherent differences in rates
of gastrointestinal disturbance between ASD and non-ASD
groups (Serneels et al., 2006) likely drive some transcriptional
changes that contribute to test performance. Because medical
and demographic features of our cohort generally represent
childhood ASD populations, we expect these differences will
not impact external validity. Indeed, in the test set (which
was matched on ASD:TD:DD ratios, but not medical and
demographic factors) the RNA panel maintains predictive
accuracy.

CONCLUSION

We have developed an objective, quantitative algorithm based on
salivary RNA abundance that accurately discriminates children
with ASD from peers with DD or TD. This non-invasive test
could augment the accuracy of current ASD assessment, as an
adjunctive tool for children with positive MCHAT screening, or
an objective aid in ASD diagnosis.
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FIGURE S1 | Algorithm training and testing. The methodological pipeline used for
RNA feature selection and model development in the training set is shown, along
with direct application of the diagnostic algorithm to the naïve hold out test
samples.

FIGURE S2 | Associations between human and microbial salivary RNA features.
Hierarchical clustering of the 32 RNA classifiers was performed using Pearson
Correlation Analysis with complete linkages. There were two distinct RNA clusters:
one involving solely human RNA, and a second containing 8 microbes alongside 2
microRNAs and 2 piRNAs. This second cluster may denote human and microbe
elements with functional interactions.

TABLE S1 | Rates of medical conditions in correctly and incorrectly classified
participants. The proportion of correctly and incorrectly classified children in the
naïve validation set (n = 84) with various co-morbid medical conditions are shown.
Overall, no medical condition was commonly present only among correctly or
incorrectly classified groups, suggesting that the algorithm was not biased by
these conditions.

TABLE S2 | Human RNA loci with autism-associated copy number variants. The
genomic location for each of the human RNA classifiers is shown, along with the
number of autism-associated CNVs for this region, autism-related case reports,
autism cases in the Simons Population, and total reported human cases in the
Simons Foundation database.

TABLE S3 | ASD Candidate Genes Targeted by the 11 microRNAs. All
autism-associated genes (Simons Foundation database) targeted with high
confidence (based on microT-CDS score) by the 11 microRNA classifiers are
listed. The strength of the microRNA-gene interaction is listed (Target Score), and
if the interaction has been experimentally validated it is noted. Simons Foundation
characteristics for each gene are noted, including gene score (strength of
autism-association), implication in syndromic forms of autism, and total number of
autistic individuals with a known variant in the gene.

TABLE S4 | KEGG Pathways over-represented by microRNA targets. The KEGG
pathways over-represented (FDR < 0.05) by high-confidence gene targets of the
microRNA classifiers are listed. The number of genes targeted within each
pathway are shown along with the number of microRNAs targeting them. Note
that several brain-related pathways have enriched numbers of targets, including
axon guidance, neurotrophin signaling, and glioma.

TABLE S5 | Pathway interactions among putative microRNA targets. DIANA
miRPATH software was used to identify KEGG pathways whose gene
components had putative interacting relationships with the 11 microRNA
classifiers. Notably, several pathways involved in metabolism and immune
pathways previously implicated in autism were on the list.
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