
1Scientific Reports | 7:46251 | DOI: 10.1038/srep46251

www.nature.com/scientificreports

Correlations in the degeneracy of 
structurally controllable topologies 
for networks
Colin Campbell1, Steven Aucott1, Justin Ruths2, Derek Ruths3, Katriona Shea4 & Réka Albert5

Many dynamic systems display complex emergent phenomena. By directly controlling a subset of 
system components (nodes) via external intervention it is possible to indirectly control every other 
component in the system. When the system is linear or can be approximated sufficiently well by a linear 
model, methods exist to identify the number and connectivity of a minimum set of external inputs 
(constituting a so-called minimal control topology, or MCT). In general, many MCTs exist for a given 
network; here we characterize a broad ensemble of empirical networks in terms of the fraction of nodes 
and edges that are always, sometimes, or never a part of an MCT. We study the relationships between 
the measures, and apply the methodology to the T-LGL leukemia signaling network as a case study. We 
show that the properties introduced in this report can be used to predict key components of biological 
networks, with potentially broad applications to network medicine.

A system of interacting components can be represented by a network, where system components are represented 
by nodes (or vertices) and their interactions are represented by directed edges (or links) between nodes. The 
dynamical behavior of the system is constrained by the topology of the network, but, because an edge generally 
indicates the existence of a regulatory relationship without specifying its nature, network topology is necessarily 
an incomplete representation of the system’s dynamical behavior. For instance, the dynamic relationship repre-
sented by a node A being regulated by two nodes B and C may be well-approximated by a truth table (e.g., the 
future state of A is given by B AND C, where the node state variables are binary, 0 or 1) or by an arbitrarily com-
plex function of B and C (e.g., dA/dt =​ BC, where the node state variables are real numbers).

Whatever the dynamical relationships, a common goal is to efficiently influence the behavior of the constit-
uent complex system. For example, manipulating biological systems can potentially lead to the development of 
effective therapies for disease1–5, ecological management may preserve vital ecosystem services6–10, and techno-
logical systems such as the power grid must be carefully designed and managed to provide functional and efficient 
services to consumers11–15. The field of network science aims to identify the extent to which the network structure 
alone can be used to study the dynamics, and more recently the control, of systems. In part because such analysis 
aims to identify model-agnostic properties and in part because it can provide informative first-order effects, it is 
common to model the evolution of systems by linear dynamics of the form

= +
d
dt

A Bx x u, (1)

where x is a vector of the nodes in the network, A is the adjacency matrix that encodes the interactions in the net-
work topology (including, for instance, diagonal terms corresponding to the free decay of a node state variable), 
and the term Bu encodes external, user-controlled signals fed into a subset of so-called directly-controlled nodes, 
i.e., the dynamics of these specific nodes are directly affected by these external signals. Many systems, of course, 
are inherently nonlinear and are at best approximately linear within a local region; assuming linear dynamics of 
the form of equation (1) in these cases is an extremely coarse approximation16–18,  thought note that linearizing a 
nonlinear system is in some cases a sufficient condition for local controllability19. Nonetheless, the study of linear 
dynamics is important not only for systems that are linear, but also as a comparative framework for nonlinear 
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dynamics: a system is nonlinear to the extent that it departs from linear expectations. The extent to which our 
results apply to nonlinear systems will depend on the form of the nonlinearity and the region of interest. While 
the networks we study behave according to a variety of models, we use their interaction networks to provide real-
istic structures for us to study the potential degeneracies of control properties.

In this case it is possible, with a sufficient number and placement of directly-controlled nodes and appropriate 
choices of time-varying control signals, to drive the system to any desired state in finite time20–23. In principle one 
wishes to control the dynamics of a network with as few interventions as possible; minimizing the number of 
controls amounts to finding the maximum matching on the network (see Methods). Recent work has addressed 
the relationship between network topology and the properties of the directly-controlled nodes. For instance, 
the directly-controlled nodes are either source nodes or arise due to a dilation, where a node has more than one 
outgoing edge23. By classifying dilations as external (if the outgoing edges point to sink nodes) or internal (oth-
erwise), one can determine the fraction of controls in each of these categories (respectively denoted ηs, ηe, and 
ηi). These parameters constitute the control profile of a network. Empirical networks tend to be dominated by one 
of the three control profile parameters; diverse mechanisms exist by which synthetic networks may be generated 
with the same properties23–26.

While the control profile offers insight into the types of directly-controlled nodes in terms of their topolog-
ical location, it offers no direct insight into the degeneracy of control: there are generally many solutions to the 
maximum matching of a network. In other words, many combinations of nodes may be chosen for direct control. 
Furthermore, determining the maximum matching involves not only a set of directly-controlled nodes, but also 
a set of matched edges, which constitute control signal paths (see Fig. 1, Methods). It is therefore of interest to 
assess the importance of both nodes and edges in the set of all of the so-called minimal control topologies (MCTs). 
Specifically, here we wish to determine if a node is always, sometimes, or never directly controlled among all max-
imum matchings (i.e., across all MCTs). Similarly, we wish to determine if an edge is always, sometimes, or never 
on a control signal path.

Our contributions in this report are three-fold. First, we leverage the methodology of Jia et al.21 to charac-
terize a new network-level statistic capturing the fraction of nodes that are always, sometimes, or never directly 
controlled (υa, υs, and υn, respectively). We then develop a new method using a similar approach to assign a 
network-level statistic capturing the fraction of edges that always, sometimes, or never belong to the set of 
matched edges (fractions εa, εs, and εn, respectively). These new quantities echo the spirit of the control profile, 
which is a unique network-level statistic that captures the fraction of controls due to different functional struc-
tures. In contrast, these new quantities capture the fraction of nodes and edges that participate in the process of 
control signal dissemination through the network in varying ways. Thus the third contribution of this work is to 
provide insight into the connections between the functional classification of the control configuration (given by 
the control profile) and the degeneracy of the control configuration allowed by the network structure (captured 
by the statistics proposed in this report). Notably, we show that the existence of many internal dilations correlates 
with many edges never existing on a control path, suggesting that internal dilations tend to restrict the flexibility 
with which control signals propagate through a network. Finally, we apply the methodology of this report to 
the T-LGL leukemia signaling network and show broad agreement between the metrics introduced herein and 
existing experimental, computational, and analytical work that has identified nodes whose control play a pivotal 
role in the behavior of the network. While (as noted above) it is known that the study of structural controllability 
has some applications to systems characterized by nonlinear dynamics, the above-summarized results provide 
additional evidence suggesting that the methodology described in this report may be used in other biological 
networks to predict network components essential for control, with potentially broad applications to network 
medicine.

Figure 1.  Control topologies in networks with linear, non-dissipative dynamics. (a) A simple directed 
network. We omit cycles from this example because in this framework they are inherently self-regulatory and 
their control follows immediately once the remainder of the network has been controlled23. (b) In a control 
topology, every node is either directly controlled (colored nodes) or indirectly controlled (white nodes with 
colored outlines). Indirect control is achieved by placing nodes on a path originating at a directly controlled 
node (white edges with colored outlines). Importantly, in this framework every node can control at most one 
of its downstream neighbors and every pair of such paths are necessarily node-disjoint. (c) A control topology 
is minimal if it minimizes the number of controls. In this example node A must be directly controlled (it has 
no upstream nodes through which a control path may be routed) and either node B or node C must be directly 
controlled because node A can control at most one of its downstream neighbors.
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Results
We analyze 58 empirical networks (see Table S1) and determine their distribution in parameter space for the con-
trol profile, node-based degeneracy, and edge-based degeneracy measures (Fig. 2a–c). As previously reported, the 
control profile of any one empirical network tends to be dominated by one of the control profile parameters23. In 
contrast, the node-based degeneracy measures indicate that νa ≪​ 1 for most networks, that is, few networks have 
a significant fraction of nodes that are always directly controlled (in agreement with the observation that most 
networks have relatively few directly-controlled nodes). This observation applies also to the edge-based degener-
acy measures;  εa ≪​ 1. However, while networks are well-dispersed between νs and νn, most networks are skewed 
toward εs, meaning that while some networks have many nodes that are never directly controlled, few networks 
have many edges that are never on a control signal path.

We are also interested in the relationships between these measures. In Fig. 2(d–f) we show the distributions of 
degeneracy measures separately for networks where each of the control profile measures is largest (e.g., ηs >​ ηe, ηi).  
We find, for instance, that ηs-dominated networks tend to be νn- and εs-dominated. In other words, networks 
where many of the directly-controlled nodes are source nodes tend to have many nodes that are never directly 
controlled, and many edges that can be (but are not necessarily) on control signal paths. In contrast, ηe-dominated 

Figure 2.  Distributions of empirical networks according to three sets of control measures. Each set includes 
three measures that sum to 1 for a given network. The distributions are shown on ternary plots, where a network 
at the center corresponds to a set of values (1/3, 1/3, 1/3) and a network at a corner corresponds to e.g. (1, 0, 
0). Networks are represented with colored according to their maximal parameter. Interior lines indicate the 
regions where each parameter is largest. (a) The control profile of Ruths & Ruths23. Directly-controlled nodes 
are either source nodes (ηs), arise due to internal dilations (ηi), or arise due to external dilations (ηe). (b) The 
fraction of nodes that are always (νa), sometimes (νs), or never (νn) directly controlled, when considering all 
control schemes that minimize the number of controls. (c) The fraction of edges that are always (εa), sometimes 
(εs), or never (εn) on a control signal path, when considering all control schemes that minimize the number 
of controls. (d–f) The degeneracy measures applied independently to the cases where ηs, ηe, and ηi are the 
dominant parameter in the control profile. Each plot is uniformly colored according to the corresponding 
dominant control profile parameter (as labeled on the left of the panel). The formatting of each plot otherwise 
follows (a–c).
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networks tend to be νs- and εs-dominated, meaning that networks with an abundance of sink nodes tend to have 
significant flexibility both in choice of directly-controlled nodes and control signal paths. Finally, ηi-dominated 
networks tend to be εs-dominated (though less so than in the case of either ηs-dominance or ηe-dominance) and 
distributed between νs and νn. Thus, networks with many internal dilations may or may not have flexibility in 
terms of choice of directly-controlled nodes, and tend to have at least a moderate degree of flexibility in control 
signal paths.

We perform a pairwise Spearman correlation analysis between each of the 9 control-related parameters con-
sidered here and with basic network properties (Table 1). Unsurprisingly, there is a strong negative correlation 
between εa and each of the average node degree, average clustering coefficient, and network transitivity (−​0.79, 
−​0.52, and −​0.58, respectively): more connections per node and/or an increased frequency of closed triads afford 
greater flexibility in assigning control signal paths. Interestingly, these same properties are negatively correlated 
with νs and positively correlated with νn: a richer local structure constrains nodal participation (as directly con-
trolled nodes) in MCTs. Furthermore, the number of nodes and edges exhibit weak negative correlation with νn 
and εn, indicating that larger networks are more likely to access more nodes and edges in at least some MCTs. 
Measures within a set tend to be negatively correlated with one another, with the notable exception of εa and εn 
(0.29). Some powerful trends exist between sets, as well, as suggested by Fig. 2: ηs is correlated with νa (0.8), ηi is 
correlated with εn (0.74), and ηe is correlated with νs (0.68).

To validate the utility of these measures, we consider the dynamic model of survival signaling network rel-
evant to T-LGL leukemia2,27. In this disease a fraction of white blood cells activated in response to a stimulus 
escape the process of activation induced cell death, survive, and after a while start attacking healthy cells. The 
dynamics of this network are defined by Boolean functions, from which a topological network can be extracted 
such that A->​B if node A exists in the update function for node B. In the T-LGL network the node representing 
apoptosis (i.e., programmed cell death) is of particular interest. Its OFF state, together with the deregulation 
(abnormally high or low activity) of a subset of nodes, indicates the abnormal, leukemic state. Conversely, if in 
a leukemic cell the state of apoptosis cell changes from OFF to ON, the cell is committed to the process of cell 
death. Existing work has identified the minimal set of nodes whose sustained expression can lead to the leukemic 
state. This set consists of three source nodes: the initial stimulus, as well as the external molecules platelet-derived 
growth factor (PDGF) and interleukin (IL) 15, both of which were experimentally observed to be over-abundant 
in the blood of T-LGL leukemia patients27. Prior work has also identified nodes whose direct control can lead to 
apoptosis of leukemic cells, despite the continued presence of these source nodes. Control of any one of 18 nodes 
(of 57 total) leads to apoptosis according to at least two of the following three types of evidence: experimental 
verification27, simulation of Boolean dynamics2, and analysis of the topology of the network once it has been 
expanded to topologically encode the Boolean rules28.

The extent to which we expect the present metrics to agree with prior work is mitigated to some extent by the 
scope of the methodologies: in most prior work the quantity of interest is the state of a single node (apoptosis), 
whereas structural controllability seeks to achieve a desired state for every node in the network. Furthermore, 
the methodology used here assumes dynamics that obey equation (1), which is quite different from the Boolean 
framework used in the prior work being considered here. Therefore, a conservative expectation is that the two 
methodologies do not contradict one another. Specifically, assuming that the target state reflects induced apop-
tosis of a leukemic cell, we expect that the three source nodes necessary for the leukemic state are always directly 
controlled and the 18 apoptosis-inducing nodes should, at minimum, sometimes be directly controlled and/or be 
connected to an edge that is always on a control path.

We verify that this is the case: all three source nodes are always directly controlled, and 15 of the 18 key 
nodes have at least one incoming or outgoing “always” edge (indicating that they take part in a critical signaling 
pathway in terms of control) and/or are sometimes directly controlled (indicating that in some cases system 

Table 1.  Spearman correlation coefficients between control parameters and basic network measures. The 
table shows the total number of nodes and edges (N and E, respectively), the average degree <​k>​, average 
clustering coefficient <​C>​, and network transitivity τ. Table entries are colored according to their values 
(shades of blue for positive values and shades of red for negative); coefficients with a magnitude below 0.2 are 
written in light gray text. Black lines bracket intra-measure correlations (e.g. among ηs, ηe, and ηi).
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control may require direct control of these nodes). Furthermore, the remaining three key nodes are connected 
to at least 4 “sometimes” edges (indicating flexibility in the manner in which control signals are routed through 
these nodes). Indeed, despite the different methodological frameworks, the agreement is rather strong: all 
18 nodes are connected to more “always” and/or more “sometimes” edges than expected by random chance, 
and only 2 are connected to more “never” edges than expected by random chance (for more details, see the 
Supplementary Information).

Discussion
Effectively influencing the behavior of complex interacting systems is a broad, multi-disciplinary goal. 
Accordingly, there is significant interest in discovering general techniques by which the dynamics of systems from 
different domains (e.g., technological and biological) may be guided by external intervention. We here consider 
systems that obey the linear dynamics of equation (1), where it has been shown that complete control is possible 
by feeding external control signals into a subset of the system components20–23. These directly-controlled nodes 
are chosen such that every other node in the network is reached via non-overlapping paths originating at the 
directly-controlled nodes (see Fig. 1). The directly-controlled nodes and these control paths together constitute a 
control topology; a minimal control topology (MCT) is one in which the number of inputs is minimized.

In this report we consider the degeneracy of minimal control (i.e. the extent to which different minimal con-
trol topologies exist for a given network) in linear systems. Specifically, we characterize every system compo-
nent (node) and interaction (edge) as being always, sometimes, or never on a MCT (the fraction of all nodes 
in these categories are respectively represented by the parameters νa, νs, and νn for nodes and εa, εs, and εn for 
edges). We study a broad selection of empirical networks and find that they are generally distributed between νs 
and νn while νa tends to be small. While we can unambiguously state that nodes are always directly controlled 
only if they are source nodes23, in all but the simplest networks more precise statements require analysis of the 
maximum-matching problem and/or perturbing a MCT via a breadth-first search (see Methods). However, the 
flexibility of control in this framework is reflected by the typically high values of εs, suggesting that there are gen-
erally many ways for control signals to propagate through a network, even if there is relatively little flexibility in 
the choice of nodes to be directly controlled.

We consider these measures against the fraction of controls that are source nodes, sink nodes, and inter-
nal nodes (ηs,, ηe and ηi, respectively), quantities which are fixed for a given network23. The fact that ηs is pos-
itively correlated with νa follows from their definitions: ηs is the fraction of directly-controlled nodes that are 
source nodes, and νa is the fraction of all nodes that are source nodes (see Methods). The fact that ηi is posi-
tively correlated with εn indicates the existence of some rigidity in control signal paths cases where most of the 
directly-controlled nodes are neither sources nor sinks. In contrast, the correlation between ηe and νs suggests 
flexibility when most of the control nodes are sink nodes. In other words, there is flexibility in choosing which 
sink nodes are directly controlled and which are not, likely in part because there are multiple paths from source 
nodes to different sink nodes. It is also interesting to note that the correlations between node-based degeneracy 
measures and edge-based degeneracy measures tends to be weak (with the exception of νa and εa, the correlation 
magnitudes are uniformly below 0.4), indicating a relative disconnect between the node-based and edge-based 
degeneracy measures considered in this report.

While an interesting topic from a strictly theoretical standpoint, characterizing control degeneracy also has 
significant practical implications. In a biological system, for instance, a particular group of signaling molecules 
may be implicated in many theoretically viable control strategies. This, in turn, could incentivize the development 
of (e.g., pharmacological) techniques to influence the molecules in question. Indeed, we have shown broad agree-
ment between the techniques developed here and existing work concerning the dynamics of the T-LGL leukemia 
signaling network, and the techniques described herein could be used to identify potential candidates for regula-
tory control in other biological networks. In an ecological system, the abundance of a particular group (or groups) 
of species, for example invasive or endangered species, may be controlled to initiate a cascade of changes in the 
abundances of other species6–8,29–32. Species implicated in many viable control strategies under an appropriate 
modeling framework may, therefore, be prime candidates for direct manipulation to effectively manage ecolog-
ical communities. Regardless of context, in cases where the nature of any nonlinearity is unknown, the methods 
developed here may provide insight into which components are essential for control.

We observe in this study that there exist meaningful correlations between the degeneracy of the control topol-
ogy (directly controlled nodes and matched edges) and the functional divisions offered by the control profile. 
While aggregated statistics of network controllability have offered fruitful insights in the past, moving forward – 
to understand more precisely how network topology is related to network control – will require knowledge about 
all the possible control paths that can be used to control a network. Ultimately we aim to provide a clear mapping 
between the structure of the network and the ability we have to control such a system. Here we have provided a 
new dimension such that we can use the types of degeneracy exhibited by the control topology along with the 
dominance of certain types of control structures (given by the control profile) to triangulate more informed infer-
ences on the network structures that are most important for network control.

A tempting avenue for future work is the development of procedures that identify the fraction of control paths 
that contain a given node or edge. This information would allow the categorical analysis considered in this report 
to be complemented by analysis on a continuum: nodes in Va are in 100% of all control paths, nodes in Vn are 
in 0%, and nodes in Vs are somewhere in between (and similarly for edges). Studying the properties that drive 
nodes and edges to have comparatively high or low participation in control paths promises to enhance our under-
standing of the relationship between the structure and controllability of complex systems. In addition, we note 
that the diverse selection of empirical networks evaluated in this study offers insight into network structures that 
are independent of context. While this follows related work and avoids sample bias that arises when considering 
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traditional generative models23,26,33, taking a similar approach as this study, but focused upon a particular empiri-
cal context (e.g., cellular signaling networks, ecological networks) may offer network-specific insight.

Methods
Control Topology.  We define a control topology as a set of directly-controlled nodes, Nd, and the corre-
sponding control signal paths that yield indirect control over every other node in the network20,23. A control 
topology is minimal if it additionally minimizes |Nd|. Prior work has generally assessed the properties of a single 
minimal control topology (MCT) for a given network; a MCT is often obtained via the Hopcroft-Karp algo-
rithm20,23,34,35. In Fig. 1 we show several control topologies for a simple network.

Node-based assessment of MCT degeneracy.  Because many MCTs generally exist for all but the sim-
plest networks, we wish to characterize the nodes in a network according to the frequency with which they are 
directly controlled in a MCT. Specifically, a node is always, sometimes, or never directly controlled in a MCT; we 
denote the set of nodes in these categories as Va, Vs, and Vn, respectively. Similarly, we denote the size of each set, 
normalized by the total number of nodes in the network, as νa, νs, and νn.

To categorize the nodes in this way, we adopt the method proposed by Jia et al.21. Suppose a single MCT has 
been determined, and consider first the set of directly-controlled nodes Nd. Clearly every node n ∈​ Nd is a member 
of either Va or Vs. Making this distinction is trivial in light of the fact that the set of source nodes is identical to 
Va

21. It follows immediately that the directly-controlled nodes in the MCT that are not source nodes are members 
of Vs.

It remains only to consider the nodes n ∉​ Nd. Clearly every such node is a member of either Vs or Vn. To deter-
mine the membership of one such node ni, we force it to be directly controlled: if |Nd| increases as a result, then 
it immediately follows that no MCT directly controls node ni and therefore ni ∈​ Vn. Otherwise, ni ∈​ Vs. We repeat 
this procedure for all nodes n ∉​ Nd. It is possible to force a node to be directly controlled by perturbing the original 
MCT with an algorithmic complexity O(EN) (see SI).

Edge-based control classification.  Here we are interested in similarly classifying edges as always, some-
times, or never existing on the path of a control signal. We respectively define the sets of nodes in these categories 
as Ea, Es, and En, and the normalized sizes of these sets as εa, εs, and εn. As in the case of the node-based analysis, 
we begin by applying the Hopcroft-Karp algorithm to the network in question to determine one MCT. From this 
MCT we obtain a set of edges on control paths, Lc (e.g., edge A->​B in Fig. 1a).

Clearly edges l ∈​ Lc are members of Ea or Es. Similarly, edges l ∉​ Lc are members of Es or En. In the first 
case, removing one such edge lji (denoting an edge from node j to node i) and re-evaluating the number of 
directly-controlled nodes via the Hopcroft-Karp algorithm serves to categorize the node: if |Nd| increases, lji ∈​ Ea; 
otherwise lji ∈​ Es. In the second case we may wish to force an edge lji ∉​ Lc to be on a control path and similarly 
re-apply the Hopcroft-Karp algorithm; however, no simple modification to the network guarantees that the 
Hopcroft-Karp algorithm will force lji ∈​ Lc.

We therefore develop alternatives for both of the above cases; the approach has a complexity of O(E2) (see SI).
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