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Socio-emotional impairments are key symptoms of Autism Spectrum Disorders. This
work proposes to analyze the neuronal activity related to the discrimination of emotional
prosodies in autistic children (aged 9 to 11-year-old) as follows. Firstly, a database
for single words uttered in Mexican Spanish by males, females, and children will be
created. Then, optimal acoustic features for emotion characterization will be extracted,
followed of a cubic kernel function Support Vector Machine (SVM) in order to validate
the speech corpus. As a result, human-specific acoustic properties of emotional voice
signals will be identified. Secondly, those identified acoustic properties will be modified to
synthesize the recorded human emotional voices. Thirdly, both human and synthesized
utterances will be used to study the electroencephalographic correlate of affective
prosody processing in typically developed and autistic children. Finally, and on the basis
of the outcomes, synthesized voice-enhanced environments will be created to develop
an intervention based on social-robot and Social StoryTM for autistic children to improve
affective prosodies discrimination. This protocol has been registered at BioMed Central
under the following number: ISRCTN18117434.

Keywords: Autism Spectrum Disorders, electroencephalography, social robot, affective prosody, emotions,
emotional speech database

INTRODUCTION

Autism Spectrum Disorders
Diagnostic criteria for Autism Spectrum Disorders (ASD) include impairments in communication
and social interactions, as well as poor abilities of emotional reciprocity and emotional states
recognition (American Psychiatric Association, 2013). North American prevalence of ASD lies
between 8.7/1,000 registered in Mexico between 2011 and 2012 among 8-year-old children and
18.5/1,000 registered in the United States in 2016 (Fombonne et al., 2016; Chiarotti and Venerosi,
2020). Although a wide variability in prevalence estimations due to methodological concerns has
been observed, there is no doubt of a general trend to increased diagnostics of autism over the last
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20 years (Chiarotti and Venerosi, 2020). The growing autistic
population strengthens the necessity to better understand this
condition in order to improve therapies efficacy.

Reduced amplitude and shorter latency of the mismatch
negativity (MMN) component in autistic children and adults
whilst listening to affective prosody stimuli has been identified
as an electroencephalographic (EEG) correlate due to abnormal
early pre-attentive selection cognitive processes (Lindström et al.,
2016; Charpentier et al., 2018). Recent studies lead to a common
agreement on the general impairment of the so-called “social
brain” neural network in ASD (Sato et al., 2017; Schelinski
et al., 2017). Brain areas of this network are responsible for
social cognition and overlap with the Default Mode Network
(Subbaraju et al., 2018) and the Action Observation Network
(Delbruck et al., 2019). Those brain regions interactively work
to allow the successful development of social and emotional
complex skills such as social imitation, face recognition,
understanding of others’ mental states, communication via
verbal utterances and non-verbal behaviors, and recognition and
expression of emotions. Brain areas of this networks’ interplay
generally depicted as impaired in ASD mainly include the inferior
frontal gyrus, the medial and dorsomedial prefrontal cortices,
the amygdala, temporal areas including the temporoparietal
junction, the middle temporal gyrus and the superior temporal
gyrus and sulcus, the orbitofrontal cortex, and the posterior
cingulate cortex (Sato et al., 2017; Subbaraju et al., 2018;
Delbruck et al., 2019; Francis et al., 2019). Interestingly,
the superior temporal sulcus contains “non-primary” auditory
neurons involved in extracting complex acoustic information
after receiving inputs from the primary auditory cortex, mainly
the Heschl’s gyrus responsible for low-level acoustic feature
extraction (Samson et al., 2011). The superior temporal sulcus
has been characterized as the human “voice area,” responsible
for voice identity recognition (Schelinski et al., 2017) and
is highly involved in emotion prosody processing (Rosenblau
et al., 2016). This area showed weaker activity in autistics
and less functional connectivity with the amygdala compared
to typically developed (TD) individuals while processing
emotional prosody (Rosenblau et al., 2016). Thus, autistics
may be impaired in extracting complex auditory features that
characterize emotional prosody stimuli and fail to allocate social
emotional value.

Psychoacoustic Properties of Auditory
Information
Low interest for speech and atypical distressing reactions to some
noises (Schauder and Bennetto, 2016) usually comes along with
high interest for music and intact low level auditory abilities
(e.g., non-vocal pitch discrimination) in ASD (Globerson et al.,
2015; Schelinski and von Kriegstein, 2019). Autistic individuals
also show typical abilities to recognize emotional and pragmatic
intonations in music (Quintin et al., 2011; DePriest et al., 2017).
Vocal emotion recognition abilities have been associated with
vocal pitch discrimination skills, and lower emotional prosody
recognition capacities have been associated with higher autistic
severity (Schelinski and von Kriegstein, 2019). Impairments

in emotional prosody recognition observed in ASD may be
triggered by psychoacoustic properties of auditory stimuli. While
intonation discrimination in music and non-vocal auditory
stimuli stem from the accurate processing of local information
(e.g., frequency fluctuations and harmonic contour), speech is
a highly noisy signal and prosody recognition requires the
coordination between a coarsier local processing and higher-
level ones (e.g., social allocation, complex acoustic patterns
processing) (Zatorre and Baum, 2012; DePriest et al., 2017).
In essence, the complex property of vocal sounds defined by
its naturalness (i.e., speech comes from the human vocal tract)
triggers the difficulty for autistics to discriminate emotional
prosodies. In fact, the autistic processing style characterized
by the highly accurate local information extraction [Enhanced
Perceptual Functioning theory (Mottron et al., 2006)], along
with the low ability to integrate the information into a global
representation [Weak Central Coherence theory (Happé and
Frith, 2006)], may be disadvantageous for developing speech
processing abilities. Therefore, the present study aims to identify
the physical acoustic properties that characterize naturalness
(i.e., specific complexity of vocal sounds) in speech in order to
modulate psychoacoustic features of voice that could improve the
emotional prosody recognition in ASD.

Emotional Prosody Recognition
Vocal emotion recognition relies at least partly on the
perception of the acoustic properties of the stimulus. In
fact, similar acoustic indicators (e.g., pitch, intensity) of
emotional prosody have been stressed across cultures (Paulmann
and Uskul, 2014), highlighting a universal reliance on the
physical acoustic characteristics to recognize emotions in
voice. Acoustic physical properties generally recognized as
differentiators of emotional prosodies are spectral features,
intensity/energy, and rate (Kamińska, 2019). In emotion
classification studies, the most considered spectral features are
the Mel Frequency Spectral Coefficients (MFCC) (Caballero-
Morales, 2013), pitch (fundamental frequency), formants, jitter,
shimmer, and harmonics-to-noise ratio (Arruti et al., 2014). So
far, culture-specific ways of uttering emotions have been revealed
(Paulmann and Uskul, 2014). For instance, English-speakers from
Singapore tend to allocate more intensity and higher pitch when
expressing anger than English-speakers from Kenya (Laukka
et al., 2016). Therefore, although emotional prosody recognition
relies on universal norms, cross-culture variations make each
ethnic group unique in its way of uttering emotions and listeners
from one ethnic group skilled at recognizing emotions uttered
by speakers of their own culture. The European Union funded
the Interface project to create a public database of emotional
utterances in French, Castilian Spanish, Slovenian, and English
languages (Hozjan et al., 2002; Emotional Speech Synthesis
Database, 2012). Particularly, the Castilian Spanish database
contains isolated words uttered by adult male and female voices
with neutral, angry, sad, joyful, afraid, disgusted, and surprised
prosodies (Hozjan et al., 2002). The Interface database was
generated for research purposes to analyze and classify emotional
speech. Its subjective evaluation (i.e. the emotion recognition by
16 non-professional engineering students listeners) has shown up
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to 90% accuracy for correct emotions recognition (Hozjan et al.,
2002). Up to now, no emotional speech database in Mexican
Spanish containing isolated words uttered with anger, sadness,
happiness, fear, disgust, and neutral prosodies is publicly available
yet (Caballero-Morales, 2013). Therefore, one aim of the present
study pursues to generate a database for adult male, female, and
childish voices.

EEG Signature of Emotion Recognition
To record the brain signature of emotions differentiation in voice,
soundless methods may be more suitable since the recording
process does not interfere with the acoustic stimulus that has to
be processed. EEG, and particularly the analysis of Event-Related
Potentials (ERPs), has been widely used to study the neuronal
activation process of emotions. Furthermore, thanks to its high
temporal resolution, ERPs analysis enable the distinction within
attentional, sensory, and higher cognitive stages (Fan and Cheng,
2014). Early automatic auditory perception is usually observed
between 100 and 250 ms over frontal and central cortices after
stimulus onset (MMN). Higher amplitude of this component
indicates higher discrimination of acoustic modulations relative
to constant auditory background (Charpentier et al., 2018). As an
index of acoustic changes early discrimination, the MMN can be
used as an indicator of emotional prosody detection (Lindström
et al., 2016, 2018; Paris et al., 2018). If automatic changes
discrimination was salient enough, involuntary attentional switch
to deviant auditory stimuli happens, and is observed 200–350 ms
after stimulus onset at fronto-central cortices as a component
known as P3a (Lindström et al., 2018; Paris et al., 2018). Early
emotional recognition, valence, and arousal identification appear
over frontal and central electrodes between 250 and 350 ms after
the stimulus onset (Paulmann et al., 2013). The analysis of the
amplitude of the P200 component has allowed to distinguish
different prosodies such as disgust (high amplitude) and fear
(lower amplitude) (Paulmann et al., 2013). This component has
shown to reflect the early arousal decoding and may predict the
deeper processing of the emotional information observed in the
250–1,000 ms time-window after the stimulus onset (Paulmann,
2016; Steber et al., 2020). The time window between 400 and
1,000 ms has been related to the motivational relevance and
extensive processing of the prosodic emotional stimulus. In such
window, the observation of the Late Positive Potential (LPP)
over centro-parietal recording sites is frequent (Steber et al.,
2020). The LPP amplitude is higher in emotional than neutral
stimuli, while it is shorter during the emotional down-regulation
(Pan et al., 2020).

Event-Related Potentials laterality is still a controversy.
Some experimental paradigms have found a right-hemispheric
dominance for emotional processing, regardless of the valence
(result in accordance with the Right-Hemispheric Hypothesis)
(Godfrey and Grimshaw, 2016; Charpentier et al., 2018). The left
lateralization for the processing of positive emotions and higher
right hemispheric neuronal activity for negative emotions (i.e.,
the Valence Theory) has also been observed, without denying
the possibility of the mutual coexistence of both phenomena
(Wyczesany et al., 2018). Although a sparse literature relative
to the ERPs analysis underlying the processing of emotional

prosody in autistics, a reduced modulation of the neuronal
activity by emotions and a lack of hemispheric lateralization
has been observed in this population (Lindström et al., 2016,
2018; Charpentier et al., 2018). Remarkably, in a study focused
on the processing of emotional words by autistic adults and
their corresponding TD controls, the amplitude of the LPP for
positive or negative versus neutral words processing did not
reach significance for autistic participants. In contrast, higher
amplitude were observed for emotional versus neutral stimuli in
the TD sample, and group differences were identified for negative
versus neutral words (Lartseva et al., 2015).

Assistive Technology for the
Improvement of Emotional Skills in ASD
Social StoriesTM

Various educational approaches have been proposed to improve
social and emotional skills in autistics. For example, the so-
called Social StoryTM intervention drawn-up by Carol Gray
showed promising results (Gray, 2010; Kurt and Kutlu, 2019).
This practice consists of sharing relevant cues via a rigorous
scheme to teach the patient to process correctly specific every-
day life situations (Kurt and Kutlu, 2019). Gray (2010) suggested
the following advices. First, the content of the stories should
be highly personalized to each patient in order to guarantee
the comprehension and attention of the patient. Second, third
persons and generalizations may help to keep self-esteem safe
(Gray, 2010). Third, format, number of sentences, rimes, rhythm
must be adapted to the age, preferences, and cognitive skills of
the audience (Bee et al., 2018). Fourth, the use of descriptive,
perspective, coaching and affirmative sentences would help
to convey accurate information (Bee et al., 2018). Finally,
interactions with the patient via questions and partial sentences
help to maintain the audience focused, which facilitates to
monitor the progression of the patient (Gray, 2010). Overall, the
intervention must be implemented in a safe, pleasant and friendly
environment with the general aim of fostering the learning
(Gray, 2010).

Interventions by Social StoriesTM present several advantages:
thanks to its easy implementation, parents, caregivers, or close
friends can help to personalize the stories, and their content
can be updated at wish. On the other hand, improvements can
be observed in brief implementations and short sessions (5-
min sessions over a 1 to 4-week period) (Vandermeer et al.,
2015; Kurt and Kutlu, 2019). The Social StoryTM approach
has been recently adapted to technology-based interventions to
enhance the motivation of patients, facility and efficacy of the
interventions (Miller et al., 2020).

Social Robots
New technologies help to create a safe and predictable social
environment, in which the complexity of social cues can be
progressively controlled through the intervention time course,
thereby generating an optimized atmosphere for autistic patients
(Sartorato et al., 2017). In this respect, social robots offer
direct, real, and multisensorial social interactions that have been
shown to be perceived as “natural” as human ones by autistics
(Chaminade et al., 2012). Social robot-based interventions
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have shown to improve emotion interpretation differentiation,
and emotional perspective-taking skills in autistic children.
Eventually, those improvements could be generalized to human
and daily life social interactions (Scassellati et al., 2018; Marino
et al., 2019). As social robots are accepted by autistics and equally
perceived as social partners as humans, they give the opportunity
to train social skills.

Current Study
In the light of research advances, the present proposal aims to
integrate Social StoriesTM and social robots to improve emotional
prosody recognition in Mexican autistic children population.
This research will be conducted in three stages:

(1) Mexican Emotional Speech Database (MESD):
Characterization of emotional prosodies by physical
acoustic features in Castilian and Mexican Spanish
cultures. Cultural differences will be identified and
an emotional speech database for Mexican Spanish
will be generated.

(2) Human vs Synthesized Voice: Defining the naturalness in
human speech by physical acoustic properties. Thereafter,
previously recorded emotional Mexican Spanish utterances
will be edited in order to reduce naturalness in voice.
Finally, the neuronal processing of human and newly
synthesized emotional utterances will be recorded by EEG
and compared between TD and autistic children.

(3) Social StoryTM and Robot Intervention: The voices that
lead to the better approximation to a typical processing
of emotions in stage 2 will be used to implement a Social
StoryTM and Robot based intervention. The integrative
intervention will be tested on a sample of 54 autistic
children divided in 1 experimental group of 18 children
and 2 control group composed of 18 children each, and 18
TD children, between 9 and 11 years.

MATERIALS AND METHODS

Mexican Emotional Speech Database
First, it is necessary to characterize physical acoustic features of
voice recordings uttered with neutral and emotional prosodies
for Mexican Spanish language. The main objective of this stage
is to create a Mexican Emotional Speech Database (MESD)
encompassing adult male, female, and child voices.

Sample
Four healthy male, four healthy female adults (between 19
and 35 years), and eight healthy children (between 9 and 11
years) (Stathopoulos et al., 2011) will voluntary participate to
speech recordings. Participants will be excluded if they have been
diagnosed with any pathology that affects emotional behavior,
hearing, or speech, or present sickness traits affecting voice
timbre at the time of the study. Participants will be included if
they have grown up in Mexico in a cultural Mexican environment
(Mexican academic education and family environments) in order
to guarantee a Mexican-way of conveying emotions. Participants

will be recruited from a public announcement posted on
Tecnologico de Monterrey, Campus Monterrey.

MESD Speech Corpus Stimuli
Words for speech utterances will be selected from two sources:
the single-word corpus from the INTERFACE for Castilian
Spanish database (Hozjan et al., 2002; Emotional Speech
Synthesis Database, 2012), and the Madrid Affective Database for
Spanish (MADS; Hinojosa et al., 2016a,b). For the creation of
the MESD, the 24 isolated words that composed the INTERFACE
database will be selected and will repeat across emotions. Words
from MADS will be selected based on grammatical class and
ratings for valence, arousal, qualitative emotion (anger, disgust,
fear, happiness, neutral, and sadness), concreteness, familiarity,
frequency, and subjective age of acquisition. Specifically, all
words will be nouns or adjectives. Their subjective age of
acquisition will be strictly under 9-year-old. Valence and arousal
ratings of neutral words will be strictly greater than 4 but lower
than 6 (on a 9-point scale), whereas emotional words will be
selected to have valence and arousal ratings ranging from 1 to
4, or from 6 to 9. A rating superior to 2.5 (on a 5-point scale) for
a particular emotion will allow the qualitative categorization of
the word into anger, disgust, fear, happiness, or sadness. Words
from MADS will be selected in order to ensure that they will
be matched for concreteness, familiarity, and frequency ratings.
Words selection will be carried out separately for male, female,
and mean ratings for all subjects.

Statistical analysis will be used to guarantee that frequency,
familiarity, and concreteness are matched between neutral,
fear, disgust, happiness, sadness, and anger words. Values
obtained for each of these parameters will be analyzed separately
with one-way ANOVAs. Normality and homogeneity will be
assessed using Shapiro–Wilk and Bartlett tests, respectively.
In case of non-parametric distribution of the data, Kruskal–
Wallis test will be applied. Post hoc tests will be used to
statistically assess specific differences (Tukey after ANOVA,
Wilcoxon tests with p-value adjustment by Holm method
after Kruskal–Wallis). In case of significant differences between
emotions, outlier values will be identified, and corresponding
words will be eliminated until reaching no difference for all
of three parameters. We will consider outliers all ratings for
frequency, familiarity or concreteness outside the range defined
by percentiles 2.5 and 97.5.

Sample size estimation was calculated with G∗Power software
version 3.1.9.7 (Faul et al., 2007) for Cohen’s d effect size index of
0.8, statistical significance set at p < 0.05. Results indicated that 19
words in each emotion would be enough to provide an estimated
power of 0.92. The total speech corpus will be composed of 72
words per emotion (24 from INTERFACE and 48 from MADS).

As ratings might vary from Spanish to Mexican cultures
(Hinojosa et al., 2016a,b), cross-culture validation will proceed as
follows. Two questionnaires will be created using Survey Monkey
online Software. On one questionnaire, participants will have to
rate familiarity and concreteness; and on the other hand, they
will rate valence, arousal, and qualitative emotion (anger, disgust,
fear, happiness, neutral, or sadness). The 288 words selected from
MADS will be randomly assigned to four lists of 72 words for
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estimated 20–25 min questionnaires. All lists will be assigned to
both questionnaires. Questionnaires will start with participants
required to answer demographic questions about their age and
gender. Participants will be able to add an e-mail address if
they want to enquire about the research. Then, questionnaire
purposes and instructions (information about the rating of each
variable) will be explained. Instructions will be adapted from
the one proposed by Hinojosa et al. (2016a,b) and are detailed
in Table 1. Frequency of use will be taken from LEXMEX
(Silva-Pereyra et al., 2014).

Each word will be presented alone in a page, written in 18-
point Arial font. The variables to rate with their respective scale
will be placed below the word, so that the participant can answer.
Scales will be accompanied with labels of extreme values to allow
the participant retaining the direction of the polarity of the
dimensions. Familiarity will be the first variable to rate, so that
participants will not be biased from rating other variables for
the same word first. All items will include the optional answer,
“I do not know the meaning.” Each question will be able to be
answered once. The order of word apparition will be randomized
for each participant.

Mean and standard deviation scores for male, female, children,
and all together ratings will be calculated for each word. For
culture comparisons, one-way ANOVAs will be conducted for
each emotion and variable separately on words qualified as
referring to a specific emotion in both cultures. Sample size
estimation was calculated with G∗Power software version 3.1.9.7
(Faul et al., 2007) for Cohen’s d effect size index of 0.8, and
statistical significance set at p < 0.05. Results indicated that 34
participants in each category (adult male, adult female, and child)
would be enough to provide an estimated power of 0.90. For

TABLE 1 | Instructions for participants to rate words variables.

Variable Instructions

Familiarity It refers to how frequently you encounter the word in your
day-to-day language, including both written and oral forms.
Please rate familiarity in a 9-point scale, 1 being that you
very sparsely find the word in your ordinary language, and 9
being that the word is very frequent in your ordinary
language

Concreteness It refers to how concrete versus abstract you think a
concept is. For instance, “device” is an abstract concept
because it can refer to a wide set of objects, whereas “foot”
is a concrete word because it refers to only one specific
concept. Please rate concreteness using a 9-point scale: 1
being “very abstract,” 9 being “very concrete”

Valence It refers to how much you consider a concept
negative/aversive versus positive/attractive. Please rate
valence using a 9-point scale: 1 being “very negative,” 9
being “very positive”

Arousal It refers to the level of relaxation versus excitation a concept
generates. Please rate arousal using a 9-point scale: 1
being “very low arousal (very relaxing/calming),” 9 being
“very high arousal (very stimulating)”

Qualitative emotion Please rate the word according to how its concept could be
associated with the emotions: anger, disgust, fear,
happiness, and sadness. Use a 5-point scale, 1 being
“nothing at all,” and 5 being “extremely”

emotion comparisons in Mexican ratings, values obtained for
each variable will be analyzed separately with one-way ANOVAs.
Normality and homogeneity will be assessed using Shapiro–
Wilk and Bartlett tests, respectively. In case of non-parametric
distribution of the data, Kruskal–Wallis test will be applied. Post
hoc tests will be used to statistically assess specific differences
(Tukey after ANOVA, Wilcoxon tests with p-value adjustment
by Holm method after Kruskal–Wallis). In case of cross-cultural
differences, outlier values from both Spanish and Mexican ratings
will be identified, and corresponding words will be eliminated
until reaching no cultural difference, and no emotional difference
for Mexican ratings for all of three parameters (familiarity,
frequency, and concreteness). We will consider outliers all ratings
for frequency, familiarity or concreteness outside the range
defined by percentiles 2.5 and 97.5. The final speech corpus from
MADS will be composed of 144 words (24 per emotion), so that
the final MESD corpus will be composed of 48 words per emotion
(24 from INTERFACE and 24 from MADS).

Forty Mexican participants of each category (adult male, adult
female, and child) will voluntarily answer the questionnaires.
Adults will be aged between 19 and 35 years old, and children
between 9 and 11 years old. They will be excluded if they
have been diagnosed with any pathology that affects emotional
behavior. They will be included if that have grown up in Mexico
in a cultural Mexican environment (Mexican academic education
and family environments). Participants will be recruited via
public posted on Tecnologico de Monterrey, Campus Monterrey.

In all cases, significance will be set at p < 0.05. Statistical
analysis will be performed with R software (R Foundation for
Statistical Computing, Vienna, Austria).

Speech Recordings Elaboration and Procedures
Recordings will be carried out in a professional recording studio
using the following material: (1) a Sennheiser e835 microphone,
(2) a Focusrite Scarlett 2i4 audio interface connected to the
microphone with an XLR cable and to the computer, and (3)
the digital audio workstation REAPER (Rapid Environment for
Audio Production, Engineering, and Recording) will be used to
generate and record audio files that will be stored as a sequence
of 24-bit with a sample rate 297 of 48000 Hz.

Sessions will last approximately 1 h for adults and 30 min for
children. Adults will be asked to utter 288 words, that is 48 words
per emotion, being 24 coming from INTERFACE, and 24 coming
from MADS. Four children will utter the selected words from
MADS (for a total of 144 words), and four children will express
the words coming from INTERFACE (144 utterances). The order
of word corpora will be counterbalanced across adult sessions,
and emotions will be randomly distributed for both cases: adults
and children. Participants will be asked to read and get grips
with the entire word dataset and will be given as much time as
they require. Then, they will be instructed to read each 24-word
list with one of six emotional intonations: neutral, happy, angry,
sad, disgusted, or afraid. Children who will express words coming
from MADS will be presented with the corpora of words selected
based on mean ratings for all subject. Adults male and female
will utter words based on selection from mean ratings for males
and females, respectively. Participants will be asked to do their
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best possible to get into the emotional role. All words from a
particular emotion will be uttered successively to facilitate this
process. Participants will be asked to wait at least 5 s between two
utterances in order to focus before each recording.

Sound Processing and Analyses
Each word will be excerpted from the continuous recording of
each session to generate individual word audio files. Then, Praat
and Matlab R2019b will be used to extract acoustic features as
follows (Swain et al., 2018).

Prosodic features:

- Fundamental frequency, or pitch (Hz): mean and standard
deviation over the entire waveform.

- Speech rate: number of syllables per second.
- Root mean square energy (Volts): square root of mean

energy.
- Intensity (dB): mean and standard deviation over the entire

waveform.

Voice quality features:

- Jitter (%): it is an index of the periodic fluctuation
of fundamental frequency. Average absolute difference
between two consecutive periods, divided by the average
period (jitter local). Average absolute difference between a
period and the average of it and its four closest neighbors,
divided by the average period (jitter ppq5).

- Shimmer (%): it is an index of the periodic fluctuation of
the signal amplitude. Average absolute difference between
the amplitude of two consecutive periods, divided by
the average amplitude (shimmer local). Average absolute
difference between the amplitude of a period and its mean
amplitude and its four closest neighbors, divided by the
average amplitude (shimmer ppq5).

- Mean harmonic-to-noise ratio (dB): mean ratio of the
energy of the harmonics to the energy of the remaining
part of the signal. It will be calculated as described by Eqs 1
and 2:

If 99% of the signal is composed of harmonics and 1% is
noise, then:

Harmonic-to-noise ratio = 10 log10

(
99
1

)
= 20 dB (1)

Mean HNR between time point t1 and time point t2 is defined as:

Mean harmonic-to-noise ratio =
1

(t2 − t1)

t2
∫
t1

dt x(t) (2)

where x(t) is the harmonic-to-noise ratio (in dB) as a
function of time.

Spectral features:

- Mean first, second and third formants (Hz): mean and
bandwidth in center.

- Mel Frequency Cepstral Coefficients: 1–13.

In order to reduce inter-individual biases due to physical
anatomy (e.g., body corpulence), values from each parameter
extracted will be rescaled between 0 and 1 according to the max-
min normalization. The formula expressed in Eq. 3 will be used:

xnormalized =
x− minkj

maxkj− minkj
(3)

Where x is the value to be normalized, maxkj is the highest value
of acoustic feature k and minkj is the lowest value of k.

For emotion comparisons, a one-way ANOVA will be
applied on each acoustic feature and type of voice separately,
excepting MFCC coefficients. Normality and homogeneity will
be assessed using Shapiro–Wilk and Bartlett tests, respectively.
In case of non-parametric distribution of the data, Kruskal–
Wallis test will be applied. Post hoc tests will be used to
statistically assess specific differences (Tukey after ANOVA,
Wilcoxon tests with p-value adjustment by Holm method after
Kruskal–Wallis).

To evaluate the effect of controlling frequency, familiarity,
and concreteness, a Corpus (words selected from MADS versus
words selected from INTERFACE) × Emotions ANOVA will be
conducted on each acoustic features separately. Normality
and homogeneity will be assessed using Shapiro–Wilk
and Bartlett tests, respectively. In case of non-parametric
distribution of the data, a transformation will be performed.
Post hoc comparisons will be conducted to assess specific
differences (Tukey).

For culture comparisons, previously mentioned features will
be extracted also from INTERFACE database audio files for (1)
Anger, (2) Disgust, (3) Fear, (4) Joy, (5) Neutral/normal, and
(6) Sadness. Only the data from the INTERFACE word corpus
found in the MESD will be considered to allow comparisons
with the Castilian Spanish dataset. A repeated measures Cultures
(Spanish vs Mexican) × Emotions ANOVA will be performed
for each acoustic feature separately. Normality will be assessed
by Shapiro–Wilk test. In case of non-parametric distribution
of the data, a transformation will be applied. Mauchly’s test of
sphericity will be used to evaluate homogeneity of variances and
co-variances. In case of violation of sphericity, a Greenhouse-
Geisser correction will be applied in order to test main effects
significance. Post hoc comparisons will be conducted to assess
specific differences (Tukey).

For all analysis, level of significance will be set at p < 0.05.
Statistical analysis will be performed with R software.

Emotions Classification
Matlab R2019b will be used to carry out a supervised
learning analysis using a SVM predictive model on acoustic
features extracted from MESD and from INTERACE separately.
Hyperparameters will be adjusted to a cubic kernel function
and a box constraint level (soft-margin penalty) at 10. The
multiclass method (one-vs-one or one-vs-all) and the kernel scale
parameters will be set to “auto,” meaning that the algorithm
will be automatically optimized for both parameters according
to the dataset. The dataset will be divided into two groups:
training and validation, corresponding to 77 and 23% of the
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entire dataset, respectively. A stratified train/test split holdout
cross-validation method will be used, so that data training and
validation will present an equal number of words per emotion.
A dimensionality reduction using Principal Component Analysis,
explaining 95% of the variance were applied before classification
analysis (Liu et al., 2018).

The following parameters will be computed in order to
evaluate the classifier performance (Tharwat, 2020):

- Accuracy is the ratio between number of tuples correctly
classified and the total number of tuples.

- Precision represents the relation of the number of correctly
classified positive tuples against the total number of tuples
classified as positive, including true and false positives. It is
an index of exactness of the predictive model.

- Recall represents the relation of the number of positive
tuples correctly classified against the total number of
positive tuples, including true positives and false negatives.
It is an index of the completeness of the predictive model.

- F-score is the harmonic mean of precision and recall. It
reflects the balance between precision and recall.

A classification analysis will be applied individually on each
adult participant and male, and female recordings will analyzed
separately. The final dataset of the MESD will be created by
selecting for each emotion, the dataset from the participant who
the best F-score will be reached. This selection will allow to
approximate non-professionalism of actors biases compensation.
Classification analysis will be applied on the final 288-utterance
dataset of MESD.

For children datasets, a k-means clustering analysis will
be applied on features extracted for each emotion separately
(24 observations per participant, leading to six datasets of
192 observations). Squared Euclidean distance metric and
k-means++ algorithm for cluster center initialization will be
used. The optimized number of clusters will be assessed by
computing silhouette scores. The number of clusters that will
lead to the highest average silhouette score will be selected. In
each cluster, utterances of words coming from INTERFACE word
corpus (four participants) and MADS (four participants) will be
considered separately. For utterances of both word corpora, the
number of observations of each participant in each cluster will
be computed. Pairs of participants (one who uttered words from
MADS, and one who uttered word from INTERFACE) will be
assessed in each cluster by considering the participant of highest
number of observations for each corpus. As a result, each pair of
participants will be composed of 288 utterances (48 per emotion,
including 24 of words from INTERFACE word corpus and 24 of
words from MADS). A classification analysis will be carried out
on data from each resulting pair. The final dataset of the MESD
will be created by selecting for each emotion, the dataset from
the pair of participants for which the best F-score will be reached.
A classification analysis will be applied on the final 288-utterance
dataset of MESD.

For the MESD database to be validated, we expect to observe
approximately the same classification performance for both
MESD and INTERFACE database.

Synthesized and Human Emotional
Utterances Processing in Autistic
Children
This stage of the research aims to edit speech auditory files
previously recorded in the first stage in order to synthesize
“less natural” voices that would help to approximate a typical
emotional processing in autistic children. First of all, naturalness
in speech signals will be defined by analyzing standard and neural
synthesized voices coming from IBM R© Watson text-to-speech
system. Their acoustic parameters will be statistically compared
to human voice recordings from Stage 1. Analyzed features
will cover spectral characteristics, intensity, and duration. Then,
frequencies will be filtered, intensity and total duration of speech
files will be edited in order to create five types of synthesized
voices that correspond to five levels of naturalness: level 1 will
be the less natural voice (i.e., approximates standard synthesized
voice from IBM R© Watson text-to-speech system) and level 5 will
be the more natural voice (i.e., approximates human speech).
Human and synthesized voices will be further listened and
processed by autistic children and matched TD controls while
behavioral responses and EEG activity will be registered. Finally,
the one synthesized voice processed by autistic participants that
will lead to the nearest to human speech EEG processing by
controls will be selected for the third stage of the research. The
process of Stage 2 is illustrated in Figure 1 and detailed as follows.

Standard and Neural Speech Files Acquisition
The IBM R© Watson text-to-speech system will be used to generate
audio files for further analysis. This application proposes a
neutral North-American Spanish female voice that will be used
in its two versions: standard and enhanced. The former is created
by a concatenative synthesis that uses previously recorded speech
10–100 ms segments which represent units that are assembled
according to the input text. Discontinuities generated by the
process of assemblage lead to a partial degradation of speech
naturalness. On the other hand, enhanced or neural synthesized
voices are created by Deep Neural Networks able to predict
speech acoustic features trained on human speech. This method
leads to greater level of naturalness in the output signal (see Baird
et al., 2017 for more details about voices synthesis methods). At
this stage, neutral words from MESD (MADS corpus) will be
entered in the text-to-speech application and their standard and
enhanced corresponding audio signals will be downloaded.

“Naturalness in Voice” Characterization
Spectral, intensity and duration features (extracted parameters
will be the same than the ones extracted in stage 1) of audio
signals from standard, neural and human voices will be extracted.
As standard and neural synthesized voices are female and neutral,
the human adult female voices with neutral prosody will be
used for comparisons. A statistical analysis will be carried out
to compare those voices and explore tendencies of acoustic
characteristics from standard to neural to human voices. One-
way ANOVAs will be conducted for voices comparisons on each
extracted parameter separately. Normality and homogeneity will
be assessed using Shapiro–Wilk and Bartlett tests, respectively. In
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FIGURE 1 | Process of Stage 2. TD, Typically developed.

case of non-parametric distribution of the data, Kruskal–Wallis
test will be applied. Post hoc comparisons will be conducted to
assess specific differences (Tukey procedure in case of ANOVA,
Wilcoxon tests with p-value adjustment by Holm method in case
of Kruskal–Wallis test). Statistical analysis will be performed with
R software and level of significance set at p < 0.05.

Sample size estimation was calculated with G∗Power software
version 3.1.9.7 (Faul et al., 2007) for Cohen’s d effect size index of
0.9, statistical significance set at p < 0.05. Results indicated that 22
words in each voice type (standard, enhanced, and human) would
be enough to provide an estimated power of 0.91. As a result, 24
words per voice type will be used.

Creation of Five Levels of Naturalness for Emotional
Speech
Once acoustic features tendencies across naturalness levels will
be defined, audio files from emotional human voices recordings
will be edited in order to reduce naturalness in those speech
signals. Spectral content will be filtered, intensity level and total
duration (speech rate) will be adjusted. Acoustic signals edition
will be realized using Matlab. For instance, if less naturalness
is characterized by higher levels of harmonics-to-noise ratio
[human speech is a noisy and continuous signal (Zatorre and
Baum, 2012)], then frequencies that are not harmonics will be
filtered. The edition of the signal will be applied on previously
recorded in Stage 1 audio files for adult male, female, and
children voices. Anger, fear, sadness, disgust, happiness, and
neutral acoustic signals will be similarly adjusted. Naturalness

will be progressively reduced to generate five different levels:
from level 1: the less natural to level 5: the more natural voice.
Level 1 will correspond to a 95% removal of naturalness, levels
2–5 will correspond to a 76, 57, 38, and 19% diminution,
respectively. In accordance with this example, if less naturalness
is characterized by higher levels of harmonics-to-noise ratio,
then 95% of frequencies that are not harmonics will randomly
be filtered for level 1, 76, 57, 38, and 19% of non-harmonics
frequencies will be filtered for levels 2–5, respectively. All features
defined as being part of naturalness characterization will be
edited simultaneously.

Statistical analyses will be used to ensure that levels 1–5
and human voice differ as regard the acoustic parameters
edited. Values obtained for each voice and emotion (e.g.,
adult male/anger, adult female/happiness, etc.) will be
analyzed separately with one-way ANOVAs. Normality and
homogeneity will be assessed using Shapiro–Wilk and Bartlett
tests, respectively. In case of non-parametric distribution of the
data, Kruskal–Wallis test will be applied. Post hoc comparisons
will be conducted to assess specific differences (Tukey after
ANOVA, Wilcoxon tests with p-value adjustment by Holm
method after Kruskal–Wallis). In case of no statistical difference
between levels, percentages of diminution of naturalness will
be adjusted. Levels must differ for all parameters implicated in
naturalness characterization.

Sample size estimation was calculated with G∗Power software
version 3.1.9.7 (Faul et al., 2007) for Cohen’s d effect size index
of 0.9, statistical significance set at p < 0.05. Results indicated
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that 17 words in each level would be enough to provide an
estimated power of 0.92.

As all emotions will be edited similarly, relations between
emotions will be preserved [e.g., stage 1 would highlight
that harmonics-to-noise ratio for happiness > harmonics-to-
noise ratio for sadness (Scherer et al., 2011)]. Therefore, the
differentiation between emotions will not be affected by editing
the level of naturalness of the voice. However, statistical analyses
will be applied to verify this assumption after voices synthesis.
For comparisons between emotions, values obtained for acoustic
features listed in stage 1 will be analyzed for each voice separately
with one-way ANOVAs. Normality and homogeneity will be
assessed using Shapiro-Wilk and Bartlett tests, respectively. In
case of non-parametric distribution of the data, Kruskal-Wallis
test will be applied. Post-hoc comparisons will be conducted to
assess specific differences (Tukey after ANOVA, Wilcoxon tests
with p-value adjustment by Holm method after Kruskal–Wallis).

Sample size estimation was calculated with G∗Power software
version 3.1.9.7 (Faul et al., 2007) for Cohen’s d effect size index
of 0.8, statistical significance set at p < 0.05. Results indicated
that 19 words in each emotion would be enough to provide an
estimated power of 0.92.

In all cases, statistical analysis will be performed with R
software and level of significance will be set at p < 0.05.

Passive Oddball Paradigm
Emotional and neutral words uttered by human voices recorded
in stage 1 and synthesized voices created in stage 2 will
be displayed to the participant. During the EEG recording,
participants will sit on an armchair while watching a silent
movie and will be instructed to pay no attention to the auditive
stimuli. To facilitate the comparison of naturalness levels, six
stimulus blocks will be created, each containing 600 stimuli
corresponding to one of the five levels, or the human voice. Each
block will consist of 480 frequently presented neutral-uttered
standard stimuli (80%), and occasional 24 anger (4%), 24 disgust
(4%), 24 fear (4%), 24 happiness (4%), and 24 sadness (4%)
deviant stimuli. Standard and deviant stimuli will be equally
uttered with a male, woman, or child voice. The stimuli will be
presented pseudo-randomly with deviant stimuli being preceded
by at least two standard stimuli. Each participant will listen to
three blocks for an approximatively 30-min task. The stimulus
sequences for each block will be fixed, and the order of blocks
will be counterbalanced and randomized between participants.
The stimulus onset asynchrony will be of 1,300 ms. The stimuli
will be presented at 60 dB via the Shure SRH1840 audio headset
that has a flat response frequency response in order to accurately
reproduce the input audio signal. Autistic participants will be
accompanied by their parent if necessary.

EEG Recording and Processing
Electroencephalographic signals will be recorded with a 10/20
International System with 24 channels (Greentek Gelfree S3,
mBrain Train) with a sampling rate of 500 Hz into a bandwidth
between 0.1 and 100 Hz. EEG Lab toolbox from Matlab will be
used to preprocess and process the data. Before data analysis, the
signal will be referenced to the average between left and right

mastoids. Electrode impedance will be kept below 5 k�. EEG
data will be epoched over a window time of 1,100 ms, including
a pre-stimulus 100 ms for baseline correction. A High-pass filter
of 0.1 Hz and a low-pass filter of 50 Hz will be applied before
epoching. The removal of eye movements and muscle artifacts
will be based on the independent component analysis method
using the ICLabels plug-in of EEG Lab. Epochs with a voltage
exceeding 100 µV will be removed from data analysis.

Data Analysis
For ERP amplitude analysis, electrodes will be grouped according
to regions of interest (ROIs). Left prefrontal site: FP1. Left frontal
channels: F3, F7. Right prefrontal site: FP2. Midline pre-frontal
site: AFz. Midline frontal electrode: Fz. Right frontal channels:
F4, F8. Left temporal site: T7. Left central electrode: C3. Midline
central electrode: Cz. Right temporal site: T8, Right central
electrode: C4. Centro-parietal electrode: CPz. Left parietal sites:
P3, P7. Midline-parietal electrode: Pz. Right parietal sites: P4, P8.
Midline parieto-occipital electrode: POz. Left occipital site: O1.
Right occipital site: O2. Maximum peak time window analysis
will be: 100–250 ms for the MMN (Kujala et al., 2007; Paris et al.,
2018), 170–230 ms for P200 component (Paulmann et al., 2013),
200 and 350 ms for the P3a (Kujala et al., 2007; Paris et al., 2018),
and 400–1,000 ms for the LPP component (Steber et al., 2020).

Event-Related Potentials will be extracted by averaging the
data obtained for standard and deviant stimuli, and for each
condition independently. The ERPs elicited by standard stimuli
will be subtracted from the ERPs elicited by deviants to
calculate difference waves. The mean ERPs amplitude will be
calculated as follows. For standard stimuli, level of naturalness
and group average peak latencies will be determined from all
ROIs. Mean amplitudes will be determined by considering a±50-
ms time window centered at the grand mean peak latency. For
deviant stimuli, mean amplitudes will be calculated from the
difference waves at ROIs. Mean amplitudes will be determined by
considering a ±50-ms time window centered to the grand mean
peak latency (Kujala et al., 2007; Paris et al., 2018).

Statistical analysis
The statistical significance of ERP components will be tested by
comparing their mean amplitudes to zero at ROIs using one-
sample t-tests. This method will allow us to focus exclusively
on significant responses, and to distinguish significant scalp
distributions from noise. Statistically significant ERPs will be
considered for further amplitude analysis.

For standard stimuli, levels of naturalness comparisons
will be performed by Level × ROI repeated measures
ANOVAs on each ERP and group independently. For deviant
stimuli, Level × ROI × Deviant repeated measures ANOVAs
will be performed.

Group comparisons will be conducted by Group × ROI
repeated measures ANOVAs on each ERP and level of naturalness
separately, for standard stimuli. Similarly, for deviant stimuli,
Group × ROI × Deviant repeated measures ANOVAs will
be performed. The effect of reducing the naturalness of voice
on emotion processing will be assessed by the comparison
between ERPs amplitudes at levels 1–5 for ASD group and ERPs
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amplitudes calculated in the control group for human voices.
We expect to detect less natural voices to help typical processing
in ASD children, that is, fewer difference with non-pathological
processing of human voices at least natural voices. Based on
MMN analysis at maximum peak ROI, the voice leading to the
nearest to non-pathological processing in autistic children will be
chosen for Stage 3.

Scalp distribution comparisons for standard stimuli will be
assessed by Group × Laterality (FP1, F3, F7, T7, C3, P3, P7,
O1/AFz, Fz, CPz, Cz, POz, Pz/FP2, F4, F8, T8, C4, P4, P8, O2)
repeated measures ANOVAs on each ERP and level of naturalness
separately. For deviant stimuli, Group × Laterality × Deviant
repeated measures ANOVAs will be conducted.

For all amplitude analysis, normality will be assessed by
Shapiro–Wilk test. In case of non-parametric distribution
of the data, a transformation will be applied. Mauchly’s
test of sphericity will be used to evaluate homogeneity of
variances and co-variances. In case of violation of sphericity,
a Greenhouse-Geisser correction will be applied in order to
test main effects significance. Post hoc comparisons will be
conducted to assess specific differences (Tukey and Dunnett
procedures). In all cases, level of significance will be set
at p < 0.05 and statistical analysis will be performed
with R software.

Participants
Typically developed participants will be recruited from a public
announcement posted on Tecnologico de Monterrey, Campus
Monterrey. Autistic participants will be recruited by contacting
parents of autistic children attending San Jose Hospital from
Tecnologico de Monterrey.

Sample size estimation was calculated with G∗Power software
version 3.1.9.7 (Faul et al., 2007) for Cohen’s d effect size index
of 0.8, correlations among repeated measures of 0.5, statistical
significance set at p < 0.05. For level comparisons, results
indicated that 20 participants in each group would be enough
to provide an estimated power of 0.90. For group comparisons,
results indicated that 38 participants in each group would be
enough to provide an estimated power of 0.91.

Forty high-functioning autistic volunteers aged 9 to 11-year-
old will be involved in this stage of the research. All autistic
participants will be diagnosed by a clinician according to DSM-
V (Diagnostic and Statistical Manual of Mental Disorders,
Fifth Edition) (American Psychiatric Association, 2013) or the
International Classification of Diseases and Related Health
Problems – Tenth Edition (World Health Organization, 1994)
criteria. Autistic symptomatology will be assessed by the Autism
Spectrum Rating Scales (ASRS) – parent report (Goldstein,
2012). A T-score greater than 60 (slightly elevated to very
elevated scores for autistic behaviors) on Social/Communication,
DSM-IV-TR (Text Revision), Peer and Adult Socialization and
Social/Emotional Reciprocity domains will be considered as an
inclusion criterion.

In addition, 40 TD volunteers aged 9 to 11-year-old will be
included in this study. Similar to autistic children, ASRS will
be used, and children with a score inferior to 60 in all scales
will be included.

Any TD or autistic participant will be excluded if child:

• is under medication affecting the central or peripherical
nervous system,
• has hearing loss or deficits, and/or
• has history of a developmental pathology and/or any

disease affecting behavior and nervous system, apart from
ASD for autistic participants.

An Intervention Based on Social
StoriesTM, Synthesized Voices and
Interactions With NAO
This last stage of the research aims to implement the use
of the synthesized voice selected in Stage 2 in a 2-week
intervention for autistic children. The intervention will aim to
train emotions differentiation skills when triggered by prosody
and will implement the Social StoryTM method while interacting
with a social robot (NAO). Pre- and follow-up intervention
assessments will be conducted using the ASRS questionnaire –
parents form, completed with EEG and behavioral correlates of
emotions differentiation. Considering the 4-week sensitivity of
the ASRS questionnaire, mid- and end-intervention assessments
will only be conducted by EEG and behavioral data analysis.
A substantial improvement in social and emotional skills at end
and follow-up assessments is expected.

Intervention
The intervention will consist of six-time per week sessions
for 2 weeks conducted in a one-to-one format. Each session
will last approximatively 10 min and will be composed of two
Social StoriesTM: one general and one specific. General Social
StoriesTM will describe and compare all emotions. Specific ones
will describe only one emotion. At the end of the first week,
the child will have been presented with a specific story for
each emotion and three different general stories. During the
second week, the same stories will be repeated in a different
order. Presentation order will be random and different for each
participant. The stories will be uttered by NAO social robot
that will be previously programmed using Choregraphe software
(Femmam, 2017). Emotional and neutral speech will be uttered
using the synthesized voiced selected in Stage 2. Each Social
StoryTM will be written to train emotion differentiation and
recognition through prosody (please see section “Social StoriesTM

Elaboration” for more details and Supplementary File 1 for
an example of a Social StoryTM). Questions about the emotion
conveyed will be asked to the participant. Correct responses will
lead to a social reinforcement (e.g., “Well done!” ∗in Spanish∗
saying with a happy prosody and synthesized voice). Incorrect
or absence of response will result in repeating the part of the
story that contains the information necessary to answer the
question. Then the question will be asked again, and a correct
answer will lead to a social reinforcement. In case of incorrect
answer, the correct answer will be told by the robot. In case
of correct answers, the robot will specify that in daily life, this
emotion may not be uttered by the synthesized voice but will
be better uttered by his entourage with a more natural voice.
Then the robot will repeat the same emotional utterance with the
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human voice and ask which emotion is conveyed. Again, correct
responses will lead to social reinforcement. Incorrect or absence
of response will result in repeating the part of the story that
contains the information necessary to answer the question. Then
the question will be asked again, and a correct answer will lead to
a social reinforcement. In case of incorrect answer, the correct
answer will be told by the robot. Each session will start with
robot NAO friendly inviting the participant to play the “emotion
game” and explaining the instructions. Robot’s movements and
eye lighting will only be programmed for this part. During Social
StoriesTM, NAO will remain still in order to focus the child’s
attention to the auditive information. All session long, NAO
will be remotely controlled by the researcher with a Wizard-Of-
Oz method using the Graphical User Interface provided by the
system (Cao et al., 2019).

Outcome Measures
ASRS questionnaire
The ASRS questionnaire is a standardized, reliable and validated
set of questions targeted to parents or teachers of autistic
people aged between 2 and 18 years to measure their autistic
symptomatology (Simek and Wahlberg, 2011). It presents several
advantages for its use in research (Goldstein, 2012). First, a wide
range of autistic social and emotional behaviors are assessed,
so that it makes the evaluation of generalization of learning to
other social domains possible. Second, the scores provided are
based on a normative TD sample, thus it considers the autism
spectrum as a continuum with the general population making
possible the comparison with a TD control group. The full-length
version for 6–18 years old children and youths is composed of 71
items divided in three scales: ASRS scale, DSM-IV, and Treatment
Scale. A 4-level scale is presented to the rater in order him to
specify how often a particular behavior is used to be observed
in the child or youth that is evaluated. Higher scores indicate
higher symptoms severity according to the rater. In this study,
a particular focus will be dedicated to Social/Communication,
DSM-IV-TR, Peer and Adult Socialization and Social/Emotional
Reciprocity domains. Parents of both groups will answer this
questionnaire on pre-intervention (1st session) and follow-up
sessions (2 and 6 weeks after the end of the intervention).

Behavioral assessments
At pre- (1st session), mid- (7th session), end- (13rd session),
and follow-up sessions (2 and 6 weeks after the end of the
intervention), participants will be asked to answer the following
behavioral task. It will consist of one block of stimulus pairs
containing 244 pairs that will be presented at 60 dB via the Shure
SRH1840 audio headset. The stimulus pair will be composed of
either identical stimuli (50%; two neutral stimuli), or different
stimuli [one neutral and one of the emotional deviants (50%;
anger (10%), disgust (10%), fear (10%), happiness (10%), or
sadness (10%)]. Fifty percent of pairs that contain a deviant
stimulus will be composed of 1 neutral followed by 1 emotional
stimulus, and 50% will be composed of 1 emotional followed
by 1 neutral stimulus. Word pairs will be equally uttered with
a male, woman, or child voice. The within-pair stimulus onset
asynchrony will be 1,300 ms, and the between-pair stimulus onset

asynchrony will be 2,600 ms. The order of stimulus pairs will
be randomized between participants, but the stimulus sequence
will be fixed. During this approximately 20-min task, participants
will have to answer by pressing previously instructed keys on
a laptop keyboard, if the emotional prosody of both stimuli of
each pair will be the same or different. If they choose different,
they will have to mention the emotion conveyed by the deviant
(anger, disgust, fear, happiness, or sadness). Reaction times
and correct/incorrect answers will be recorded. To make sure
that the participant understands the task, three training trials
will be presented before the test. Autistic participants will be
accompanied by their parent if necessary.

EEG assessments
After behavioral assessment at pre- (1st session), mid- (7th
session), end- (13rd session), and follow-up sessions (2 and
6 weeks after the end of the intervention), EEG data will be
recorded while participants listen to a passive oddball paradigm.
Emotional and neutral words uttered by human voices recorded
at Stage 1 will be displayed to the participant. During the EEG
recording, participants will sit on an armchair while watching
a silent movie and will be instructed to pay no attention to
the auditive stimuli. One stimulus block containing 1,200 words
will be presented for an approximately 20-min paradigm. It
will consist of 960 frequently presented neutral-uttered standard
stimuli (80%), and occasional 48 anger (4%), 48 disgust (4%),
48 fear (4%), 48 happiness (4%), and 48 sadness (4%) deviant
stimuli. Standard and deviant stimuli will be equally uttered with
a male, woman, or child voice. The stimuli will be presented
pseudo-randomly with deviant stimuli being preceded by at
least two standard stimuli. The stimulus sequence will not vary
between participants. The stimulus onset asynchrony will be
of 1,300 ms. The stimuli will be presented at 60 dB via the
Shure SRH1840 audio headset. Autistic participants will be
accompanied by their parent if necessary.

Electroencephalographic recording and processing will follow
the same methodology as the one described in section “EEG
Recording and Processing.”

Social StoriesTM Elaboration
Figure 2 illustrates the process that will be used to generate the
Social StoriesTM before their use in the intervention.

Content
Social StoriesTM content will follow the ten criteria established
by Gray (2015).Three general Social StoriesTM and six specific
patterns will be initially written and will serve as basis for further
child personalization. According to Carol Gray, each social story
will contain three types of information: “The News,” “Ways to
Think About The News,” and “Connections and Implications.”
The News is an objective description of the social scenario that
is trained. Ways to Think About The News is an indication
of how managing The News adequately. Finally, Connections
and Implications reference past, present, and future concrete
examples of the social scenario that is trained in order to
foster understanding and future correct behavior. Each Social
StoryTM will be composed of an introduction, body part, and
conclusion (Pane et al., 2015) in order to unsure a structured
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FIGURE 2 | Process for Social StoriesTM elaboration before their use in
intervention. TD, Typically developed.

and logic design. Considering the age of the participants,
Social StoriesTM will be made of at least 12 first and third-
person perspective sentences that can be descriptive, perspective,
coaching, affirmative, partial, or interrogative (Gray, 2015). To
reach personalization to the child, relevant information about the
child (e.g., interests, emotional usual behaviors) will be previously
gathered by communicating with the parents. Then, three general
and six specific Social StoriesTM will be written for each child.
After writing them, they will be sent to the parents who will
be asked if they wish to modify their content in order to foster

the personalization to their child. Also, the child and parents
will be free to add one or two sentences based on personal
experience that would help to remember the information. Please
see Supplementary Files 1, 2 for examples of a Social StoryTM

and questions for the parents, respectively.

Recording and edition
Personalized and initial patterns of Social StoriesTM, and all
other robot speech will be recorded from volunteer actors: one
adult male, one adult female, and one child, depending of the
characteristics of the synthesized voices selected in Stage 2.
They will be asked to read and get grips with the entire set
of utterances and will be given as much time as he/she needs.
Then he/she will be instructed to read each utterance with an
adequate intonation. The emotional or neutral prosodies will be
specified across the text. Participants will be asked to do their
best possible to get into the emotional role. All specific utterances
from a particular emotion will be uttered successively in order to
facilitate this process. Participants will be asked to wait at least
5 s between two readings in order to focus before each recording.
The recording material and environment will be the same than
the one described in Stage 1.

Neutral and emotional synthesized speech uttered by the robot
during the intervention will be obtained by editing acoustic
features of the previous recordings in order to reach the same
characteristics as neutral and emotional voices selected in Stage
2. The same methodology for synthesized voices creation as the
one described in Stage 2 will be followed. The frequency response
of the acoustic signal that comes from the robot’s speaker will be
computed using Matlab. The frequency response will determine
the deformation of the intensity of the sound by the speaker as a
function of frequencies. Audio signals will be edited in order to
compensate this bias generated by the speaker.

Validation
The previously created Social StoriesTM will be checked for
adequacy regarding the understanding of emotions conveyed.
TD children will take part to the validation task procedure.
Participants will interact with NAO which will tell the Social
StoriesTM with the adequate emotional prosody (please see
Supplementary File 1 for an example of the prosody variations
across a Social StoryTM) uttered by the human voice from
original recordings after the robot speakers frequency response
compensated. For each story, the number of correct recognitions
of emotions (correct/incorrect answers to the questions inserted
in the story) will be counted. Before the beginning of the task,
instruction will be explained. Particularly, it will be told to the
participants that the stories are personalized for another child,
so that they do not have to consider personalized sentences as
directed to them. However, their task will be to answer the robot
question about which emotion will be conveyed by the prosody.
Correct responses will lead to social reinforcement. Each story
and question will be told once to the participant. Each participant
will listen to nine Social StoriesTM (patterns for three general and
six specific stories) for an approximate 45-min session.

For number of correct/incorrect responses comparisons, a
one-way ANOVA will be conducted for each Social StoryTM
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separately. Normality and homogeneity of variances will be
assessed by Shapiro–Wilk and Bartlett tests, respectively. In case
of non-parametric distribution of the data, Kruskal–Wallis test
will be applied. Post hoc comparisons will be conducted to assess
specific differences (Tukey after ANOVA, Wilcoxon tests with
p-value adjustment by Holm method after Kruskal–Wallis). Level
of significance will be set at p < 0.05. If a Social StoryTM does not
reach significance, it will be modified and validated again.

Data Analysis
Statistical analysis on ASRS scores
Group comparisons will be conducted by one-way ANOVAs
on T-scores for each assessment session and symptom
domain (Social/Communication, DSM-IV-TR, Peer and Adult
Socialization, and Social/Emotional Reciprocity) separately.

Time comparisons (between assessment sessions) will
be tested by one-way ANOVAs on T-scores for each group
and symptom domain (Social/Communication, DSM-IV-
TR, Peer and Adult Socialization and Social/Emotional
Reciprocity) separately.

Normality and homogeneity of variances will be assessed
by Shapiro-Wilk and Bartlett tests, respectively. In case of
non-parametric distribution of the data, Kruskal-Wallis test
will be applied. Post-hoc comparisons will be conducted to
assess specific differences (Tukey procedure in case of ANOVA,
Wilcoxon tests with p-value adjustment by Holm method in case
of Kruskal–Wallis test).

Statistical analysis on behavioral data
Group comparisons of reaction times will be conducted by a
Group × Stimulus (neutral, anger, disgust, fear, happiness, or
sadness) repeated measures ANOVAs on each assessment session
separately. Time comparisons will be conducted by Assessment
Session × Stimulus on each group separately. Normality of
reaction times will be assessed by Shapiro–Wilk test. In case of
non-parametric distribution of the data, a transformation will
be applied. Mauchly’s test of sphericity will be used to evaluate
homogeneity of variances and co-variances. In case of violation
of sphericity, a Greenhouse-Geisser correction will be applied in
order to test main effects significance. Post-hoc comparisons will
be conducted to assess specific differences (Tukey procedure).

Group comparisons of number of correct answers will be
conducted by one-way ANOVAs for each deviant and assessment
session separately. Time comparisons (between assessment
sessions) will be tested by one-way ANOVAs on number of
correct answers for each deviant and each group separately.
Normality and homogeneity of variances will be assessed by
Shapiro–Wilk and Bartlett tests, respectively. In case of non-
parametric distribution of the data, Kruskal–Wallis test will be
applied. Post hoc comparisons will be conducted to assess specific
differences (Tukey after ANOVA, Wilcoxon tests with p-value
adjustment by Holm method after Kruskal–Wallis).

ERPs
For ERP amplitude analysis, electrodes will be grouped according
to ROIs described in section “Data Analysis.” Maximum peak
time windows used for data analysis of ERPs will be identical to

the one mentioned in section “Data Analysis.” MMN, P200, P3a,
LPP will be under study.

Event-Related Potentials will be extracted by averaging the
data obtained for standard and deviant stimuli, and for each
condition independently. The ERPs elicited by standard stimuli
will be subtracted from the ERPs elicited by deviants to calculate
difference waves. The mean ERP amplitude will be calculated
as follows. For standard stimuli, group and assessment session
average peak latencies will be determined from all ROIs for
TD and ASD separately. Mean amplitudes will be determined
by considering a ±50-ms time window centered to the grand
mean peak latency. For deviant stimuli, mean amplitudes will be
calculated from the difference waves at ROIs. Mean amplitudes
will be determined by considering a ±50-ms time window
centered to the grand mean peak latency (Kujala et al., 2007;
Paris et al., 2018).

Statistical analysis on ERPs data
The statistical significance of ERP components will be tested by
comparing their mean amplitudes to zero at ROIs using one-
sample t-tests. This method will allow us to focus exclusively
on significant responses, and to distinguish significant scalp
distributions from noise. Statistically significant ERPs will be
considered for further amplitude analysis.

Group comparisons will be conducted by Group × ROI
repeated measures ANOVAs on each ERP and assessment
session separately, for standard stimuli. Similarly, for deviant
stimuli, Group × ROI × Deviant repeated measures ANOVAs
will be performed.

For standard stimuli, time comparisons will be conducted
by Assessment Session × ROI repeated measures ANOVAs
on each ERP and group separately. For deviant stimuli,
Assessment Session × ROI × Deviant repeated measures
ANOVAs will be performed.

Scalp distribution comparisons for standard stimuli will be
assessed by Group × Laterality (FP1, F3, F7, T7, C3, P3, P7,
O1/AFz, Fz, CPz, Cz, POz, Pz/FP2, F4, F8, T8, C4, P4, P8, O2)
repeated measures ANOVAs on each ERP and assessment session
separately. For deviant stimuli, Group × Laterality × Deviant
repeated measures ANOVAs will be conducted.

For all amplitude analysis, normality will be assessed by
Shapiro–Wilk test. In case of non-parametric distribution of
the data, a transformation will be applied. Mauchly’s test of
sphericity will be used to evaluate homogeneity of variances and
co-variances. In case of violation of sphericity, a Greenhouse-
Geisser correction will be applied in order to test main effects
significance. Post hoc comparisons will be conducted to assess
specific differences (Tukey procedure).

All statistical analysis will be performed with R software. Level
of significance will be set at p < 0.05.

Participants
Typically developed participants will be recruited from a public
announcement posted on Tecnologico de Monterrey, Campus
Monterrey. ASD participants will be recruited by contacting
parents of autistic children attending San Jose Hospital from
Tecnologico de Monterrey.
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Social StoriesTM and robot utterances recordings
Participants will be healthy TD volunteers. Adults will be aged
19–35 and children will be aged 9–11 years old. One participant
for each type of voice will be included (e.g., one adult male). The
same inclusion and exclusion criteria than the one described in
Stage 1 will be followed.

Validation of Social StoriesTM

Sample size estimation was calculated with G∗Power software
version 3.1.9.7 (Faul et al., 2007) for Cohen’s d effect size index of
0.8, statistical significance set at p < 0.05. Results indicated that
34 participants would be enough to provide an estimated power
of 0.90. Therefore, 40 healthy TD aged between 9 and 11 years old
will volunteer. Participants will be excluded if they have a clinical
history of any pathology that affects emotional behavior, hearing,
or speech at the time of the study.

Intervention
Autistic and TD participants involved in this study will have to
meet the same criteria than those described in Stage 2. However,
participants from Stage 2 will not be included in Stage 3 in order
to avoid any bias elicited by a former exposition to the synthetic
voices under study.

Sample size estimation was calculated with G∗Power software
version 3.1.9.7 (Faul et al., 2007) for Cohen’s d effect size index of
0.8, correlations among repeated measures of 0.5, and statistical
significance set at p < 0.05. For ERP analysis, results indicated
that 13 participants in each group would be enough to provide
an estimated power of 0.92 for group comparisons, and 11
participants in each group would be enough to provide an
estimated power of 0.91 for assessment sessions comparisons.
For behavioral analysis on reaction times, results indicated that
13 participants in each group would be enough to provide
an estimated power of 0.91 and seven participants in each
group would be enough to provide an estimated power of 0.93
for assessment sessions comparisons. For behavioral analysis
on number of correct/incorrect answers, results indicated that
18 participants in each group would be enough to provide
an estimated power of 0.92 for group comparisons, and 15
participants in each group would be enough to provide an
estimated power of 0.90 for assessment sessions comparisons
(Cohen’s d effect size index of 0.8, statistical significance set
at p < 0.05). For behavioral analysis on ASRS scores, results
indicated that 16 participants in each group would be enough to
provide an estimated power of 0.92 and 18 participants in each
group would be enough to provide an estimated power of 0.90
for assessment sessions comparisons.

A total of 72 participants will take part to this Stage and will be
divided in four groups:

• Group 1: autistic children receiving robot, synthesized and
human voices intervention (18 participants).
• Group 2: autistic children receiving robot and human voice

intervention (18 participants).
• Group 3: autistic children without receiving intervention

(18 participants).
• Group 4: TD children without receiving intervention (18

participants).

Group 1 will be the experimental group and groups 2–4
will be controls. Children from group 2 will receive the same
intervention as children from group 1, with the exception of
the use of human voices only. This group will help to evaluate
the efficacy of the use of synthesized voices in the intervention.
Autistic participants will be randomly assigned to any of groups
1, 2 or 3. All four groups will be included in pre-, mid-, end and
follow-up assessments.

DISCUSSION

This project of investigation aims to fulfill three main gaps of
the current scientific literature. First, acoustic parameters from
Castilian and Mexican Spanish will be analyzed in order to
validate a newly formed emotion speech database for Mexican
Spanish and to highlight cross-cultural differences in the way of
expressing emotions by prosody. The first issue was to determine
which acoustic features should be considered to optimize the
distinction from one emotion to another. As no reliable set
of acoustic features exists yet, a literature review of prosodic
emotional speech parameters was conducted. MFCC coefficients
were the most usually extracted features for machine learning
applications. This analysis consists of computing the log values
of a linear cosine transform of spectral parameters on a Mel
scale, thus considering the human particularities of frequency
responses (Caballero-Morales, 2013). Other recurrent spectral
features were the pitch (fundamental frequency), formants, jitter,
shimmer and harmonics-to-noise ratio (Swain et al., 2018).
Formants are high-energy frequencies acoustic resonances of the
vocal tract (Gelfand, 2009). They are generally labeled F1, F2,
F3, and so on, from the lowest formant to the highest: the first
three- formants are usually extracted for emotions discrimination
(Kamińska, 2019). Jitter and shimmer refer to a period-to-period
fluctuation of the pitch and the energy, respectively (Arruti et al.,
2014). The harmonics-to-noise ratio considers the energy of
the harmonics according to the one of other frequencies. It is
directly correlated to the voice quality according to breathiness
and roughness and is a principal component to characterize
human voices (Arruti et al., 2014). The energy, intensity and
rate were other features commonly used for emotional prosody
recognition (Swain et al., 2018). Therefore, it is suitable to extract
those acoustic parameters for the present work and predict
high accuracy in emotions discrimination and classification.
However, previous studies have also highlighted the influence of
linguistic parameters on emotions processing (Méndez-Bértolo
et al., 2011; Palazova et al., 2011; Hinojosa et al., 2014). Therefore,
it is necessary to supervise linguistic values, for all stimuli
to be nouns and adjectives, valence, arousal, and emotional
category to be in accordance with prosody, and frequency,
concreteness, and familiarity matched between emotions, so that
the unbiased allocation of prosody during recordings may be
ensured. Controlling for these factors will add reliability to our
database and enrich the current available material, as previous
works for Spanish emotional utterances did not systematically
control for linguistic features (Caballero-Morales, 2013; Hinojosa
et al., 2016a,b; Pérez-Espinosa et al., 2020).
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The second aim of the present work is to determine the essence
of the naturalness of human voices compared to synthesized ones
by analyzing acoustic features. Previous studies have highlighted
the human specific ability to recognize the human shape of
human voices over synthesized ones (Tamura et al., 2015; Kuriki
et al., 2016). For instance, Tamura et al. (2015) emphasized
that human voices are generally perceived as more natural
(as compared to awkward), human (as compared to robotic),
animated, familiar, comfortable (as compared to irritating),
emotional and warmer than artificial voices. Furthermore, the
left posterior insula was outlined as a marker of the perception
of the ecological validity with greater activation when processing
human versus artificial voices. Therefore, by their highly natural
identity, human voices may have a particular acoustic profile that
allow their conspecific- and socially related neuronal processing
and perception. To the best of our knowledge, the present work
will be the first to detangle the acoustic identity of the human
naturalness in voices compared to synthesized ones. Autistics
have demonstrated impairments to associate human versus
artificial voices with familiarity, warmth, emotions, animateness,
naturalness (as compared to unnatural), and humanness (as
compared to mechanics), and this atypical perception was
correlated to the general autistic symptomatology (Kuriki et al.,
2016). Therefore, ASD are characterized by impairments in
the ability to discern social and human-related cues in human
voices compared to synthesized ones, which invalidate them for
further socio-emotional interactions. The present work proposes
to reduce the human and natural-related acoustic information
in voiced emotional utterances in order to create a more
mechanistic and stereotyped environment which would be more
comfortable and increase attention and interest to emotional
stimuli in autistics. By gradually removing naturalness in voice,
we pretend to identify up to which grade this process may help
to improve emotional prosody discrimination in autistics. As a
secondary outcome, it would be characterized how emotional
processing preferences may vary according to human-likeness
(Mori et al., 2012).

Finally, the present project of investigation seeks to explore the
EEG event-related basis of emotional prosody uttered by human
and synthesized voices processing in autism. Also, the emotions
processing-related social robot-induced neuronal plasticity will
be analyzed. Previous studies outlined significant plastic neuronal
changes correlated to behavioral improvements after drug-free
interventions in autistics, even in patients older than early
critical plasticity periods. Particularly, Van Hecke et al. (2015)
observed a significant alignment to typical neuronal resting
activity highlighted by a shift from right to left hemisphere
dominance of gamma oscillation activity after 14 sessions of the
Program for the Education and Enrichment of Relational Skills
in autistic adolescents (mean age = 14-year-old) which correlated
to social abilities improvements. Using and ERP analysis before
and after training for face processing, Faja et al. (2012)
emphasized a post-training reduction of the amplitude of the P1
component in autistic adults (mean age = 22-year-old) stressing
a potentially lower early attentional effort for face processing, in
line with behavioral improvements. Nevertheless, no social robot-
based intervention assessed pre- and post-electrophysiological
correlates yet. Therefore, the present study suggests fulfilling

this gap by highlighting the neuronal plasticity associated
with the effects of a social robot-based intervention directed
toward emotional prosodies discrimination skills. Behavioral
improvements as measured by the ASRS questionnaire and
responses to the experimental task are anticipated. Measuring
behavioral outcomes by the validated ASRS questionnaire
increases this work’s reliability and allows to extend results to
daily life and human interactions as well as to improvements
beyond (yet related to) the primary-trained skill (Yun et al., 2017;
So et al., 2018; David et al., 2020). The enhancement of the
intervention by synthesized voices and a social robot may lead
to a multisensorial, real-life-like, safe, controllable, and simplified
environment that may foster positive outcomes.

This project of investigation might encounter some pitfalls
and unexpected results. Non-professionalism of actors recruited
for emotional recordings during Stage 1 may affect the reliability
of required prosodies. Nevertheless, the number of volunteers
will be increased in order to generate four times more utterances
than necessary to enable the selection of best actor participants.
Furthermore, emotion recognition accuracy will be validated by
supervised learning algorithm to ensure the quality of emotion
discrimination based on acoustic features. Stage 2 aims to explore
emotional recognition impairments in autism triggered by
naturalness of human voices. We expect to observe a diminution
of the amplitude of ERPs in the autistic population as a reflect
of decreased attentional, sensorial, and cognitive emotional
processing (Lartseva et al., 2015; Lindström et al., 2016, 2018).
The autistic condition may also be characterized by hemispheric
lateralization anomalies due to lateralized compensatory brain
activity (Subbaraju et al., 2018). Impairments are expected to
fade with the decreasing naturalness of voice stimuli. However,
in the opposite case, no effect of naturalness on neural emotional
processing by autistic children would be an evidence that the
modulated acoustic parameters would not participate to autistic
impairments. In the latter situation, or in case of enhancement of
autistic impairments triggered by naturalness modulations, the
acoustic edition of the stimuli will be reconsidered. Finally, Stage
3 expects the implementation of less natural voices in a robot-
based intervention with the aim of improving emotion detection
by autistic children. The 2-week intervention may imply a high
rate of withdrawals whereas the sample size needed is relatively
high. However, upon completion, we expect the intervention
to trigger a reduction of autistic impairments (reduction of
symptomatology, higher EEG activity, higher behavioral accuracy
for emotion discrimination: smaller reaction times, and higher
correct answers at end- and follow-up assessments).

CONCLUSION

The present research project aims to contribute to the current
scientific knowledge by expecting to fulfil the following novel
goals: (1) an emotional speech database adapted to the Mexican
cultural shape of prosodic expressions will be created, (2)
naturalness in voice will be defined and evidence that it triggers
difficulty to discriminate emotional prosodies in ASD will be
empirically supported, (3) a Social StoriesTM and robot-based
intervention will be implemented to test the efficacy of using
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less-natural voices to help typical emotional discrimination in
autistic children.
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Kamińska, D. (2019). Emotional Speech Recognition Based on the Committee of
Classifiers. Entropy 21:920. doi: 10.3390/e21100920

Kujala, T., Aho, E., Lepistö, T., Jansson-Verkasalo, E., Nieminen-von Wendt, T.,
von Wendt, L., et al. (2007). Atypical pattern of discriminating sound features
in adults with Asperger syndrome as reflected by the mismatch negativity. Biol.
Psychol. 75, 109–114. doi: 10.1016/j.biopsycho.2006.12.007

Kuriki, S., Tamura, Y., Igarashi, M., Kato, N., and Nakano, T. (2016). Similar
impressions of humanness for human and artificial singing voices in autism
spectrum disorders. Cognition 153, 1–5. doi: 10.1016/j.cognition.2016.04.004

Kurt, O., and Kutlu, M. (2019). Effectiveness of Social Stories in Teaching
Abduction-Prevention Skills to Children with Autism. J. Autism. Dev. Disord.
49, 3807–3818. doi: 10.1007/s10803-019-04096-9

Lartseva, A., Dijkstra, T., and Buitelaar, J. K. (2015). Emotional language processing
in autism spectrum disorders: a systematic review. Front. Hum. Neurosci. 6:8.

Laukka, P., Elfenbein, H. A., Thingujam, N. S., Rockstuhl, T., Iraki, F. K., Chui, W.,
et al. (2016). The expression and recognition of emotions in the voice across five
nations: A lens model analysis based on acoustic features. J. Pers. Soc. Psychol.
111, 686–705. doi: 10.1037/pspi0000066

Lindström, R., Lepistö-Paisley, T., Makkonen, T., Reinvall, O., Nieminen-von
Wendt, T., Alén, R., et al. (2018). Atypical perceptual and neural processing of
emotional prosodic changes in children with autism spectrum disorders. Clin.
Neurophysiol. 129, 2411–2420. doi: 10.1016/j.clinph.2018.08.018

Lindström, R., Lepistö-Paisley, T., Vanhala, R., Alén, R., and Kujala, T. (2016).
Impaired neural discrimination of emotional speech prosody in children with
autism spectrum disorder and language impairment. Neurosci. Lett. 628, 47–51.
doi: 10.1016/j.neulet.2016.06.016

Liu, Z.-T., Xie, Q., Wu, M., Cao, W.-H., Mei, Y., and Mao, J.-W. (2018).
Speech emotion recognition based on an improved brain emotion learning
model. Neurocomputing 309, 145–156. doi: 10.1016/j.neucom.2018.
05.005

Marino, F., Chilà, P., Sfrazzetto, S. T., Carrozza, C., Crimi, I., Failla, C., et al. (2019).
Outcomes of a Robot-Assisted Social-Emotional Understanding Intervention
for Young Children with Autism Spectrum Disorders. J. Autism Dev. Disord.
19, 3953–84. doi: 10.1007/s10803-019-03953-x

Méndez-Bértolo, C., Pozo, M. A., and Hinojosa, J. A. (2011). Word frequency
modulates the processing of emotional words: Convergent behavioral and
electrophysiological data. Neurosci. Lett. 494, 250–254. doi: 10.1016/j.neulet.
2011.03.026

Miller, I. T., Wiederhold, B. K., Miller, C. S., and Wiederhold, M. D. (2020).
Virtual Reality Air Travel Training with Children on the Autism Spectrum: A
Preliminary Report. Cyberpsychol. Behav. Soc. Netw. 23, 10–15. doi: 10.1089/
cyber.2019.0093

Mori, M., MacDorman, K., and Kageki, N. (2012). The Uncanny Valley [From the
Field]. IEEE Robot. Autom. Mag. 19, 98–100. doi: 10.1109/mra.2012.2192811

Mottron, L., Dawson, M., Soulières, I., Hubert, B., and Burack, J. (2006). Enhanced
Perceptual Functioning in Autism: An Update, and Eight Principles of Autistic
Perception. J. Autism. Dev. Disord. 36, 27–43. doi: 10.1007/s10803-005-
0040-7

Palazova, M., Mantwill, K., Sommer, W., and Schacht, A. (2011). Are effects
of emotion in single words non-lexical? Evidence from event-related brain
potentials. Neuropsychologia 49, 2766–2775. doi: 10.1016/j.neuropsychologia.
2011.06.005

Pan, D., Hoid, D., Wang, Z., Wang, Y., and Li, X. (2020). Using questionnaires and
task-related EEG signals to reveal hindered reappraisal and biased suppression
in individuals with high schizotypal traits. Sci. Rep. 10:5529.

Pane, H. M., Sidener, T. M., Vladescu, J. C., and Nirgudkar, A. (2015). Evaluating
Function-Based Social StoriesTM With Children With Autism. Behav. Modif. 39,
912–931. doi: 10.1177/0145445515603708

Paris, M., Mahajan, Y., Kim, J., and Meade, T. (2018). Emotional speech processing
deficits in bipolar disorder: The role of mismatch negativity and P3a. J. Affect.
Disord. 234, 261–269. doi: 10.1016/j.jad.2018.02.026

Paulmann, S., and Uskul, A. K. (2014). Cross-cultural emotional prosody
recognition: Evidence from Chinese and British listeners. Cogn. Emot. 28,
230–244. doi: 10.1080/02699931.2013.812033

Paulmann, S. (2016). The Neurocognition of Prosody. Neurobiol. Lan. 15, 1109–
1120. doi: 10.1016/b978-0-12-407794-2.00088-2

Paulmann, S., Bleichner, M., and Kotz, S. A. (2013). Valence, arousal, and task
effects in emotional prosody processing. Front. Psychol. 9:4.

Pérez-Espinosa, H., Martínez-Miranda, J., Espinosa-Curiel, I., Rodríguez-Jacobo,
J., Villaseñor-Pineda, L., and Avila-George, H. I. E. S. C. - (2020). Child: An
Interactive Emotional Children’s Speech Corpus. Comput. Speech Lang. 59,
55–74. doi: 10.1016/j.csl.2019.06.006

Quintin, E.-M., Bhatara, A., Poissant, H., Fombonne, E., and Levitin, D. J. (2011).
Emotion Perception in Music in High-Functioning Adolescents With Autism
Spectrum Disorders. J. Autism. Dev. Disord. 41, 1240–1255. doi: 10.1007/
s10803-010-1146-0

Rosenblau, G., Kliemann, D., Dziobek, I., and Heekeren, H. R. (2016). Emotional
prosody processing in Autism Spectrum Disorder. Soc. Cogn. Affect. Neurosci.
16:nsw118. doi: 10.1093/scan/nsw118

Samson, F., Hyde, K. L., Bertone, A., Soulières, I., Mendrek, A., Ahad,
P., et al. (2011). Atypical processing of auditory temporal complexity in
autistics. Neuropsychologia 49, 546–555. doi: 10.1016/j.neuropsychologia.2010.
12.033

Sartorato, F., Przybylowski, L., and Sarko, D. K. (2017). Improving therapeutic
outcomes in autism spectrum disorders: Enhancing social communication and
sensory processing through the use of interactive robots. J. Psychiatr. Res. 90,
1–11. doi: 10.1016/j.jpsychires.2017.02.004

Sato, W., Kochiyama, T., Uono, S., Yoshimura, S., Kubota, Y., Sawada, R., et al.
(2017). Reduced Gray Matter Volume in the Social Brain Network in Adults
with Autism Spectrum Disorder. Front. Hum. Neurosci. 11:395.

Scassellati, B., Boccanfuso, L., Huang, C.-M., Mademtzi, M., Qin, M., Salomons,
N., et al. (2018). Improving social skills in children with ASD using a long-
term, in-home social robot. Sci. Robot. 3:eaat7544. doi: 10.1126/scirobotics.aat
7544

Schauder, K. B., and Bennetto, L. (2016). Toward an Interdisciplinary
Understanding of Sensory Dysfunction in Autism Spectrum Disorder: An
Integration of the Neural and Symptom Literatures. Front. Neurosci. 8:10.

Schelinski, S., Roswandowitz, C., and von Kriegstein, K. (2017). Voice identity
processing in autism spectrum disorder: Voice Identity Processing in ASD.
Autism. Res. 10, 155–168. doi: 10.1002/aur.1639

Schelinski, S., and von Kriegstein, K. (2019). The Relation Between Vocal Pitch
and Vocal Emotion Recognition Abilities in People with Autism Spectrum
Disorder and Typical Development. J. Autism Dev. Disord. 49, 68–82. doi:
10.1007/s10803-018-3681-z

Scherer, K. R., Clark-Polner, E., and Mortillaro, M. (2011). In the eye of the
beholder? Universality and cultural specificity in the expression and perception
of emotion. Int J Psychol. 46, 401–435. doi: 10.1080/00207594.2011.626049

Silva-Pereyra, J., Rodríguez-Camacho, M. A., Prieto-Corona, D. M. B., and
Aubert, E. (2014). LEXMEX: Diccionario de frecuencias del español de México
[LEXMEX: Dictionary of Mexican Spanish frequencies]. DF Editor FES Iztacala
UNAM ISBN 978-607-02-5205-1.

Frontiers in Human Neuroscience | www.frontiersin.org 17 February 2021 | Volume 15 | Article 626146

https://doi.org/10.1080/1357650x.2015.1096940
https://doi.org/10.1080/1357650x.2015.1096940
https://doi.org/10.1007/s10803-005-0039-0
https://doi.org/10.1016/j.bandc.2014.03.008
https://doi.org/10.3758/s13428-015-0572-5
https://doi.org/10.1371/journal.pone.0155866
https://doi.org/10.3390/e21100920
https://doi.org/10.1016/j.biopsycho.2006.12.007
https://doi.org/10.1016/j.cognition.2016.04.004
https://doi.org/10.1007/s10803-019-04096-9
https://doi.org/10.1037/pspi0000066
https://doi.org/10.1016/j.clinph.2018.08.018
https://doi.org/10.1016/j.neulet.2016.06.016
https://doi.org/10.1016/j.neucom.2018.05.005
https://doi.org/10.1016/j.neucom.2018.05.005
https://doi.org/10.1007/s10803-019-03953-x
https://doi.org/10.1016/j.neulet.2011.03.026
https://doi.org/10.1016/j.neulet.2011.03.026
https://doi.org/10.1089/cyber.2019.0093
https://doi.org/10.1089/cyber.2019.0093
https://doi.org/10.1109/mra.2012.2192811
https://doi.org/10.1007/s10803-005-0040-7
https://doi.org/10.1007/s10803-005-0040-7
https://doi.org/10.1016/j.neuropsychologia.2011.06.005
https://doi.org/10.1016/j.neuropsychologia.2011.06.005
https://doi.org/10.1177/0145445515603708
https://doi.org/10.1016/j.jad.2018.02.026
https://doi.org/10.1080/02699931.2013.812033
https://doi.org/10.1016/b978-0-12-407794-2.00088-2
https://doi.org/10.1016/j.csl.2019.06.006
https://doi.org/10.1007/s10803-010-1146-0
https://doi.org/10.1007/s10803-010-1146-0
https://doi.org/10.1093/scan/nsw118
https://doi.org/10.1016/j.neuropsychologia.2010.12.033
https://doi.org/10.1016/j.neuropsychologia.2010.12.033
https://doi.org/10.1016/j.jpsychires.2017.02.004
https://doi.org/10.1126/scirobotics.aat7544
https://doi.org/10.1126/scirobotics.aat7544
https://doi.org/10.1002/aur.1639
https://doi.org/10.1007/s10803-018-3681-z
https://doi.org/10.1007/s10803-018-3681-z
https://doi.org/10.1080/00207594.2011.626049
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-626146 February 23, 2021 Time: 10:46 # 18

Duville et al. Affective Prosody Processing in Autistics

Simek, A. N., and Wahlberg, A. C. (2011). Test Review: Autism Spectrum Rating
Scales. J. Psychoeduc. Assess. 29, 191–195. doi: 10.1177/0734282910375408

So, W.-C., Wong, M. K.-Y., Lam, W.-Y., Cheng, C.-H., Yang, J.-H., Huang, Y.,
et al. (2018). Robot-based intervention may reduce delay in the production of
intransitive gestures in Chinese-speaking preschoolers with autism spectrum
disorder. Mol. Autism. 9:34.

Stathopoulos, E. T., Huber, J. E., and Sussman, J. E. (2011). Changes in Acoustic
Characteristics of the Voice Across the Life Span: Measures From Individuals
4–93 Years of Age. J. Speech Lang. Hear Res. 54, 1011–1021. doi: 10.1044/1092-
4388(2010/10-0036)

Steber, S., König, N., Stephan, F., and Rossi, S. (2020). Uncovering
electrophysiological and vascular signatures of implicit emotional prosody. Sci.
Rep. 10:5807.

Subbaraju, V., Sundaram, S., and Narasimhan, S. (2018). Identification of
lateralized compensatory neural activities within the social brain due to autism
spectrum disorder in adolescent males. Eur. J. Neurosci. 47, 631–642. doi:
10.1111/ejn.13634

Swain, M., Routray, A., and Kabisatpathy, P. (2018). Databases, features and
classifiers for speech emotion recognition: a review. Int. J. Speech Technol. 21,
93–120. doi: 10.1007/s10772-018-9491-z

Tamura, Y., Kuriki, S., and Nakano, T. (2015). Involvement of the left insula in the
ecological validity of the human voice. Sci. Rep. 5:8799.

Tharwat, A. (2020). Classification assessment methods. Appl Comput Inform
[Internet]. 2020 Aug 3 [cited 2020 Nov 27];ahead-of-print(ahead-of-print).
Available online at: https://www.emerald.com/insight/content/doi/10.1016/j.
aci.2018.08.003/full/htm (accessed December 12, 2020).

Van Hecke, A. V., Stevens, S., Carson, A. M., Karst, J. S., Dolan, B., Schohl,
K., et al. (2015). Measuring the Plasticity of Social Approach: A Randomized
Controlled Trial of the Effects of the PEERS Intervention on EEG Asymmetry

in Adolescents with Autism Spectrum Disorders. J. Autism Dev. Disord. 45,
316–335. doi: 10.1007/s10803-013-1883-y

Vandermeer, J., Beamish, W., Milford, T., and Lang, W. (2015). iPad-presented
social stories for young children with autism. Dev. Neurorehabil. 18, 75–81.
doi: 10.3109/17518423.2013.809811

World Health Organization. (1994). International statistical classification of diseases
and related health problems, 10th Edn. Geneva: WHO.

Wyczesany, M., Capotosto, P., Zappasodi, F., and Prete, G. (2018). Hemispheric
asymmetries and emotions: Evidence from effective connectivity.
Neuropsychologia 121, 98–105. doi: 10.1016/j.neuropsychologia.2018.
10.007

Yun, S.-S., Choi, J., Park, S.-K., Bong, G.-Y., and Yoo, H. (2017). Social skills
training for children with autism spectrum disorder using a robotic behavioral
intervention system: Social Skills Training for Children with ASD. Autism Res.
10, 1306–1323. doi: 10.1002/aur.1778

Zatorre, R. J., and Baum, S. R. (2012). Musical Melody and Speech Intonation:
Singing a Different Tune. PLoS Biol. 10:e1001372. doi: 10.1371/journal.pbio.
1001372

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Duville, Alonso-Valerdi and Ibarra-Zarate. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 18 February 2021 | Volume 15 | Article 626146

https://doi.org/10.1177/0734282910375408
https://doi.org/10.1044/1092-4388(2010/10-0036)
https://doi.org/10.1044/1092-4388(2010/10-0036)
https://doi.org/10.1111/ejn.13634
https://doi.org/10.1111/ejn.13634
https://doi.org/10.1007/s10772-018-9491-z
https://www.emerald.com/insight/content/doi/10.1016/j.aci.2018.08.003/full/htm
https://www.emerald.com/insight/content/doi/10.1016/j.aci.2018.08.003/full/htm
https://doi.org/10.1007/s10803-013-1883-y
https://doi.org/10.3109/17518423.2013.809811
https://doi.org/10.1016/j.neuropsychologia.2018.10.007
https://doi.org/10.1016/j.neuropsychologia.2018.10.007
https://doi.org/10.1002/aur.1778
https://doi.org/10.1371/journal.pbio.1001372
https://doi.org/10.1371/journal.pbio.1001372
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

	Electroencephalographic Correlate of Mexican Spanish Emotional Speech Processing in Autism Spectrum Disorder: To a Social Story and Robot-Based Intervention
	Introduction
	Autism Spectrum Disorders
	Psychoacoustic Properties of Auditory Information
	Emotional Prosody Recognition
	EEG Signature of Emotion Recognition
	Assistive Technology for the Improvement of Emotional Skills in ASD
	Social StoriesTM
	Social Robots

	Current Study

	Materials and Methods
	Mexican Emotional Speech Database
	Sample
	MESD Speech Corpus Stimuli
	Speech Recordings Elaboration and Procedures
	Sound Processing and Analyses
	Emotions Classification

	Synthesized and Human Emotional Utterances Processing in Autistic Children
	Standard and Neural Speech Files Acquisition
	``Naturalness in Voice'' Characterization
	Creation of Five Levels of Naturalness for Emotional Speech
	Passive Oddball Paradigm
	EEG Recording and Processing
	Data Analysis
	Statistical analysis

	Participants

	An Intervention Based on Social StoriesTM, Synthesized Voices and Interactions With NAO
	Intervention
	Outcome Measures
	ASRS questionnaire
	Behavioral assessments
	EEG assessments

	Social StoriesTM Elaboration
	Content
	Recording and edition
	Validation

	Data Analysis
	Statistical analysis on ASRS scores
	Statistical analysis on behavioral data
	ERPs
	Statistical analysis on ERPs data

	Participants
	Social StoriesTM and robot utterances recordings
	Validation of Social StoriesTM
	Intervention



	Discussion
	Conclusion
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


